https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=AI-driven_design_automation AI-driven design automation - Revision history 2025-06-18T17:39:25Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.5 https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1296047709&oldid=prev Copparihollmann: Fixed formatting 2025-06-17T13:19:51Z <p>Fixed formatting</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:19, 17 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 203:</td> <td colspan="2" class="diff-lineno">Line 203:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="Rapp2021MLCAD"&gt;{{Cite journal |last=Rapp |first=Martin |last2=Amrouch |first2=Hussam |last3=Lin |first3=Yibo |last4=Yu |first4=Bei |last5=Pan |first5=David Z. |last6=Wolf |first6=Marilyn |last7=Henkel |first7=Jörg |date=October 2022 |title=MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper |url=https://ieeexplore.ieee.org/abstract/document/9598835 |journal=IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |volume=41 |issue=10 |pages=3162–3181 |doi=10.1109/TCAD.2021.3124762 |issn=1937-4151}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="Rapp2021MLCAD"&gt;{{Cite journal |last=Rapp |first=Martin |last2=Amrouch |first2=Hussam |last3=Lin |first3=Yibo |last4=Yu |first4=Bei |last5=Pan |first5=David Z. |last6=Wolf |first6=Marilyn |last7=Henkel |first7=Jörg |date=October 2022 |title=MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper |url=https://ieeexplore.ieee.org/abstract/document/9598835 |journal=IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |volume=41 |issue=10 |pages=3162–3181 |doi=10.1109/TCAD.2021.3124762 |issn=1937-4151}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="Gubbi2022Survey"&gt;{{Cite journal |last=Gubbi |first=Kevin Immanuel |last2=Beheshti-Shirazi |first2=Sayed Aresh |last3=Sheaves |first3=Tyler |last4=Salehi |first4=Soheil |last5=PD |first5=Sai Manoj |last6=Rafatirad |first6=Setareh |last7=Sasan |first7=Avesta |last8=Homayoun |first8=Houman |date=2022-06-06 |title=Survey of Machine Learning for Electronic Design Automation |url=https://dl.acm.org/doi/10.1145/3526241.3530834 |journal=Proceedings of the Great Lakes Symposium on VLSI 2022 |series=GLSVLSI '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=513–518 |doi=10.1145/3526241.3530834 |isbn=978-1-4503-9322-5}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="Gubbi2022Survey"&gt;{{Cite journal |last=Gubbi |first=Kevin Immanuel |last2=Beheshti-Shirazi |first2=Sayed Aresh |last3=Sheaves |first3=Tyler |last4=Salehi |first4=Soheil |last5=PD |first5=Sai Manoj |last6=Rafatirad |first6=Setareh |last7=Sasan |first7=Avesta |last8=Homayoun |first8=Houman |date=2022-06-06 |title=Survey of Machine Learning for Electronic Design Automation |url=https://dl.acm.org/doi/10.1145/3526241.3530834 |journal=Proceedings of the Great Lakes Symposium on VLSI 2022 |series=GLSVLSI '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=513–518 |doi=10.1145/3526241.3530834 |isbn=978-1-4503-9322-5}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="Chen2024AINativeEDA"&gt;{{cite arxiv |last1=Chen |first1=L. |last2=Chen |first2=Y. |last3=Chu |first3=Z. |last4=Fang |first4=W. |last5=Ho |first5=T. Y. |last6=Huang |first6=R. |year=2024 |title=The dawn of ai-native eda: Opportunities and challenges of large circuit models |eprint=2403.07257}}&lt;/ref&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="CadenceAIOverview"&gt;{{cite web |url=https://community.cadence.com/cadence_blogs_8/b/corporate-news/posts/transforming-chip-design-with-agentic-ai-introducing-cadence-cerebrus-ai-studio |title=Cadence.AI: Transforming Chip Design with Agentic AI Workflows |publisher=Cadence Design Systems |accessdate=June 7, 2025}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="CadenceAIOverview"&gt;{{cite web |url=https://community.cadence.com/cadence_blogs_8/b/corporate-news/posts/transforming-chip-design-with-agentic-ai-introducing-cadence-cerebrus-ai-studio |title=Cadence.AI: Transforming Chip Design with Agentic AI Workflows |publisher=Cadence Design Systems |accessdate=June 7, 2025}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="CadenceEDAWhatIs"&gt;{{cite web |url=https://www.cadence.com/en_US/home/explore/what-is-electronic-design-automation.html#:~:text=Electronic%20design%20automation%20(EDA)%20is,hand%20and%20utilized%20siloed%20tools. |title=What is Electronic Design Automation (EDA)? |publisher=Cadence Design Systems |accessdate=June 7, 2025}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="CadenceEDAWhatIs"&gt;{{cite web |url=https://www.cadence.com/en_US/home/explore/what-is-electronic-design-automation.html#:~:text=Electronic%20design%20automation%20(EDA)%20is,hand%20and%20utilized%20siloed%20tools. |title=What is Electronic Design Automation (EDA)? |publisher=Cadence Design Systems |accessdate=June 7, 2025}}&lt;/ref&gt;</div></td> </tr> </table> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1296047564&oldid=prev Copparihollmann: Refined citation 2025-06-17T13:18:38Z <p>Refined citation</p> <a href="//en.wikipedia.org/w/index.php?title=AI-driven_design_automation&amp;diff=1296047564&amp;oldid=1296046222">Show changes</a> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1296046222&oldid=prev Copparihollmann: Adjusted size of images. 2025-06-17T13:07:31Z <p>Adjusted size of images.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:07, 17 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''AI Driven Design Automation''' is the use of [[artificial intelligence]] (AI) to automate and improve different parts of the [[electronic design automation]] (EDA) process. This applies especially to designing [[integrated circuit]]s (chips) and complex electronic systems. This field has become important because it can help solve the growing problems of complexity, high costs, and the need to release products faster in the [[semiconductor industry]]. AI Driven Design Automation uses several methods, including [[machine learning]], [[expert system]]s, and [[reinforcement learning]]. These are used for many tasks, from planning a chip's architecture and [[logic synthesis]] to its [[physical design (electronics)|physical design]] and final [[verification and validation|verification]]. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''AI Driven Design Automation''' is the use of [[artificial intelligence]] (AI) to automate and improve different parts of the [[electronic design automation]] (EDA) process. This applies especially to designing [[integrated circuit]]s (chips) and complex electronic systems. This field has become important because it can help solve the growing problems of complexity, high costs, and the need to release products faster in the [[semiconductor industry]]. AI Driven Design Automation uses several methods, including [[machine learning]], [[expert system]]s, and [[reinforcement learning]]. These are used for many tasks, from planning a chip's architecture and [[logic synthesis]] to its [[physical design (electronics)|physical design]] and final [[verification and validation|verification]]. </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:EDA Large Circuit Models.png|thumb|This figure explains how can we train large circuit models by making use of the front-end (depicted in blue) and back-end (depicted in yellow) of the EDA flow in order to either enhance existing EDA tools or to create novel EDA applications.&lt;ref name=":0"&gt;{{Citation |last=Chen |first=Lei |title=The Dawn of AI-Native EDA: Opportunities and Challenges of Large Circuit Models |date=2024-05-01 |url=http://arxiv.org/abs/2403.07257 |access-date=2025-06-14 |publisher=arXiv |doi=10.48550/arXiv.2403.07257 |id=arXiv:2403.07257 |last2=Chen |first2=Yiqi |last3=Chu |first3=Zhufei |last4=Fang |first4=Wenji |last5=Ho |first5=Tsung-Yi |last6=Huang |first6=Ru |last7=Huang |first7=Yu |last8=Khan |first8=Sadaf |last9=Li |first9=Min}}&lt;/ref&gt;|<del style="font-weight: bold; text-decoration: none;">594x594px</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:EDA Large Circuit Models.png|thumb|This figure explains how can we train large circuit models by making use of the front-end (depicted in blue) and back-end (depicted in yellow) of the EDA flow in order to either enhance existing EDA tools or to create novel EDA applications.&lt;ref name=":0"&gt;{{Citation |last=Chen |first=Lei |title=The Dawn of AI-Native EDA: Opportunities and Challenges of Large Circuit Models |date=2024-05-01 |url=http://arxiv.org/abs/2403.07257 |access-date=2025-06-14 |publisher=arXiv |doi=10.48550/arXiv.2403.07257 |id=arXiv:2403.07257 |last2=Chen |first2=Yiqi |last3=Chu |first3=Zhufei |last4=Fang |first4=Wenji |last5=Ho |first5=Tsung-Yi |last6=Huang |first6=Ru |last7=Huang |first7=Yu |last8=Khan |first8=Sadaf |last9=Li |first9=Min}}&lt;/ref&gt;|<ins style="font-weight: bold; text-decoration: none;">453x453px</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Complexity Comparison Floorplanning.png|thumb|Complexity of board games compared to floorplanning in chip design: chess is estimated to have a complexity of ≈ 10¹²⁶, Go about 10³⁶⁰, while arranging hundreds of hard macros on a silicon die balloons beyond 10²⁵⁰⁰ possibilities. The arrow highlights this steep rise in combinatorial complexity.&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;&lt;ref&gt;{{Cite AV media |url=https://www.youtube.com/watch?v=zR9IusOpEzk |title=Google’s Chip Designing AI |date=2021-12-12 |last=Asianometry |access-date=2025-06-17 |via=YouTube}}&lt;/ref&gt;|<del style="font-weight: bold; text-decoration: none;">494x494px</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Complexity Comparison Floorplanning.png|thumb|Complexity of board games compared to floorplanning in chip design: chess is estimated to have a complexity of ≈ 10¹²⁶, Go about 10³⁶⁰, while arranging hundreds of hard macros on a silicon die balloons beyond 10²⁵⁰⁰ possibilities. The arrow highlights this steep rise in combinatorial complexity.&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;&lt;ref&gt;{{Cite AV media |url=https://www.youtube.com/watch?v=zR9IusOpEzk |title=Google’s Chip Designing AI |date=2021-12-12 |last=Asianometry |access-date=2025-06-17 |via=YouTube}}&lt;/ref&gt;|<ins style="font-weight: bold; text-decoration: none;">441x441px</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 86:</td> <td colspan="2" class="diff-lineno">Line 86:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In EDA, RL is especially good for tasks that require making a series of decisions to find the best solution in very complex situations with many variables. Its adoption by commercial EDA products shows its growing importance.&lt;ref name="SynopsysAI2023"/&gt; RL has been used for physical design problems like chip [[Floorplan (microelectronics)|floorplanning]]. In this task, an agent learns to place blocks to improve things like wire length and performance.&lt;ref name="Mirhoseini2021Floorplanning"/&gt;&lt;ref name="Xu2021GoodFloorplan"/&gt; In logic synthesis, RL can guide how optimization steps are chosen and in what order they are applied to get better results, as seen in methods like AlphaSyn.&lt;ref name="Pei2023AlphaSyn"/&gt; Another example where RL agents can learn effective strategies is adjusting the size of gates to optimize timing.&lt;ref name="Lu2021RLSizer"/&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In EDA, RL is especially good for tasks that require making a series of decisions to find the best solution in very complex situations with many variables. Its adoption by commercial EDA products shows its growing importance.&lt;ref name="SynopsysAI2023"/&gt; RL has been used for physical design problems like chip [[Floorplan (microelectronics)|floorplanning]]. In this task, an agent learns to place blocks to improve things like wire length and performance.&lt;ref name="Mirhoseini2021Floorplanning"/&gt;&lt;ref name="Xu2021GoodFloorplan"/&gt; In logic synthesis, RL can guide how optimization steps are chosen and in what order they are applied to get better results, as seen in methods like AlphaSyn.&lt;ref name="Pei2023AlphaSyn"/&gt; Another example where RL agents can learn effective strategies is adjusting the size of gates to optimize timing.&lt;ref name="Lu2021RLSizer"/&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Floorplanning comparison.png|thumb|<del style="font-weight: bold; text-decoration: none;">427x427px</del>|Comparison of macro-placement strategies for a system-on-chip floorplan: a handcrafted layout created by a human designer (left) and a layout generated by an AI-assisted placer (right). The AI approach combines explicit design-rule constraints with heuristic search and reinforcement-learning optimization, allowing it to evaluate placements that are not obvious to humans while still meeting power, performance and area targets.&lt;ref&gt;{{Cite web |last=Attar |first=Janet |date=2024-01-11 |title=AI-Driven Macro Placement Boosts PPA |url=https://semiengineering.com/ai-driven-macro-placement-boosts-ppa/ |access-date=2025-06-17 |website=Semiconductor Engineering |language=en-US}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Floorplanning comparison.png|thumb|<ins style="font-weight: bold; text-decoration: none;">358x358px</ins>|Comparison of macro-placement strategies for a system-on-chip floorplan: a handcrafted layout created by a human designer (left) and a layout generated by an AI-assisted placer (right). The AI approach combines explicit design-rule constraints with heuristic search and reinforcement-learning optimization, allowing it to evaluate placements that are not obvious to humans while still meeting power, performance and area targets.&lt;ref&gt;{{Cite web |last=Attar |first=Janet |date=2024-01-11 |title=AI-Driven Macro Placement Boosts PPA |url=https://semiengineering.com/ai-driven-macro-placement-boosts-ppa/ |access-date=2025-06-17 |website=Semiconductor Engineering |language=en-US}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Generative AI===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Generative AI===</div></td> </tr> </table> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1296044544&oldid=prev Copparihollmann: Improved visibility of images and added a new figure for comparison between handcrafted vs AI generated placement of macros. 2025-06-17T12:53:00Z <p>Improved visibility of images and added a new figure for comparison between handcrafted vs AI generated placement of macros.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:53, 17 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''AI Driven Design Automation''' is the use of [[artificial intelligence]] (AI) to automate and improve different parts of the [[electronic design automation]] (EDA) process. This applies especially to designing [[integrated circuit]]s (chips) and complex electronic systems. This field has become important because it can help solve the growing problems of complexity, high costs, and the need to release products faster in the [[semiconductor industry]]. AI Driven Design Automation uses several methods, including [[machine learning]], [[expert system]]s, and [[reinforcement learning]]. These are used for many tasks, from planning a chip's architecture and [[logic synthesis]] to its [[physical design (electronics)|physical design]] and final [[verification and validation|verification]]. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''AI Driven Design Automation''' is the use of [[artificial intelligence]] (AI) to automate and improve different parts of the [[electronic design automation]] (EDA) process. This applies especially to designing [[integrated circuit]]s (chips) and complex electronic systems. This field has become important because it can help solve the growing problems of complexity, high costs, and the need to release products faster in the [[semiconductor industry]]. AI Driven Design Automation uses several methods, including [[machine learning]], [[expert system]]s, and [[reinforcement learning]]. These are used for many tasks, from planning a chip's architecture and [[logic synthesis]] to its [[physical design (electronics)|physical design]] and final [[verification and validation|verification]]. </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:EDA Large Circuit Models.png|thumb|This figure explains how can we train large circuit models by making use of the front-end (depicted in blue) and back-end (depicted in yellow) of the EDA flow in order to either enhance existing EDA tools or to create novel EDA applications.&lt;ref name=":0"&gt;{{Citation |last=Chen |first=Lei |title=The Dawn of AI-Native EDA: Opportunities and Challenges of Large Circuit Models |date=2024-05-01 |url=http://arxiv.org/abs/2403.07257 |access-date=2025-06-14 |publisher=arXiv |doi=10.48550/arXiv.2403.07257 |id=arXiv:2403.07257 |last2=Chen |first2=Yiqi |last3=Chu |first3=Zhufei |last4=Fang |first4=Wenji |last5=Ho |first5=Tsung-Yi |last6=Huang |first6=Ru |last7=Huang |first7=Yu |last8=Khan |first8=Sadaf |last9=Li |first9=Min}}&lt;/ref&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:EDA Large Circuit Models.png|thumb|This figure explains how can we train large circuit models by making use of the front-end (depicted in blue) and back-end (depicted in yellow) of the EDA flow in order to either enhance existing EDA tools or to create novel EDA applications.&lt;ref name=":0"&gt;{{Citation |last=Chen |first=Lei |title=The Dawn of AI-Native EDA: Opportunities and Challenges of Large Circuit Models |date=2024-05-01 |url=http://arxiv.org/abs/2403.07257 |access-date=2025-06-14 |publisher=arXiv |doi=10.48550/arXiv.2403.07257 |id=arXiv:2403.07257 |last2=Chen |first2=Yiqi |last3=Chu |first3=Zhufei |last4=Fang |first4=Wenji |last5=Ho |first5=Tsung-Yi |last6=Huang |first6=Ru |last7=Huang |first7=Yu |last8=Khan |first8=Sadaf |last9=Li |first9=Min}}&lt;/ref&gt;<ins style="font-weight: bold; text-decoration: none;">|594x594px</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Complexity Comparison Floorplanning.png|thumb|Complexity of board games compared to floorplanning in chip design: chess is estimated to have a complexity of ≈ 10¹²⁶, Go about 10³⁶⁰, while arranging hundreds of hard macros on a silicon die balloons beyond 10²⁵⁰⁰ possibilities. The arrow highlights this steep rise in combinatorial complexity.&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;&lt;ref&gt;{{Cite AV media |url=https://www.youtube.com/watch?v=zR9IusOpEzk |title=Google’s Chip Designing AI |date=2021-12-12 |last=Asianometry |access-date=2025-06-17 |via=YouTube}}&lt;/ref&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Complexity Comparison Floorplanning.png|thumb|Complexity of board games compared to floorplanning in chip design: chess is estimated to have a complexity of ≈ 10¹²⁶, Go about 10³⁶⁰, while arranging hundreds of hard macros on a silicon die balloons beyond 10²⁵⁰⁰ possibilities. The arrow highlights this steep rise in combinatorial complexity.&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;&lt;ref&gt;{{Cite AV media |url=https://www.youtube.com/watch?v=zR9IusOpEzk |title=Google’s Chip Designing AI |date=2021-12-12 |last=Asianometry |access-date=2025-06-17 |via=YouTube}}&lt;/ref&gt;<ins style="font-weight: bold; text-decoration: none;">|494x494px</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 86:</td> <td colspan="2" class="diff-lineno">Line 86:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In EDA, RL is especially good for tasks that require making a series of decisions to find the best solution in very complex situations with many variables. Its adoption by commercial EDA products shows its growing importance.&lt;ref name="SynopsysAI2023"/&gt; RL has been used for physical design problems like chip [[Floorplan (microelectronics)|floorplanning]]. In this task, an agent learns to place blocks to improve things like wire length and performance.&lt;ref name="Mirhoseini2021Floorplanning"/&gt;&lt;ref name="Xu2021GoodFloorplan"/&gt; In logic synthesis, RL can guide how optimization steps are chosen and in what order they are applied to get better results, as seen in methods like AlphaSyn.&lt;ref name="Pei2023AlphaSyn"/&gt; Another example where RL agents can learn effective strategies is adjusting the size of gates to optimize timing.&lt;ref name="Lu2021RLSizer"/&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In EDA, RL is especially good for tasks that require making a series of decisions to find the best solution in very complex situations with many variables. Its adoption by commercial EDA products shows its growing importance.&lt;ref name="SynopsysAI2023"/&gt; RL has been used for physical design problems like chip [[Floorplan (microelectronics)|floorplanning]]. In this task, an agent learns to place blocks to improve things like wire length and performance.&lt;ref name="Mirhoseini2021Floorplanning"/&gt;&lt;ref name="Xu2021GoodFloorplan"/&gt; In logic synthesis, RL can guide how optimization steps are chosen and in what order they are applied to get better results, as seen in methods like AlphaSyn.&lt;ref name="Pei2023AlphaSyn"/&gt; Another example where RL agents can learn effective strategies is adjusting the size of gates to optimize timing.&lt;ref name="Lu2021RLSizer"/&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Floorplanning comparison.png|thumb|427x427px|Comparison of macro-placement strategies for a system-on-chip floorplan: a handcrafted layout created by a human designer (left) and a layout generated by an AI-assisted placer (right). The AI approach combines explicit design-rule constraints with heuristic search and reinforcement-learning optimization, allowing it to evaluate placements that are not obvious to humans while still meeting power, performance and area targets.&lt;ref&gt;{{Cite web |last=Attar |first=Janet |date=2024-01-11 |title=AI-Driven Macro Placement Boosts PPA |url=https://semiengineering.com/ai-driven-macro-placement-boosts-ppa/ |access-date=2025-06-17 |website=Semiconductor Engineering |language=en-US}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Generative AI===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Generative AI===</div></td> </tr> </table> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1296043237&oldid=prev Copparihollmann: Added image to exemplify complexity of floorplanning. 2025-06-17T12:41:00Z <p>Added image to exemplify complexity of floorplanning.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:41, 17 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Placement====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Place and route#Placement|Placement]] is the task of finding the best spots for large circuit blocks, called macros, and smaller [[Standard cell|standard cells]]. [[Reinforcement learning]] has been famously used for macro placement, where an agent learns how to position blocks to reduce wire length and improve timing&lt;ref name="Mirhoseini2021Floorplanning" /&gt; and other examples like the GoodFloorplan method.&lt;ref name="Xu2021GoodFloorplan" /&gt; Supervised learning models, including [[Convolutional neural network|CNNs]] that treat the layout like a picture, are used to predict routing problems like [[Design rule checking|DRVs]] (e.g., RouteNet&lt;ref name="Xie2018RouteNet" /&gt;) or timing after routing directly from the [[Placement (electronic design automation)|placement]] information.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name=":0" /&gt; RL Sizer uses deep RL to optimize the size of gates during placement to meet timing goals.&lt;ref name="Lu2021RLSizer" /&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Complexity Comparison Floorplanning.png|thumb|Complexity of board games compared to floorplanning in chip design: chess is estimated to have a complexity of ≈ 10¹²⁶, Go about 10³⁶⁰, while arranging hundreds of hard macros on a silicon die balloons beyond 10²⁵⁰⁰ possibilities. The arrow highlights this steep rise in combinatorial complexity.&lt;ref&gt;{{Cite journal |last=Mirhoseini |first=Azalia |last2=Goldie |first2=Anna |last3=Yazgan |first3=Mustafa |last4=Jiang |first4=Joe Wenjie |last5=Songhori |first5=Ebrahim |last6=Wang |first6=Shen |last7=Lee |first7=Young-Joon |last8=Johnson |first8=Eric |last9=Pathak |first9=Omkar |last10=Nova |first10=Azade |last11=Pak |first11=Jiwoo |last12=Tong |first12=Andy |last13=Srinivasa |first13=Kavya |last14=Hang |first14=William |last15=Tuncer |first15=Emre |date=June 2021 |title=A graph placement methodology for fast chip design |url=https://www.nature.com/articles/s41586-021-03544-w |journal=Nature |language=en |volume=594 |issue=7862 |pages=207–212 |doi=10.1038/s41586-021-03544-w |issn=1476-4687}}&lt;/ref&gt;&lt;ref&gt;{{Cite AV media |url=https://www.youtube.com/watch?v=zR9IusOpEzk |title=Google’s Chip Designing AI |date=2021-12-12 |last=Asianometry |access-date=2025-06-17 |via=YouTube}}&lt;/ref&gt;]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Clock network synthesis====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>AI helps in Clock Tree Synthesis (CTS) by optimizing the network that distributes the clock signal. [[Generative adversarial network|GANs]], sometimes used with RL (e.g., GAN CTS), are used to predict and improve clock tree structures. The goal is to reduce clock skew and power use.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name="Gubbi2022Survey" /&gt;&lt;ref name=":0" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>AI helps in Clock Tree Synthesis (CTS) by optimizing the network that distributes the clock signal. [[Generative adversarial network|GANs]], sometimes used with RL (e.g., GAN CTS), are used to predict and improve clock tree structures. The goal is to reduce clock skew and power use.&lt;ref name="Rapp2021MLCAD" /&gt;&lt;ref name="Gubbi2022Survey" /&gt;&lt;ref name=":0" /&gt;</div></td> </tr> </table> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1295863438&oldid=prev Copparihollmann: Fixed some citation formatting errors 2025-06-16T08:39:51Z <p>Fixed some citation formatting errors</p> <a href="//en.wikipedia.org/w/index.php?title=AI-driven_design_automation&amp;diff=1295863438&amp;oldid=1295862359">Show changes</a> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1295862359&oldid=prev Copparihollmann: Copparihollmann moved page User:Copparihollmann/AI-Driven Design Automation to AI-driven design automation: Move to mainspace 2025-06-16T08:25:49Z <p>Copparihollmann moved page <a href="/wiki/User:Copparihollmann/AI-Driven_Design_Automation" class="mw-redirect" title="User:Copparihollmann/AI-Driven Design Automation">User:Copparihollmann/AI-Driven Design Automation</a> to <a href="/wiki/AI-driven_design_automation" title="AI-driven design automation">AI-driven design automation</a>: Move to mainspace</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <tr class="diff-title" lang="en"> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:25, 16 June 2025</td> </tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div> </td></tr></table> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1295757699&oldid=prev Copparihollmann: Quality of life in text and restructuring 2025-06-15T17:45:05Z <p>Quality of life in text and restructuring</p> <a href="//en.wikipedia.org/w/index.php?title=AI-driven_design_automation&amp;diff=1295757699&amp;oldid=1295610567">Show changes</a> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1295610567&oldid=prev Copparihollmann: Improved format of citations 2025-06-14T21:03:30Z <p>Improved format of citations</p> <a href="//en.wikipedia.org/w/index.php?title=AI-driven_design_automation&amp;diff=1295610567&amp;oldid=1294432890">Show changes</a> Copparihollmann https://en.wikipedia.org/w/index.php?title=AI-driven_design_automation&diff=1294432890&oldid=prev Altenmann at 17:58, 7 June 2025 2025-06-07T17:58:05Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:58, 7 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 217:</td> <td colspan="2" class="diff-lineno">Line 217:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[https://www.dac.com/ Design Automation Conference (DAC)] – Premier academic and industry conference for EDA.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[https://www.dac.com/ Design Automation Conference (DAC)] – Premier academic and industry conference for EDA.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Electronic design automation]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[<ins style="font-weight: bold; text-decoration: none;">:</ins>Category:Electronic design automation]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Applied</del> artificial intelligence]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[<ins style="font-weight: bold; text-decoration: none;">:</ins>Category:<ins style="font-weight: bold; text-decoration: none;">Applications of</ins> artificial intelligence]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Semiconductor device fabrication]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[<ins style="font-weight: bold; text-decoration: none;">:</ins>Category:Semiconductor device fabrication]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Integrated circuits]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[<ins style="font-weight: bold; text-decoration: none;">:</ins>Category:Integrated circuits]]</div></td> </tr> </table> Altenmann