https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Algorithmically_random_sequence Algorithmically random sequence - Revision history 2025-05-29T16:30:33Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1283753524&oldid=prev Rhododendron canadensis: /* growthexperiments-addlink-summary-summary:3|0|0 */ 2025-04-03T13:10:10Z <p>Link suggestions feature: 3 links added.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:10, 3 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 9:</td> <td colspan="2" class="diff-lineno">Line 9:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which satisfies our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is natural and not an accident of Martin-Löf's particular model.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which satisfies our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is natural and not an accident of Martin-Löf's particular model.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable stochastic process.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable <ins style="font-weight: bold; text-decoration: none;">[[</ins>stochastic process<ins style="font-weight: bold; text-decoration: none;">]]</ins>.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Because infinite sequences of binary digits can be identified with real numbers in the unit interval, random binary sequences are often called '''(algorithmically) random real numbers'''. Additionally, infinite binary sequences correspond to characteristic functions of sets of natural numbers; therefore those sequences might be seen as sets of natural numbers.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Because infinite sequences of binary digits can be identified with real numbers in the unit interval, random binary sequences are often called '''(algorithmically) random real numbers'''. Additionally, infinite binary sequences correspond to characteristic functions of sets of natural numbers; therefore those sequences might be seen as sets of natural numbers.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 22:</td> <td colspan="2" class="diff-lineno">Line 22:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, we still have &lt;math&gt;\lim_n \frac 1n \sum_{i=1}^n x_{m_i} = p &lt;/math&gt;. He called this principle "[[impossibility of a gambling system]]".</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, we still have &lt;math&gt;\lim_n \frac 1n \sum_{i=1}^n x_{m_i} = p &lt;/math&gt;. He called this principle "[[impossibility of a gambling system]]".</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>To pick out a subsequence, first pick a binary function &lt;math&gt;\phi&lt;/math&gt;, such that given any binary string &lt;math&gt;x_{1:k}&lt;/math&gt;, it outputs either 0 or 1. If it outputs 1, then we add &lt;math&gt;x_{k+1}&lt;/math&gt; to the subsequence, else we continue. In this definition, some admissible rules might abstain forever on some sequences, and thus fail to pick out an infinite subsequence. We only consider those that do pick an infinite subsequence.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>To pick out a <ins style="font-weight: bold; text-decoration: none;">[[</ins>subsequence<ins style="font-weight: bold; text-decoration: none;">]]</ins>, first pick a binary function &lt;math&gt;\phi&lt;/math&gt;, such that given any binary string &lt;math&gt;x_{1:k}&lt;/math&gt;, it outputs either 0 or 1. If it outputs 1, then we add &lt;math&gt;x_{k+1}&lt;/math&gt; to the subsequence, else we continue. In this definition, some admissible rules might abstain forever on some sequences, and thus fail to pick out an infinite subsequence. We only consider those that do pick an infinite subsequence.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Stated in another way, each infinite binary string is a coin-flip game, and an admissible rule is a way for a gambler to decide when to place bets. A collective is a coin-flip game where there is no way for one gambler to do better than another over the long run. That is, there is no gambling system that works for the game.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Stated in another way, each infinite binary string is a coin-flip game, and an admissible rule is a way for a gambler to decide when to place bets. A collective is a coin-flip game where there is no way for one gambler to do better than another over the long run. That is, there is no gambling system that works for the game.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 70:</td> <td colspan="2" class="diff-lineno">Line 70:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Algorithmic complexity''' (Chaitin 1969, Schnorr 1973, Levin 1973): Algorithmic complexity (also known as (prefix-free) [[Kolmogorov complexity]] or program-size complexity) can be thought of as a lower bound on the algorithmic compressibility of a finite sequence (of characters or binary digits). It assigns to each such sequence ''w'' a natural number ''K(w)'' that, intuitively, measures the minimum length of a computer program (written in some fixed programming language) that takes no input and will output ''w'' when run. The complexity is required to be prefix-free: The program (a sequence of 0 and 1) is followed by an infinite string of 0s, and the length of the program (assuming it halts) includes the number of zeroes to the right of the program that the universal Turing machine reads. The additional requirement is needed because we can choose a length such that the length codes information about the substring. Given a natural number ''c'' and a sequence ''w'', we say that ''w'' is '''''c''-incompressible''' if &lt;math&gt;K(w) \geq |w| - c &lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Algorithmic complexity''' (Chaitin 1969, Schnorr 1973, Levin 1973): Algorithmic complexity (also known as (prefix-free) [[Kolmogorov complexity]] or program-size complexity) can be thought of as a lower bound on the algorithmic compressibility of a finite sequence (of characters or binary digits). It assigns to each such sequence ''w'' a natural number ''K(w)'' that, intuitively, measures the minimum length of a computer program (written in some fixed programming language) that takes no input and will output ''w'' when run. The complexity is required to be prefix-free: The program (a sequence of 0 and 1) is followed by an infinite string of 0s, and the length of the program (assuming it halts) includes the number of zeroes to the right of the program that the universal Turing machine reads. The additional requirement is needed because we can choose a length such that the length codes information about the substring. Given a natural number ''c'' and a sequence ''w'', we say that ''w'' is '''''c''-incompressible''' if &lt;math&gt;K(w) \geq |w| - c &lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:''An infinite sequence ''S'' is Martin-Löf random if and only if there is a constant ''c'' such that all of ''S''{{'s}} finite [[Prefix (computer science)|prefixes]] are ''c''-incompressible. More succinctly, &lt;math&gt;K(w) \geq |w| - O(1) &lt;/math&gt;''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:''An infinite sequence ''S'' is Martin-Löf random if and only if there is a constant ''c'' such that all of ''S''{{'s}} finite [[Prefix (computer science)|prefixes]] are ''c''-incompressible. More succinctly, &lt;math&gt;K(w) \geq |w| - O(1) &lt;/math&gt;''.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Constructive null covers''' (Martin-Löf 1966): This is Martin-Löf's original definition. For a finite binary string ''w'' we let ''C&lt;sub&gt;w&lt;/sub&gt;'' denote the '''cylinder generated by''' ''w''. This is the set of all infinite sequences beginning with ''w'', which is a basic open set in [[Cantor space]]. The '''product [[measure (mathematics)|measure]]''' μ(''C&lt;sub&gt;w&lt;/sub&gt;'') of the cylinder generated by ''w'' is defined to be 2&lt;sup&gt;−|''w''|&lt;/sup&gt;. Every open subset of Cantor space is the union of a countable sequence of disjoint basic open sets, and the measure of an open set is the sum of the measures of any such sequence. An ''effective open set'' is an open set that is the union of the sequence of basic open sets determined by a [[recursively enumerable]] sequence of binary strings. A ''constructive null cover'' or ''effective measure ''0'' set'' is a recursively enumerable sequence &lt;math&gt;U_i&lt;/math&gt; of effective open sets such that &lt;math&gt;U_{i+1} \subseteq U_i&lt;/math&gt; and &lt;math&gt;\mu (U_i) \leq 2^{-i}&lt;/math&gt; for each natural number ''i''. Every effective null cover determines a [[G-delta set|&lt;math&gt;G_\delta&lt;/math&gt; set]] of measure 0, namely the intersection of the sets &lt;math&gt;U_i&lt;/math&gt;. </div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Constructive null covers''' (Martin-Löf 1966): This is Martin-Löf's original definition. For a finite binary string ''w'' we let ''C&lt;sub&gt;w&lt;/sub&gt;'' denote the '''cylinder generated by''' ''w''. This is the set of all infinite sequences beginning with ''w'', which is a basic <ins style="font-weight: bold; text-decoration: none;">[[</ins>open set<ins style="font-weight: bold; text-decoration: none;">]]</ins> in [[Cantor space]]. The '''product [[measure (mathematics)|measure]]''' μ(''C&lt;sub&gt;w&lt;/sub&gt;'') of the cylinder generated by ''w'' is defined to be 2&lt;sup&gt;−|''w''|&lt;/sup&gt;. Every open subset of Cantor space is the union of a countable sequence of disjoint basic open sets, and the measure of an open set is the sum of the measures of any such sequence. An ''effective open set'' is an open set that is the union of the sequence of basic open sets determined by a [[recursively enumerable]] sequence of binary strings. A ''constructive null cover'' or ''effective measure ''0'' set'' is a recursively enumerable sequence &lt;math&gt;U_i&lt;/math&gt; of effective open sets such that &lt;math&gt;U_{i+1} \subseteq U_i&lt;/math&gt; and &lt;math&gt;\mu (U_i) \leq 2^{-i}&lt;/math&gt; for each natural number ''i''. Every effective null cover determines a [[G-delta set|&lt;math&gt;G_\delta&lt;/math&gt; set]] of measure 0, namely the intersection of the sets &lt;math&gt;U_i&lt;/math&gt;. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:''A sequence is defined to be Martin-Löf random if it is not contained in any &lt;math&gt;G_\delta&lt;/math&gt; set determined by a constructive null cover.''</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:''A sequence is defined to be Martin-Löf random if it is not contained in any &lt;math&gt;G_\delta&lt;/math&gt; set determined by a constructive null cover.''</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Constructive martingales''' (Schnorr 1971): A [[Martingale (probability theory)|martingale]] is a function &lt;math&gt;d:\{0,1\}^*\to[0,\infty)&lt;/math&gt; such that, for all finite strings ''w'', &lt;math&gt;d(w) = (d(w^\smallfrown 0) + d(w^\smallfrown 1))/2&lt;/math&gt;, where &lt;math&gt;a^\smallfrown b&lt;/math&gt; is the [[concatenation]] of the strings ''a'' and ''b''. This is called the "fairness condition": if a martingale is viewed as a betting strategy, then the above condition requires that the bettor plays against fair odds. A martingale ''d'' is said to '''succeed''' on a sequence ''S'' if &lt;math&gt;\limsup_{n\to\infty} d(S \upharpoonright n) = \infty,&lt;/math&gt; where &lt;math&gt;S \upharpoonright n&lt;/math&gt; is the first ''n'' bits of ''S''. A martingale ''d'' is '''constructive''' (also known as '''weakly computable''', '''lower semi-computable''') if there exists a computable function &lt;math&gt;\widehat{d}:\{0,1\}^*\times\N\to{\mathbb{Q}}&lt;/math&gt; such that, for all finite binary strings ''w''</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Constructive martingales''' (Schnorr 1971): A [[Martingale (probability theory)|martingale]] is a function &lt;math&gt;d:\{0,1\}^*\to[0,\infty)&lt;/math&gt; such that, for all finite strings ''w'', &lt;math&gt;d(w) = (d(w^\smallfrown 0) + d(w^\smallfrown 1))/2&lt;/math&gt;, where &lt;math&gt;a^\smallfrown b&lt;/math&gt; is the [[concatenation]] of the strings ''a'' and ''b''. This is called the "fairness condition": if a martingale is viewed as a betting strategy, then the above condition requires that the bettor plays against fair odds. A martingale ''d'' is said to '''succeed''' on a sequence ''S'' if &lt;math&gt;\limsup_{n\to\infty} d(S \upharpoonright n) = \infty,&lt;/math&gt; where &lt;math&gt;S \upharpoonright n&lt;/math&gt; is the first ''n'' bits of ''S''. A martingale ''d'' is '''constructive''' (also known as '''weakly computable''', '''lower semi-computable''') if there exists a computable function &lt;math&gt;\widehat{d}:\{0,1\}^*\times\N\to{\mathbb{Q}}&lt;/math&gt; such that, for all finite binary strings ''w''</div></td> </tr> </table> Rhododendron canadensis https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1267606412&oldid=prev JBW: Each one: singular. 2025-01-05T21:43:54Z <p>Each one: singular.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:43, 5 January 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an [[oracle machine]], there are different notions of randomness. The most common of these is known as '''Martin-Löf randomness''' ('''K-randomness''' or '''1-randomness'''), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the sequence is infinite and prefix algorithmically random (i.e., K-incompressible), "Martin-Löf–Chaitin random".</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an [[oracle machine]], there are different notions of randomness. The most common of these is known as '''Martin-Löf randomness''' ('''K-randomness''' or '''1-randomness'''), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the sequence is infinite and prefix algorithmically random (i.e., K-incompressible), "Martin-Löf–Chaitin random".</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which <del style="font-weight: bold; text-decoration: none;">satisfy</del> our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is natural and not an accident of Martin-Löf's particular model.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which <ins style="font-weight: bold; text-decoration: none;">satisfies</ins> our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is natural and not an accident of Martin-Löf's particular model.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable stochastic process.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable stochastic process.</div></td> </tr> </table> JBW https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1267605512&oldid=prev JBW: Restoring removed content which gave context to what is stared here. If course anyone could find that context by searching in Church's biography, but why would they be searching there, and in any case it makes sense to make this information easier to find, in view of its relevance. 2025-01-05T21:39:01Z <p>Restoring removed content which gave context to what is stared here. If course anyone could find that context by searching in Church&#039;s biography, but why would they be searching there, and in any case it makes sense to make this information easier to find, in view of its relevance.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:39, 5 January 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{<del style="font-weight: bold; text-decoration: none;">cite</del> journal |<del style="font-weight: bold; text-decoration: none;">last1</del>=<del style="font-weight: bold; text-decoration: none;">Church</del> |<del style="font-weight: bold; text-decoration: none;">first1</del>=<del style="font-weight: bold; text-decoration: none;">Alonzo</del> |title=On the concept of a random sequence <del style="font-weight: bold; text-decoration: none;">|journal=</del>Bulletin of the American Mathematical Society |<del style="font-weight: bold; text-decoration: none;">date</del>=<del style="font-weight: bold; text-decoration: none;">1940</del> |volume=<del style="font-weight: bold; text-decoration: none;">46</del> |issue=2 |pages=<del style="font-weight: bold; text-decoration: none;">130‒135</del> |doi=10.<del style="font-weight: bold; text-decoration: none;">1090</del>/<del style="font-weight: bold; text-decoration: none;">S0002-9904-1940-07154-X</del> |<del style="font-weight: bold; text-decoration: none;">url</del>=<del style="font-weight: bold; text-decoration: none;">https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full</del>|<del style="font-weight: bold; text-decoration: none;">doi-access</del>=<del style="font-weight: bold; text-decoration: none;">free</del> }}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]]<ins style="font-weight: bold; text-decoration: none;">, whose 1940 paper proposed using Turing-computable rules</ins>.&lt;ref&gt;{{<ins style="font-weight: bold; text-decoration: none;">Cite</ins> journal |<ins style="font-weight: bold; text-decoration: none;">last</ins>=<ins style="font-weight: bold; text-decoration: none;">Copeland</ins> |<ins style="font-weight: bold; text-decoration: none;">first</ins>=<ins style="font-weight: bold; text-decoration: none;">Arthur H. |date=June 1940</ins> |title=<ins style="font-weight: bold; text-decoration: none;">Alonzo Church. </ins>On the concept of a random sequence<ins style="font-weight: bold; text-decoration: none;">.</ins> <ins style="font-weight: bold; text-decoration: none;">''</ins>Bulletin of the American Mathematical Society<ins style="font-weight: bold; text-decoration: none;">'', vol. 46 (1940), pp. 130–135.</ins> |<ins style="font-weight: bold; text-decoration: none;">type</ins>=<ins style="font-weight: bold; text-decoration: none;">Review |journal=The Journal of Symbolic Logic |language=en</ins> |volume=<ins style="font-weight: bold; text-decoration: none;">5</ins> |issue=2 |pages=<ins style="font-weight: bold; text-decoration: none;">71–72</ins> |doi=10.<ins style="font-weight: bold; text-decoration: none;">2307</ins>/<ins style="font-weight: bold; text-decoration: none;">2266178</ins> |<ins style="font-weight: bold; text-decoration: none;">jstor</ins>=<ins style="font-weight: bold; text-decoration: none;">2266178 </ins>|<ins style="font-weight: bold; text-decoration: none;">s2cid</ins>=<ins style="font-weight: bold; text-decoration: none;">124646586</ins> <ins style="font-weight: bold; text-decoration: none;">|issn=0022-4812</ins>}}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> JBW https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1267147797&oldid=prev Kaarelh: improved language 2025-01-03T20:45:51Z <p>improved language</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:45, 3 January 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an [[oracle machine]], there are different notions of randomness. The most common of these is known as '''Martin-Löf randomness''' ('''K-randomness''' or '''1-randomness'''), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the sequence is infinite and prefix algorithmically random (i.e., K-incompressible), "Martin-Löf–Chaitin random".</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an [[oracle machine]], there are different notions of randomness. The most common of these is known as '''Martin-Löf randomness''' ('''K-randomness''' or '''1-randomness'''), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the sequence is infinite and prefix algorithmically random (i.e., K-incompressible), "Martin-Löf–Chaitin random".</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which satisfy our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is <del style="font-weight: bold; text-decoration: none;">a fundamental property of mathematics</del> and not an accident of Martin-Löf's particular model.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of [[data compression|compression]], randomness tests, and [[gambling]]—that bear little outward resemblance to the original definition, but each of which satisfy our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money [[betting]] on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is <ins style="font-weight: bold; text-decoration: none;">natural</ins> and not an accident of Martin-Löf's particular model.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable stochastic process.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an [[Independence (probability theory)|independent]] identically [[Probability distribution|distributed]] equiprobable stochastic process.</div></td> </tr> </table> Kaarelh https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1263145039&oldid=prev Kaltenmeyer: clean up 2024-12-14T23:36:18Z <p>clean up</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:36, 14 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Binary sequence}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Binary sequence}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">distinguish-</del>redirect|Algorithmic randomness|Randomized algorithms}}Intuitively, an '''algorithmically random sequence''' (or '''[[random sequence]]''') is a [[Sequence#Infinite sequences in theoretical computer science|sequence]] of binary digits that appears random to any algorithm running on a (prefix-free or not) [[universal Turing machine]]. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in [[algorithmic information theory]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{redirect<ins style="font-weight: bold; text-decoration: none;">-distinguish</ins>|Algorithmic randomness|Randomized algorithms}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Intuitively, an '''algorithmically random sequence''' (or '''[[random sequence]]''') is a [[Sequence#Infinite sequences in theoretical computer science|sequence]] of binary digits that appears random to any algorithm running on a (prefix-free or not) [[universal Turing machine]]. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in [[algorithmic information theory]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[measure-theoretic probability theory]], introduced by [[Andrey Kolmogorov]] in 1933, there is ''no such thing'' as a random sequence. For example, consider flipping a fair coin infinitely many times. Any particular sequence, be it &lt;math&gt;0000\dots&lt;/math&gt; or &lt;math&gt;011010\dots&lt;/math&gt;, has equal probability of exactly zero. There is no way to state that one sequence is "more random" than another sequence, using the language of measure-theoretic probability. However, it is intuitively obvious that &lt;math&gt;011010\dots&lt;/math&gt; looks more random than &lt;math&gt;0000\dots&lt;/math&gt;. Algorithmic randomness theory formalizes this intuition.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[measure-theoretic probability theory]], introduced by [[Andrey Kolmogorov]] in 1933, there is ''no such thing'' as a random sequence. For example, consider flipping a fair coin infinitely many times. Any particular sequence, be it &lt;math&gt;0000\dots&lt;/math&gt; or &lt;math&gt;011010\dots&lt;/math&gt;, has equal probability of exactly zero. There is no way to state that one sequence is "more random" than another sequence, using the language of measure-theoretic probability. However, it is intuitively obvious that &lt;math&gt;011010\dots&lt;/math&gt; looks more random than &lt;math&gt;0000\dots&lt;/math&gt;. Algorithmic randomness theory formalizes this intuition.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 106:</td> <td colspan="2" class="diff-lineno">Line 107:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By [[Stirling approximation]], &lt;math&gt;\log_2 \binom{N}{pN} \approx N H(p)&lt;/math&gt; where &lt;math&gt;H&lt;/math&gt; is the [[binary entropy function]]. Thus, the number of bits in this description is:&lt;math display="block"&gt; 2(1 + \epsilon) \log_2 N + (1 + \epsilon) N H(p) + O(1) &lt;/math&gt;The first term is for prefix-coding the numbers &lt;math&gt;N&lt;/math&gt; and &lt;math&gt;M&lt;/math&gt;. The second term is for prefix-coding the number &lt;math&gt;i&lt;/math&gt;. (Use [[Elias omega coding]].) The third term is for prefix-coding the rest of the description.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By [[Stirling approximation]], &lt;math&gt;\log_2 \binom{N}{pN} \approx N H(p)&lt;/math&gt; where &lt;math&gt;H&lt;/math&gt; is the [[binary entropy function]]. Thus, the number of bits in this description is:&lt;math display="block"&gt; 2(1 + \epsilon) \log_2 N + (1 + \epsilon) N H(p) + O(1) &lt;/math&gt;The first term is for prefix-coding the numbers &lt;math&gt;N&lt;/math&gt; and &lt;math&gt;M&lt;/math&gt;. The second term is for prefix-coding the number &lt;math&gt;i&lt;/math&gt;. (Use [[Elias omega coding]].) The third term is for prefix-coding the rest of the description.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; N&lt;/math&gt; is large, this description has just &lt;math&gt; \sim H(p) N &lt;/math&gt; bits, and so it is compressible, with compression ratio &lt;math&gt; \sim H(p) &lt;/math&gt;. In particular, the compression ratio is exactly one (incompressible) only when &lt;math&gt; p = 1/2&lt;/math&gt;. (Example 14.2.8 &lt;ref name=":0"&gt;{{Cite book |last1=Cover |first1=Thomas M. |title=Elements of Information Theory 2nd Edition |last2=Thomas |first2=Joy A. |date=2006-07-18 |publisher=Wiley-Interscience |isbn=978-0-471-24195-9 |edition=2nd |location=Hoboken, N.J |language=en}}&lt;/ref&gt;)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; N&lt;/math&gt; is large, this description has just &lt;math&gt; \sim H(p) N &lt;/math&gt; bits, and so it is compressible, with compression ratio &lt;math&gt; \sim H(p) &lt;/math&gt;. In particular, the compression ratio is exactly one (incompressible) only when &lt;math&gt; p = 1/2&lt;/math&gt;. (Example 14.2.8 &lt;ref name=":0"&gt;{{Cite book |last1=Cover |first1=Thomas M. |title=Elements of Information Theory 2nd Edition |last2=Thomas |first2=Joy A. |date=2006-07-18 |publisher=Wiley-Interscience |isbn=978-0-471-24195-9 |edition=2nd |location=Hoboken, N.J |language=en}}&lt;/ref&gt;)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Impossibility of a gambling system ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Impossibility of a gambling system ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Main|Impossibility of a gambling system}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Main|Impossibility of a gambling system}}</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 182:</td> <td colspan="2" class="diff-lineno">Line 184:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | year = 1997</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | year = 1997</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | edition = Second}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | edition = Second}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{Cite journal | last1 = Martin-Löf | first1 = P. | author-link=Per Martin-Löf| year = 1966 | title = The definition of random sequences | journal = Information and Control | volume = 9 | issue = 6 | pages = 602–619 | doi=10.1016/s0019-9958(66)80018-9| doi-access =<del style="font-weight: bold; text-decoration: none;"> </del>}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{Cite journal | last1 = Martin-Löf | first1 = P. | author-link=Per Martin-Löf| year = 1966 | title = The definition of random sequences | journal = Information and Control | volume = 9 | issue = 6 | pages = 602–619 | doi=10.1016/s0019-9958(66)80018-9| doi-access =}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite book | zbl=1169.03034 | last=Nies | first=André | title=Computability and randomness | series=Oxford Logic Guides | volume=51 | location=Oxford | publisher=Oxford University Press | year=2009 | isbn=978-0-19-923076-1 }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite book | zbl=1169.03034 | last=Nies | first=André | title=Computability and randomness | series=Oxford Logic Guides | volume=51 | location=Oxford | publisher=Oxford University Press | year=2009 | isbn=978-0-19-923076-1 }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td> </tr> </table> Kaltenmeyer https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1260703083&oldid=prev Citation bot: Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine 2024-12-02T04:16:13Z <p>Removed parameters. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_CommandLine</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:16, 2 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X<del style="font-weight: bold; text-decoration: none;"> |doi-broken-date=2024-11-20</del> |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full|doi-access=free }}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full|doi-access=free }}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1259432258&oldid=prev OAbot: Open access bot: doi updated in citation with #oabot. 2024-11-25T03:26:51Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:26, 25 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X |doi-broken-date=2024-11-20 |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X |doi-broken-date=2024-11-20 |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full<ins style="font-weight: bold; text-decoration: none;">|doi-access=free </ins>}}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1258565448&oldid=prev Citation bot: Added doi-broken-date. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Algorithmic information theory | #UCB_Category 14/22 2024-11-20T11:45:00Z <p>Added doi-broken-date. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Algorithmic_information_theory" title="Category:Algorithmic information theory">Category:Algorithmic information theory</a> | #UCB_Category 14/22</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:45, 20 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X<ins style="font-weight: bold; text-decoration: none;"> |doi-broken-date=2024-11-20</ins> |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1258564286&oldid=prev Citation bot: Removed parameters. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Algorithmic information theory | #UCB_Category 13/22 2024-11-20T11:31:19Z <p>Removed parameters. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Algorithmic_information_theory" title="Category:Algorithmic information theory">Category:Algorithmic information theory</a> | #UCB_Category 13/22</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:31, 20 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X<del style="font-weight: bold; text-decoration: none;"> |doi-broken-date=2024-11-20</del> |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |doi=10.1090/S0002-9904-1940-07154-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Algorithmically_random_sequence&diff=1258563317&oldid=prev Citation bot: Add: doi-broken-date, doi. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Algorithmic information theory | #UCB_Category 18/22 2024-11-20T11:20:21Z <p>Add: doi-broken-date, doi. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Algorithmic_information_theory" title="Category:Algorithmic information theory">Category:Algorithmic information theory</a> | #UCB_Category 18/22</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:20, 20 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The frequency of each letter converges to a limit greater than zero.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For any "admissible" rule, such that it picks out an infinite subsequence &lt;math&gt;(x_{m_i})_i&lt;/math&gt; from the string, the frequency of each letter in the subsequence still converges to the same limit.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135 |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Usually the admissible rules are defined to be rules computable by a Turing machine, and we require &lt;math&gt;p=1/2&lt;/math&gt;. With this, we have the '''Mises–Wald–Church random sequences'''. This is not a restriction, since given a sequence with &lt;math&gt;p=1/2&lt;/math&gt;, we can construct random sequences with any other computable &lt;math&gt;p \in (0, 1)&lt;/math&gt;.&lt;ref&gt;{{Cite book |last1=Li |first1=Ming |title=An introduction to Kolmogorov complexity and its applications |last2=Vitányi |first2=P. M. |date=2019 |publisher=Springer |isbn=978-3-030-11298-1 |edition=Fourth |location=Cham |chapter=1.9 Randomness}}&lt;/ref&gt; (Here, "Church" refers to [[Alonzo Church]].&lt;ref&gt;{{cite journal |last1=Church |first1=Alonzo |title=On the concept of a random sequence |journal=Bulletin of the American Mathematical Society |date=1940 |volume=46 |issue=2 |pages=130‒135<ins style="font-weight: bold; text-decoration: none;"> |doi=10.1090/S0002-9904-1940-07154-X |doi-broken-date=2024-11-20</ins> |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-46/issue-2/On-the-concept-of-a-random-sequence/bams/1183502434.full}}&lt;/ref&gt;)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{block indent|</div></td> </tr> </table> Citation bot