https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Asymptotically_optimal_algorithm Asymptotically optimal algorithm - Revision history 2025-05-30T10:07:04Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1172404339&oldid=prev HeyElliott: /* Formal definitions */ MOS:NOTE 2023-08-26T21:33:14Z <p><span class="autocomment">Formal definitions: </span> <a href="/wiki/MOS:NOTE" class="mw-redirect" title="MOS:NOTE">MOS:NOTE</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:33, 26 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 45:</td> <td colspan="2" class="diff-lineno">Line 45:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Note that this</del> limit, if it exists, is always at least 1, as t(''n'') ≥ b(''n'').</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">This</ins> limit, if it exists, is always at least 1, as t(''n'') ≥ b(''n'').</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although usually applied to time efficiency, an algorithm can be said to use asymptotically optimal space, random bits, number of processors, or any other resource commonly measured using big-O notation.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although usually applied to time efficiency, an algorithm can be said to use asymptotically optimal space, random bits, number of processors, or any other resource commonly measured using big-O notation.</div></td> </tr> </table> HeyElliott https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1171114456&oldid=prev Beland: fix link (via WP:JWB) 2023-08-19T03:19:17Z <p>fix link (via <a href="/wiki/Wikipedia:JWB" class="mw-redirect" title="Wikipedia:JWB">WP:JWB</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:19, 19 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 41:</td> <td colspan="2" class="diff-lineno">Line 41:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Formal definitions==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Formal definitions==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Formally, suppose that we have a lower-bound theorem showing that a problem requires Ω(f(''n'')) time to solve for an instance (input) of size ''n'' (see <del style="font-weight: bold; text-decoration: none;">[[big-O</del> <del style="font-weight: bold; text-decoration: none;">notation#Other</del> <del style="font-weight: bold; text-decoration: none;">standard computer science</del> notation<del style="font-weight: bold; text-decoration: none;">:</del> <del style="font-weight: bold; text-decoration: none;">Ω, ω, Θ, O, o, Õ, ∼|big-O</del> notation<del style="font-weight: bold; text-decoration: none;">]]</del> for the definition of Ω). Then, an algorithm which solves the problem in O(f(''n'')) time is said to be asymptotically optimal. This can also be expressed using limits: suppose that b(''n'') is a lower bound on the running time, and a given algorithm takes time t(''n''). Then the algorithm is asymptotically optimal if:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Formally, suppose that we have a lower-bound theorem showing that a problem requires Ω(f(''n'')) time to solve for an instance (input) of size ''n'' (see <ins style="font-weight: bold; text-decoration: none;">{{section</ins> <ins style="font-weight: bold; text-decoration: none;">link|Big</ins> <ins style="font-weight: bold; text-decoration: none;">O</ins> notation<ins style="font-weight: bold; text-decoration: none;">|Big</ins> <ins style="font-weight: bold; text-decoration: none;">Omega</ins> notation<ins style="font-weight: bold; text-decoration: none;">}}</ins> for the definition of Ω). Then, an algorithm which solves the problem in O(f(''n'')) time is said to be asymptotically optimal. This can also be expressed using limits: suppose that b(''n'') is a lower bound on the running time, and a given algorithm takes time t(''n''). Then the algorithm is asymptotically optimal if:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> </tr> </table> Beland https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1157207109&oldid=prev Sungodtemple: /* Speedup */ convert to math tags 2023-05-27T02:22:34Z <p><span class="autocomment">Speedup: </span> convert to math tags</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:22, 27 May 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 52:</td> <td colspan="2" class="diff-lineno">Line 52:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Speedup==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Speedup==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The nonexistence of an asymptotically optimal algorithm is called speedup. [[Blum's speedup theorem]] shows that there exist artificially constructed problems with speedup. However, it is an [[open problem]] whether many of the most well-known algorithms today are asymptotically optimal or not. For example, there is an O(<del style="font-weight: bold; text-decoration: none;">''</del>n<del style="font-weight: bold; text-decoration: none;">''α</del>(<del style="font-weight: bold; text-decoration: none;">''</del>n<del style="font-weight: bold; text-decoration: none;">''</del>)) algorithm for finding [[minimum spanning tree]]s, where <del style="font-weight: bold; text-decoration: none;">α</del>(<del style="font-weight: bold; text-decoration: none;">''</del>n<del style="font-weight: bold; text-decoration: none;">''</del>) is the very slowly growing inverse of the [[Ackermann function]], but the best known lower bound is the trivial <del style="font-weight: bold; text-decoration: none;">Ω</del>(<del style="font-weight: bold; text-decoration: none;">''</del>n<del style="font-weight: bold; text-decoration: none;">''</del>). Whether this algorithm is asymptotically optimal is unknown, and would be likely to be hailed as a significant result if it were resolved either way. Coppersmith and Winograd (1982) proved that matrix multiplication has a weak form of speed-up among a restricted class of algorithms (Strassen-type bilinear identities with lambda-computation).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The nonexistence of an asymptotically optimal algorithm is called speedup. [[Blum's speedup theorem]] shows that there exist artificially constructed problems with speedup. However, it is an [[open problem]] whether many of the most well-known algorithms today are asymptotically optimal or not. For example, there is an <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;</ins>O(n<ins style="font-weight: bold; text-decoration: none;">\alpha</ins>(n))<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins> algorithm for finding [[minimum spanning tree]]s, where <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\alpha</ins>(n)<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins> is the very slowly growing inverse of the [[Ackermann function]], but the best known lower bound is the trivial <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;\Omega</ins>(n)<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins>. Whether this algorithm is asymptotically optimal is unknown, and would be likely to be hailed as a significant result if it were resolved either way. Coppersmith and Winograd (1982) proved that matrix multiplication has a weak form of speed-up among a restricted class of algorithms (Strassen-type bilinear identities with lambda-computation).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> Sungodtemple https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1142062689&oldid=prev Dragonflare82: Fixed triangulation link which was pointing to wrong interpretation of "triangulation" (location identification instead of subdivision) 2023-02-28T08:47:35Z <p>Fixed triangulation link which was pointing to wrong interpretation of &quot;triangulation&quot; (location identification instead of subdivision)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:47, 28 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 22:</td> <td colspan="2" class="diff-lineno">Line 22:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, [[Computer hardware|hardware]] optimizations such as [[memory cache]] and [[Parallel computing|parallel processing]] may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, [[Computer hardware|hardware]] optimizations such as [[memory cache]] and [[Parallel computing|parallel processing]] may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s [[linear-time]] algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s [[linear-time]] algorithm for [[<ins style="font-weight: bold; text-decoration: none;">Polygon triangulation|</ins>triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> </tr> </table> Dragonflare82 https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1091588867&oldid=prev OlliverWithDoubleL: Fixed link 2022-06-05T05:56:15Z <p>Fixed link</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:56, 5 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 20:</td> <td colspan="2" class="diff-lineno">Line 20:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It is too complex, so that the difficulty of comprehending and implementing it correctly outweighs its potential benefit in the range of input sizes under consideration.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It is too complex, so that the difficulty of comprehending and implementing it correctly outweighs its potential benefit in the range of input sizes under consideration.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The inputs encountered in practice fall into [[special case]]s that have more efficient algorithms or that [[Heuristic (computer science)|heuristic algorithms]] with bad worst-case times can nevertheless solve efficiently.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The inputs encountered in practice fall into [[special case]]s that have more efficient algorithms or that [[Heuristic (computer science)|heuristic algorithms]] with bad worst-case times can nevertheless solve efficiently.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, [[Computer hardware|hardware]] optimizations such as [[memory cache]] and [[parallel processing]] may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, [[Computer hardware|hardware]] optimizations such as [[memory cache]] and [[<ins style="font-weight: bold; text-decoration: none;">Parallel computing|</ins>parallel processing]] may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s [[linear-time]] algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s [[linear-time]] algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> </tr> </table> OlliverWithDoubleL https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1091588729&oldid=prev OlliverWithDoubleL: Fixed typo 2022-06-05T05:55:01Z <p>Fixed typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:55, 5 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an [[algorithm]] is said to be '''asymptotically optimal''' if, roughly speaking, for large inputs it performs [[Best, worst and average case|at worst]] a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of [[big-O notation]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an [[algorithm]] is said to be '''asymptotically optimal''' if, roughly speaking, for large inputs it performs [[Best, worst and average case|at worst]] a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of [[big-O notation]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More formally, an algorithm is asymptotically optimal with respect to a particular [[System resource|resource]] if the problem has been proven to require {{math|Ω(f(''n''))}} of that resource, and the algorithm has been proven to use only {{math|O(f(''n'')).}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More formally, an algorithm is asymptotically optimal with respect to a particular [[System resource|resource]] if the problem has been proven to require {{math|Ω(<ins style="font-weight: bold; text-decoration: none;">''</ins>f<ins style="font-weight: bold; text-decoration: none;">''</ins>(''n''))}} of that resource, and the algorithm has been proven to use only {{math|O(<ins style="font-weight: bold; text-decoration: none;">''</ins>f<ins style="font-weight: bold; text-decoration: none;">''</ins>(''n'')).}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These proofs require an assumption of a particular [[model of computation]], i.e., certain restrictions on operations allowable with the input data.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These proofs require an assumption of a particular [[model of computation]], i.e., certain restrictions on operations allowable with the input data.</div></td> </tr> </table> OlliverWithDoubleL https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=1091588599&oldid=prev OlliverWithDoubleL: added short description, links 2022-06-05T05:53:56Z <p>added short description, links</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:53, 5 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Measure of algorithm performance for large inputs}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Refimprove|date=October 2008}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Refimprove|date=October 2008}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an [[algorithm]] is said to be '''asymptotically optimal''' if, roughly speaking, for large inputs it performs at worst a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of [[big-O notation]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an [[algorithm]] is said to be '''asymptotically optimal''' if, roughly speaking, for large inputs it performs <ins style="font-weight: bold; text-decoration: none;">[[Best, worst and average case|</ins>at worst<ins style="font-weight: bold; text-decoration: none;">]]</ins> a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of [[big-O notation]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More formally, an algorithm is asymptotically optimal with respect to a particular <ins style="font-weight: bold; text-decoration: none;">[[System resource|</ins>resource<ins style="font-weight: bold; text-decoration: none;">]]</ins> if the problem has been proven to require <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>Ω(f(<ins style="font-weight: bold; text-decoration: none;">''</ins>n<ins style="font-weight: bold; text-decoration: none;">''</ins>))<ins style="font-weight: bold; text-decoration: none;">}}</ins> of that resource, and the algorithm has been proven to use only <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>O(f(<ins style="font-weight: bold; text-decoration: none;">''</ins>n<ins style="font-weight: bold; text-decoration: none;">''</ins>)).<ins style="font-weight: bold; text-decoration: none;">}}</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These proofs require an assumption of a particular [[model of computation]], i.e., certain restrictions on operations allowable with the input data.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These proofs require an assumption of a particular [[model of computation]], i.e., certain restrictions on operations allowable with the input data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>As a simple example, it's known that all [[comparison sort]]s require at least Ω(''n'' log ''n'') comparisons in the average and worst cases. [[Mergesort]] and [[heapsort]] are comparison sorts which perform O(''n'' log ''n'') comparisons, so they are asymptotically optimal in this sense. </div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>As a simple example, it's known that all [[comparison sort]]s require at least <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>Ω(''n'' log ''n'')<ins style="font-weight: bold; text-decoration: none;">}}</ins> comparisons in the average and worst cases. [[Mergesort]] and [[heapsort]] are comparison sorts which perform <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>O(''n'' log ''n'')<ins style="font-weight: bold; text-decoration: none;">}}</ins> comparisons, so they are asymptotically optimal in this sense. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the input data have some ''[[a priori and a posteriori|a priori]]'' properties which can be exploited in construction of algorithms, in addition to comparisons, then asymptotically faster algorithms may be possible. For example, if it is known that the N objects are [[integer]]s from the range [1, N], then they may be sorted O(N) time, e.g., by the [[bucket sort]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the input data have some ''[[a priori and a posteriori|a priori]]'' properties which can be exploited in construction of algorithms, in addition to comparisons, then asymptotically faster algorithms may be possible. For example, if it is known that the <ins style="font-weight: bold; text-decoration: none;">{{mvar|</ins>N<ins style="font-weight: bold; text-decoration: none;">}}</ins> objects are [[integer]]s from the range <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>[1, <ins style="font-weight: bold; text-decoration: none;">''</ins>N<ins style="font-weight: bold; text-decoration: none;">''</ins>],<ins style="font-weight: bold; text-decoration: none;">}}</ins> then they may be sorted <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>O(<ins style="font-weight: bold; text-decoration: none;">''</ins>N<ins style="font-weight: bold; text-decoration: none;">''</ins>)<ins style="font-weight: bold; text-decoration: none;">}}</ins> time, e.g., by the [[bucket sort]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A consequence of an algorithm being asymptotically optimal is that, for large enough inputs, no algorithm can outperform it by more than a constant factor. For this reason, asymptotically optimal algorithms are often seen as the "end of the line" in research, the attaining of a result that cannot be dramatically improved upon. Conversely, if an algorithm is not asymptotically optimal, this implies that as the input grows in size, the algorithm performs increasingly worse than the best possible algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A consequence of an algorithm being asymptotically optimal is that, for large enough inputs, no algorithm can outperform it by more than a constant factor. For this reason, asymptotically optimal algorithms are often seen as the "end of the line" in research, the attaining of a result that cannot be dramatically improved upon. Conversely, if an algorithm is not asymptotically optimal, this implies that as the input grows in size, the algorithm performs increasingly worse than the best possible algorithm.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 16:</td> <td colspan="2" class="diff-lineno">Line 17:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although asymptotically optimal algorithms are important theoretical results, an asymptotically optimal algorithm might not be used in a number of practical situations:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although asymptotically optimal algorithms are important theoretical results, an asymptotically optimal algorithm might not be used in a number of practical situations:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* It only outperforms more commonly used methods for <del style="font-weight: bold; text-decoration: none;">''</del>n<del style="font-weight: bold; text-decoration: none;">''</del> beyond the range of practical input sizes, such as inputs with more <del style="font-weight: bold; text-decoration: none;">bits</del> than could fit in any computer storage system.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* It only outperforms more commonly used methods for <ins style="font-weight: bold; text-decoration: none;">{{mvar|</ins>n<ins style="font-weight: bold; text-decoration: none;">}}</ins> beyond the range of practical input sizes, such as inputs with more <ins style="font-weight: bold; text-decoration: none;">[[bit]]s</ins> than could fit in any <ins style="font-weight: bold; text-decoration: none;">[[Computer data storage|</ins>computer storage system<ins style="font-weight: bold; text-decoration: none;">]]</ins>.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It is too complex, so that the difficulty of comprehending and implementing it correctly outweighs its potential benefit in the range of input sizes under consideration.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It is too complex, so that the difficulty of comprehending and implementing it correctly outweighs its potential benefit in the range of input sizes under consideration.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The inputs encountered in practice fall into special <del style="font-weight: bold; text-decoration: none;">cases</del> that have more efficient algorithms or that heuristic algorithms with bad worst-case times can nevertheless solve efficiently.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The inputs encountered in practice fall into <ins style="font-weight: bold; text-decoration: none;">[[</ins>special <ins style="font-weight: bold; text-decoration: none;">case]]s</ins> that have more efficient algorithms or that <ins style="font-weight: bold; text-decoration: none;">[[Heuristic (computer science)|</ins>heuristic algorithms<ins style="font-weight: bold; text-decoration: none;">]]</ins> with bad worst-case times can nevertheless solve efficiently.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, hardware optimizations such as memory cache and parallel processing may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* On modern computers, <ins style="font-weight: bold; text-decoration: none;">[[Computer hardware|</ins>hardware<ins style="font-weight: bold; text-decoration: none;">]]</ins> optimizations such as <ins style="font-weight: bold; text-decoration: none;">[[</ins>memory cache<ins style="font-weight: bold; text-decoration: none;">]]</ins> and <ins style="font-weight: bold; text-decoration: none;">[[</ins>parallel processing<ins style="font-weight: bold; text-decoration: none;">]]</ins> may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s linear-time algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s <ins style="font-weight: bold; text-decoration: none;">[[</ins>linear-time<ins style="font-weight: bold; text-decoration: none;">]]</ins> algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> </tr> </table> OlliverWithDoubleL https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=958699474&oldid=prev Beland: convert special characters (via WP:JWB) 2020-05-25T07:58:30Z <p>convert special characters (via <a href="/wiki/Wikipedia:JWB" class="mw-redirect" title="Wikipedia:JWB">WP:JWB</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:58, 25 May 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 40:</td> <td colspan="2" class="diff-lineno">Line 40:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Formal definitions==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Formal definitions==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Formally, suppose that we have a lower-bound theorem showing that a problem requires Ω(f(''n'')) time to solve for an instance (input) of size ''n'' (see [[big-O notation#Other standard computer science notation: Ω, ω, Θ, O, o, Õ, <del style="font-weight: bold; text-decoration: none;">&amp;sim;</del>|big-O notation]] for the definition of Ω). Then, an algorithm which solves the problem in O(f(''n'')) time is said to be asymptotically optimal. This can also be expressed using limits: suppose that b(''n'') is a lower bound on the running time, and a given algorithm takes time t(''n''). Then the algorithm is asymptotically optimal if:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Formally, suppose that we have a lower-bound theorem showing that a problem requires Ω(f(''n'')) time to solve for an instance (input) of size ''n'' (see [[big-O notation#Other standard computer science notation: Ω, ω, Θ, O, o, Õ, <ins style="font-weight: bold; text-decoration: none;">∼</ins>|big-O notation]] for the definition of Ω). Then, an algorithm which solves the problem in O(f(''n'')) time is said to be asymptotically optimal. This can also be expressed using limits: suppose that b(''n'') is a lower bound on the running time, and a given algorithm takes time t(''n''). Then the algorithm is asymptotically optimal if:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lim_{n\rightarrow\infty} \frac{t(n)}{b(n)} &lt; \infty.&lt;/math&gt;</div></td> </tr> </table> Beland https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=786456429&oldid=prev Alanhuang122: removing nonsensical date citation field 2017-06-19T15:59:31Z <p>removing nonsensical date citation field</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:59, 19 June 2017</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 23:</td> <td colspan="2" class="diff-lineno">Line 23:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s linear-time algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example of an asymptotically optimal algorithm not used in practice is [[Bernard Chazelle]]'s linear-time algorithm for [[triangulation]] of a [[simple polygon]]. Another is the [[resizable array]] data structure published in "Resizable Arrays in Optimal Time and Space",&lt;ref&gt;{{Citation</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| title=Resizable Arrays in Optimal Time and Space</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>| date=Technical Report CS-99-09</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.cs.uwaterloo.ca/research/tr/1999/09/CS-99-09.pdf</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| year=1999</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| year=1999</div></td> </tr> </table> Alanhuang122 https://en.wikipedia.org/w/index.php?title=Asymptotically_optimal_algorithm&diff=579050488&oldid=prev Meng6 at 03:10, 28 October 2013 2013-10-28T03:10:12Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:10, 28 October 2013</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 9:</td> <td colspan="2" class="diff-lineno">Line 9:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As a simple example, it's known that all [[comparison sort]]s require at least Ω(''n'' log ''n'') comparisons in the average and worst cases. [[Mergesort]] and [[heapsort]] are comparison sorts which perform O(''n'' log ''n'') comparisons, so they are asymptotically optimal in this sense. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As a simple example, it's known that all [[comparison sort]]s require at least Ω(''n'' log ''n'') comparisons in the average and worst cases. [[Mergesort]] and [[heapsort]] are comparison sorts which perform O(''n'' log ''n'') comparisons, so they are asymptotically optimal in this sense. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the input data have some ''a priori'' properties which can be exploited in construction of algorithms, in addition to comparisons, then asymptotically faster algorithms may be possible. For example, if it is known that the N objects are [[integer]]s from the range [1<del style="font-weight: bold; text-decoration: none;">..</del>N], then they may be sorted O(N) time, e.g., by the [[bucket sort]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the input data have some ''<ins style="font-weight: bold; text-decoration: none;">[[</ins>a priori<ins style="font-weight: bold; text-decoration: none;"> and a posteriori|a priori]]</ins>'' properties which can be exploited in construction of algorithms, in addition to comparisons, then asymptotically faster algorithms may be possible. For example, if it is known that the N objects are [[integer]]s from the range [1<ins style="font-weight: bold; text-decoration: none;">, </ins>N], then they may be sorted O(N) time, e.g., by the [[bucket sort]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A consequence of an algorithm being asymptotically optimal is that, for large enough inputs, no algorithm can outperform it by more than a constant factor. For this reason, asymptotically optimal algorithms are often seen as the "end of the line" in research, the attaining of a result that cannot be dramatically improved upon. Conversely, if an algorithm is not asymptotically optimal, this implies that as the input grows in size, the algorithm performs increasingly worse than the best possible algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A consequence of an algorithm being asymptotically optimal is that, for large enough inputs, no algorithm can outperform it by more than a constant factor. For this reason, asymptotically optimal algorithms are often seen as the "end of the line" in research, the attaining of a result that cannot be dramatically improved upon. Conversely, if an algorithm is not asymptotically optimal, this implies that as the input grows in size, the algorithm performs increasingly worse than the best possible algorithm.</div></td> </tr> </table> Meng6