https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=BFR_algorithmBFR algorithm - Revision history2025-05-30T10:46:15ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=1289898117&oldid=prevTioaeu8943: clarify "independent dimensions"2025-05-11T14:51:50Z<p>clarify "independent dimensions"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:51, 11 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Vector clustering algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Vector clustering algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{more citations needed|date=May 2018}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{more citations needed|date=May 2018}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257–258}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257–258}}</ref><ins style="font-weight: bold; text-decoration: none;"> In other words, the data must take the shape of axis-aligned ellipses.</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Tioaeu8943https://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=1289897642&oldid=prevTioaeu8943: Adding short description: "Vector clustering algorithms"2025-05-11T14:46:53Z<p>Adding <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Vector clustering algorithms"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:46, 11 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Vector clustering algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{more citations needed|date=May 2018}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{more citations needed|date=May 2018}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257–258}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257–258}}</ref></div></td>
</tr>
</table>Tioaeu8943https://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=842176375&oldid=prevDerek Andrews: added Category:Cluster analysis algorithms; removed {{uncategorized}} using HotCat2018-05-20T19:13:13Z<p>added <a href="/wiki/Category:Cluster_analysis_algorithms" title="Category:Cluster analysis algorithms">Category:Cluster analysis algorithms</a>; removed {{uncategorized}} using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:13, 20 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Uncategorized|date=May 2018}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cluster analysis algorithms]]</div></td>
</tr>
</table>Derek Andrewshttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841932611&oldid=prevBroccoli and Coffee: Add Reflist, added uncategorised tag using AWB2018-05-19T01:47:10Z<p>Add Reflist, added <a href="/wiki/CAT:UNCAT" class="mw-redirect" title="CAT:UNCAT">uncategorised</a> tag using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:47, 19 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">refimprove</del>|date=May 2018}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">more citations needed</ins>|date=May 2018}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[<del style="font-weight: bold; text-decoration: none;">Centroid|</del>centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=<del style="font-weight: bold; text-decoration: none;">257-258</del>}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=<ins style="font-weight: bold; text-decoration: none;">257–258</ins>}}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Uncategorized|date=May 2018}}</div></td>
</tr>
</table>Broccoli and Coffeehttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841874918&oldid=prevDiscospinster: Added {{refimprove}} tag to article (TW)2018-05-18T16:50:58Z<p>Added {{<a href="/wiki/Template:Refimprove" class="mw-redirect" title="Template:Refimprove">refimprove</a>}} tag to article (<a href="/wiki/Wikipedia:TW" class="mw-redirect" title="Wikipedia:TW">TW</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:50, 18 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2018}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[Centroid|centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257-258}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a [[Centroid|centroid]]. The [[mean]] and [[standard deviation]] for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257-258}}</ref></div></td>
</tr>
</table>Discospinsterhttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841874603&oldid=prevNbro at 16:48, 18 May 20182018-05-18T16:48:46Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:48, 18 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257-258}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a <ins style="font-weight: bold; text-decoration: none;">[[Centroid|</ins>centroid<ins style="font-weight: bold; text-decoration: none;">]]</ins>. The <ins style="font-weight: bold; text-decoration: none;">[[</ins>mean<ins style="font-weight: bold; text-decoration: none;">]]</ins> and <ins style="font-weight: bold; text-decoration: none;">[[</ins>standard deviation<ins style="font-weight: bold; text-decoration: none;">]]</ins> for a cluster may differ for different dimensions, but the dimensions must be independent.<ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257-258}}</ref></div></td>
</tr>
</table>Nbrohttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841874453&oldid=prevNbro: Citation of the book from which the text of this article was taken added2018-05-18T16:47:37Z<p>Citation of the book from which the text of this article was taken added</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:47, 18 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means algorithm]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.<ins style="font-weight: bold; text-decoration: none;"><ref>{{Cite book|title=Mining of Massive Datasets|last=Rajaraman|first=Anand|last2=Ullman|first2=Jeffrey|last3=Leskovec|first3=Jure|publisher=Cambridge University Press|year=2011|isbn=1107015359|location=New York, NY, USA|pages=257-258}}</ref></ins></div></td>
</tr>
</table>Nbrohttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841873862&oldid=prevNbro at 16:43, 18 May 20182018-05-18T16:43:25Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:43, 18 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means<ins style="font-weight: bold; text-decoration: none;"> algorithm</ins>]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div></td>
</tr>
</table>Nbrohttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841873827&oldid=prevNbro at 16:43, 18 May 20182018-05-18T16:43:09Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:43, 18 May 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors <del style="font-weight: bold; text-decoration: none;">�������������������������������������������������������������������������������������������Bradley</del>, Fayyad and Reina, is a variant of [[k-means clustering|k-means]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''BFR algorithm''', named after its inventors <ins style="font-weight: bold; text-decoration: none;">Bradley</ins>, Fayyad and Reina, is a variant of [[k-means clustering|k-means]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div></td>
</tr>
</table>Nbrohttps://en.wikipedia.org/w/index.php?title=BFR_algorithm&diff=841873786&oldid=prevNbro: Introduction to the algorithm added from the book "Mining of massive datasets" (by Rajaraman, Anand and Ullman, Jeffrey David).2018-05-18T16:42:52Z<p>Introduction to the algorithm added from the book "Mining of massive datasets" (by Rajaraman, Anand and Ullman, Jeffrey David).</p>
<p><b>New page</b></p><div>The '''BFR algorithm''', named after its inventors �������������������������������������������������������������������������������������������Bradley, Fayyad and Reina, is a variant of [[k-means clustering|k-means]] that is designed to cluster data in a high-dimensional [[Euclidean space]]. It makes a very strong assumption about the shape of clusters: they must be [[Normal distribution|normally distributed]] about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.</div>Nbro