https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Backfitting_algorithm Backfitting algorithm - Revision history 2025-05-31T11:08:57Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1246721540&oldid=prev 198.102.151.244 at 17:36, 20 September 2024 2024-09-20T17:36:18Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:36, 20 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of [[Nonparametric regression|non-parametric regression]] models of the form:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of [[Nonparametric regression|non-parametric regression]] models of the form:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{<del style="font-weight: bold; text-decoration: none;">j</del>}) + \epsilon_i &lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{<ins style="font-weight: bold; text-decoration: none;">ij</ins>}) + \epsilon_i &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> </tr> </table> 198.102.151.244 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1214346408&oldid=prev 141.223.38.39 at 11:44, 18 March 2024 2024-03-18T11:44:17Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:44, 18 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of [[Nonparametric regression|non-parametric regression]] models of the form:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of [[Nonparametric regression|non-parametric regression]] models of the form:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{<del style="font-weight: bold; text-decoration: none;">ij</del>}) + \epsilon_i &lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{<ins style="font-weight: bold; text-decoration: none;">j</ins>}) + \epsilon_i &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\sum_{i = 1}^N f_j(X_{<del style="font-weight: bold; text-decoration: none;">j</del>}) = 0&lt;/math&gt; for all &lt;math&gt;j&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\sum_{i = 1}^N f_j(X_{<ins style="font-weight: bold; text-decoration: none;">ij</ins>}) = 0&lt;/math&gt; for all &lt;math&gt;j&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>leaving</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>leaving</div></td> </tr> </table> 141.223.38.39 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1214346368&oldid=prev 141.223.38.39 at 11:43, 18 March 2024 2024-03-18T11:43:49Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:43, 18 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 9:</td> <td colspan="2" class="diff-lineno">Line 9:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each &lt;math&gt;X_1, X_2, \ldots, X_p &lt;/math&gt; is a variable in our &lt;math&gt;p&lt;/math&gt;-dimensional predictor &lt;math&gt;X&lt;/math&gt;, and &lt;math&gt;Y&lt;/math&gt; is our outcome variable. &lt;math&gt;\epsilon&lt;/math&gt; represents our inherent error, which is assumed to have mean zero. The &lt;math&gt;f_j&lt;/math&gt; represent unspecified smooth functions of a single &lt;math&gt;X_j&lt;/math&gt;. Given the flexibility in the &lt;math&gt;f_j&lt;/math&gt;, we typically do not have a unique solution: &lt;math&gt;\alpha&lt;/math&gt; is left unidentifiable as one can add any constants to any of the &lt;math&gt;f_j&lt;/math&gt; and subtract this value from &lt;math&gt;\alpha&lt;/math&gt;. It is common to rectify this by constraining</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\sum_{i = 1}^N f_j(X_{<del style="font-weight: bold; text-decoration: none;">ij</del>}) = 0&lt;/math&gt; for all &lt;math&gt;j&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\sum_{i = 1}^N f_j(X_{<ins style="font-weight: bold; text-decoration: none;">j</ins>}) = 0&lt;/math&gt; for all &lt;math&gt;j&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>leaving</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>leaving</div></td> </tr> </table> 141.223.38.39 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1090423038&oldid=prev Qninja at 12:30, 29 May 2022 2022-05-29T12:30:03Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:30, 29 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Iterative procedure}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Iterative procedure}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by [[Leo Breiman]] and [[Jerome H. Friedman|Jerome Friedman]] along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain [[linear system of equations]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by [[Leo Breiman]] and [[Jerome H. Friedman|Jerome Friedman]] along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]]<ins style="font-weight: bold; text-decoration: none;">, an</ins> algorithm<ins style="font-weight: bold; text-decoration: none;"> used</ins> for solving a certain [[linear system of equations]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Algorithm==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Algorithm==</div></td> </tr> </table> Qninja https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1086325266&oldid=prev VaudevillianScientist at 14:23, 5 May 2022 2022-05-05T14:23:04Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:23, 5 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Iterative procedure}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Iterative procedure}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain linear system of equations.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by <ins style="font-weight: bold; text-decoration: none;">[[</ins>Leo Breiman<ins style="font-weight: bold; text-decoration: none;">]]</ins> and <ins style="font-weight: bold; text-decoration: none;">[[</ins>Jerome<ins style="font-weight: bold; text-decoration: none;"> H.</ins> Friedman<ins style="font-weight: bold; text-decoration: none;">|Jerome Friedman]]</ins> along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain <ins style="font-weight: bold; text-decoration: none;">[[</ins>linear system of equations<ins style="font-weight: bold; text-decoration: none;">]]</ins>.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Algorithm==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Algorithm==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of non-parametric regression models of the form:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Additive models are a class of <ins style="font-weight: bold; text-decoration: none;">[[Nonparametric regression|</ins>non-parametric regression<ins style="font-weight: bold; text-decoration: none;">]]</ins> models of the form:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{ij}) + \epsilon_i &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; Y_i = \alpha + \sum_{j=1}^p f_j(X_{ij}) + \epsilon_i &lt;/math&gt;</div></td> </tr> </table> VaudevillianScientist https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1070314301&oldid=prev Qwerfjkl (bot): Capitalising short description "iterative procedure" per WP:SDFORMAT (via Bandersnatch) 2022-02-06T21:01:36Z <p>Capitalising short description &quot;iterative procedure&quot; per <a href="/wiki/Wikipedia:SDFORMAT" class="mw-redirect" title="Wikipedia:SDFORMAT">WP:SDFORMAT</a> (via <a href="https://de.wikipedia.org/wiki/Benutzer:Schnark/js/bandersnatch" class="extiw" title="de:Benutzer:Schnark/js/bandersnatch">Bandersnatch</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:01, 6 February 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<del style="font-weight: bold; text-decoration: none;">iterative</del> procedure}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<ins style="font-weight: bold; text-decoration: none;">Iterative</ins> procedure}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain linear system of equations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain linear system of equations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Qwerfjkl (bot) https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1062630970&oldid=prev NAddleman: /* Motivation */ add inline math formatting for variables (minor) 2021-12-29T16:22:10Z <p><span class="autocomment">Motivation: </span> add inline math formatting for variables (minor)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:22, 29 December 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 100:</td> <td colspan="2" class="diff-lineno">Line 100:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{S}f = QY \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{S}f = QY \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An exact solution of this is infeasible to calculate for large np, so the iterative technique of backfitting is used. We take initial guesses &lt;math&gt;f_j^{(0)}&lt;/math&gt; and update each &lt;math&gt;f_j^{(\ell)}&lt;/math&gt; in turn to be the smoothed fit for the residuals of all the others:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An exact solution of this is infeasible to calculate for large <ins style="font-weight: bold; text-decoration: none;">''</ins>np<ins style="font-weight: bold; text-decoration: none;">''</ins>, so the iterative technique of backfitting is used. We take initial guesses &lt;math&gt;f_j^{(0)}&lt;/math&gt; and update each &lt;math&gt;f_j^{(\ell)}&lt;/math&gt; in turn to be the smoothed fit for the residuals of all the others:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{f_j}^{(\ell)} \leftarrow \text{Smooth}[\lbrace y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f_k}(x_{ik}) \rbrace_1^N ]&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{f_j}^{(\ell)} \leftarrow \text{Smooth}[\lbrace y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f_k}(x_{ik}) \rbrace_1^N ]&lt;/math&gt;</div></td> </tr> </table> NAddleman https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1058765590&oldid=prev Rlink2: /* External links */archive link repair, may include: archive.* -> archive.today, and http->https for ghostarchive.org and archive.org (wp:el#Specifying_protocols) 2021-12-05T14:01:21Z <p><span class="autocomment">External links: </span>archive link repair, may include: archive.* -&gt; archive.today, and http-&gt;https for ghostarchive.org and archive.org (<a href="/wiki/Wikipedia:El#Specifying_protocols" class="mw-redirect" title="Wikipedia:El">wp:el#Specifying_protocols</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:01, 5 December 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 188:</td> <td colspan="2" class="diff-lineno">Line 188:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[https://archive.<del style="font-weight: bold; text-decoration: none;">is</del>/20121211125906/http://rss.acs.unt.edu/Rdoc/library/gam/html/gam.html R Package for GAM backfitting]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[https://archive.<ins style="font-weight: bold; text-decoration: none;">today</ins>/20121211125906/http://rss.acs.unt.edu/Rdoc/library/gam/html/gam.html R Package for GAM backfitting]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[https://web.archive.org/web/20061121130651/http://pbil.univ-lyon1.fr/library/mda/html/bruto.html R Package for BRUTO backfitting]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[https://web.archive.org/web/20061121130651/http://pbil.univ-lyon1.fr/library/mda/html/bruto.html R Package for BRUTO backfitting]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Rlink2 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1030586496&oldid=prev Hthrhthr12: /* Motivation */ Fixed typo 2021-06-26T21:40:31Z <p><span class="autocomment">Motivation: </span> Fixed typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:40, 26 June 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 100:</td> <td colspan="2" class="diff-lineno">Line 100:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{S}f = QY \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{S}f = QY \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An exact solution of this is infeasible to calculate for large np, so the iterative technique of backfitting is used. We take initial guesses &lt;math&gt;<del style="font-weight: bold; text-decoration: none;">f_i</del>^{(0)}&lt;/math&gt; and update each &lt;math&gt;<del style="font-weight: bold; text-decoration: none;">f_i</del>^{(<del style="font-weight: bold; text-decoration: none;">j</del>)}&lt;/math&gt; in turn to be the smoothed fit for the residuals of all the others:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An exact solution of this is infeasible to calculate for large np, so the iterative technique of backfitting is used. We take initial guesses &lt;math&gt;<ins style="font-weight: bold; text-decoration: none;">f_j</ins>^{(0)}&lt;/math&gt; and update each &lt;math&gt;<ins style="font-weight: bold; text-decoration: none;">f_j</ins>^{(<ins style="font-weight: bold; text-decoration: none;">\ell</ins>)}&lt;/math&gt; in turn to be the smoothed fit for the residuals of all the others:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{<del style="font-weight: bold; text-decoration: none;">f_i</del>}^{(<del style="font-weight: bold; text-decoration: none;">j</del>)} \leftarrow \text{Smooth}[\lbrace y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f_k}(x_{ik}) \rbrace_1^N ]&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt; \hat{<ins style="font-weight: bold; text-decoration: none;">f_j</ins>}^{(<ins style="font-weight: bold; text-decoration: none;">\ell</ins>)} \leftarrow \text{Smooth}[\lbrace y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f_k}(x_{ik}) \rbrace_1^N ]&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Looking at the abbreviated form it is easy to see the backfitting algorithm as equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] for linear smoothing operators ''S''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Looking at the abbreviated form it is easy to see the backfitting algorithm as equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] for linear smoothing operators ''S''.</div></td> </tr> </table> Hthrhthr12 https://en.wikipedia.org/w/index.php?title=Backfitting_algorithm&diff=1016086735&oldid=prev Proteusiscrao: #suggestededit-add 1.0 2021-04-05T09:06:01Z <p>#suggestededit-add 1.0</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:06, 5 April 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|iterative procedure}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain linear system of equations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistics]], the '''backfitting algorithm''' is a simple iterative procedure used to fit a [[generalized additive model]]. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the [[Gauss&amp;ndash;Seidel|Gauss&amp;ndash;Seidel method]] algorithm for solving a certain linear system of equations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Proteusiscrao