https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Bat_algorithm Bat algorithm - Revision history 2025-05-25T08:36:00Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=1201217778&oldid=prev Jarble: adding Template:Optimization algorithms 2024-01-31T04:53:53Z <p>adding <a href="/wiki/Template:Optimization_algorithms" title="Template:Optimization algorithms">Template:Optimization algorithms</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:53, 31 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Yang, X.-S. (2014), ''Nature-Inspired Optimization Algorithms'', [[Elsevier]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Yang, X.-S. (2014), ''Nature-Inspired Optimization Algorithms'', [[Elsevier]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Optimization algorithms}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{swarming}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{swarming}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Jarble https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=1146785823&oldid=prev Citation bot: Misc citation tidying. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_CommandLine 2023-03-26T23:23:46Z <p>Misc citation tidying. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by AManWithNoPlan | #UCB_CommandLine</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:23, 26 March 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?<del style="font-weight: bold; text-decoration: none;">hl=en&amp;lr=&amp;</del>id=iVB_ETlh4ogC&amp;<del style="font-weight: bold; text-decoration: none;">oi</del>=<del style="font-weight: bold; text-decoration: none;">fnd</del>&amp;pg=PR5<del style="font-weight: bold; text-decoration: none;">&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false</del> Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | s2cid = 16866891 | year = 2011 | title = New inspirations in swarm intelligence: A survey| journal = International Journal of Bio-Inspired Computation| volume = 3 | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | journal = Applied Mechanics and Materials | volume = 148-149 | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?id=iVB_ETlh4ogC&amp;<ins style="font-weight: bold; text-decoration: none;">q</ins>=<ins style="font-weight: bold; text-decoration: none;">bat+algorithm</ins>&amp;pg=PR5 Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | s2cid = 16866891 | year = 2011 | title = New inspirations in swarm intelligence: A survey| journal = International Journal of Bio-Inspired Computation| volume = 3 | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | journal = Applied Mechanics and Materials | volume = 148-149 | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=1104475431&oldid=prev Pikamander2 at 06:32, 15 August 2022 2022-08-15T06:32:44Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:32, 15 August 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[List of metaphor-based metaheuristics]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">* </ins>[[List of metaphor-based metaheuristics]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> </table> Pikamander2 https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=994273211&oldid=prev Monkbot: Task 18 (cosmetic): eval 3 templates: del empty params (4×); 2020-12-14T21:58:59Z <p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 3 templates: del empty params (4×);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:58, 14 December 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''Bat algorithm''' is a [[metaheuristic]] algorithm for [[global optimization]]. It was inspired by the echolocation behaviour of [[microbats]], with varying pulse rates of emission and loudness.&lt;ref&gt;J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press, (1996).&lt;/ref&gt;&lt;ref&gt;P. Richardson, Bats. Natural History Museum, London, (2008)&lt;/ref&gt; The Bat algorithm was developed by [[Xin-She Yang]] in 2010.&lt;ref&gt;{{cite journal | last1 = Yang | first1 = X. S. | year = 2010 | title = A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) | arxiv = 1004.4170| journal = Studies in Computational Intelligence | volume = 284<del style="font-weight: bold; text-decoration: none;"> | issue =</del> | pages = 65–74 | bibcode = 2010arXiv1004.4170Y }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''Bat algorithm''' is a [[metaheuristic]] algorithm for [[global optimization]]. It was inspired by the echolocation behaviour of [[microbats]], with varying pulse rates of emission and loudness.&lt;ref&gt;J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press, (1996).&lt;/ref&gt;&lt;ref&gt;P. Richardson, Bats. Natural History Museum, London, (2008)&lt;/ref&gt; The Bat algorithm was developed by [[Xin-She Yang]] in 2010.&lt;ref&gt;{{cite journal | last1 = Yang | first1 = X. S. | year = 2010 | title = A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) | arxiv = 1004.4170| journal = Studies in Computational Intelligence | volume = 284 | pages = 65–74 | bibcode = 2010arXiv1004.4170Y }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Metaphor ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Metaphor ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | s2cid = 16866891 | year = 2011 | title = New inspirations in swarm intelligence: A survey| journal = International Journal of Bio-Inspired Computation| volume = 3<del style="font-weight: bold; text-decoration: none;"> | issue =</del> | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems<del style="font-weight: bold; text-decoration: none;"> | url =</del> | journal = Applied Mechanics and Materials | volume = 148-149<del style="font-weight: bold; text-decoration: none;"> | issue =</del> | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | s2cid = 16866891 | year = 2011 | title = New inspirations in swarm intelligence: A survey| journal = International Journal of Bio-Inspired Computation| volume = 3 | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | journal = Applied Mechanics and Materials | volume = 148-149 | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Monkbot https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=960797478&oldid=prev Citation bot: Add: s2cid. Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked 2020-06-04T23:50:36Z <p>Add: s2cid. Removed URL that duplicated unique identifier. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | Activated by AManWithNoPlan | All pages linked from <a href="/wiki/User:AManWithNoPlan/sandbox2" title="User:AManWithNoPlan/sandbox2">User:AManWithNoPlan/sandbox2</a> | via #UCB_webform_linked</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:50, 4 June 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: A survey<del style="font-weight: bold; text-decoration: none;">| url = https://semanticscholar.org/paper/4548c49d7e75f7bac860d2aea3ac7445056d3178</del>| journal = International Journal of Bio-Inspired Computation| volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S.<ins style="font-weight: bold; text-decoration: none;"> | s2cid = 16866891</ins> | year = 2011 | title = New inspirations in swarm intelligence: A survey| journal = International Journal of Bio-Inspired Computation| volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=927703265&oldid=prev Headbomb: Alter: url. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget | Alter: title, journal. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget 2019-11-24T06:34:57Z <p>Alter: url. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this tool</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | via #UCB_Gadget | Alter: title, journal. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this tool</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | via #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:34, 24 November 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: <del style="font-weight: bold; text-decoration: none;">a</del> survey<del style="font-weight: bold; text-decoration: none;">,Int </del>| url = | journal = <del style="font-weight: bold; text-decoration: none;">J.</del> Bio-Inspired Computation<del style="font-weight: bold; text-decoration: none;"> </del>| volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false Nature-Inspired Metaheuristic Algorithms], 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title =<ins style="font-weight: bold; text-decoration: none;"> </ins> New inspirations in swarm intelligence: <ins style="font-weight: bold; text-decoration: none;">A</ins> survey| url = <ins style="font-weight: bold; text-decoration: none;">https://semanticscholar.org/paper/4548c49d7e75f7bac860d2aea3ac7445056d3178</ins>| journal = <ins style="font-weight: bold; text-decoration: none;">International Journal of</ins> Bio-Inspired Computation| volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Headbomb https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=901741032&oldid=prev Jarble: linking 2019-06-13T23:43:33Z <p>linking</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:43, 13 June 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S.,<ins style="font-weight: bold; text-decoration: none;"> [https://books.google.com/books?hl=en&amp;lr=&amp;id=iVB_ETlh4ogC&amp;oi=fnd&amp;pg=PR5&amp;dq=%22Nature-Inspired+Metaheuristic+Algorithms,+2nd+Edition%22+luniver&amp;ots=DwgtqhEKua&amp;sig=bcpfrzMR691SLIzIUIiA0GkJdHo#v=onepage&amp;q=bat%20algorithm&amp;f=false</ins> Nature-Inspired Metaheuristic Algorithms<ins style="font-weight: bold; text-decoration: none;">]</ins>, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Jarble https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=863178238&oldid=prev Daviddwd: /* Metaphor */ 2018-10-09T05:07:37Z <p><span class="autocomment">Metaphor</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:07, 9 October 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 6:</td> <td colspan="2" class="diff-lineno">Line 6:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in [[MATLAB]]/[[GNU Octave]] is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==<del style="font-weight: bold; text-decoration: none;">Notes</del>==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==<ins style="font-weight: bold; text-decoration: none;"> See also </ins>==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[List of metaphor-based metaheuristics]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist|33em}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist|33em}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Daviddwd https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=863178192&oldid=prev Daviddwd: /* Metaphor */ links 2018-10-09T05:07:14Z <p><span class="autocomment">Metaphor: </span> links</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:07, 9 October 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in <del style="font-weight: bold; text-decoration: none;">Matlab</del>/Octave is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in <ins style="font-weight: bold; text-decoration: none;">[[MATLAB]]</ins>/<ins style="font-weight: bold; text-decoration: none;">[[GNU </ins>Octave<ins style="font-weight: bold; text-decoration: none;">]]</ins> is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134| bibcode = 2011AMM...148..134T }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> </tr> </table> Daviddwd https://en.wikipedia.org/w/index.php?title=Bat_algorithm&diff=846497003&oldid=prev Bibcode Bot: Adding 0 arxiv eprint(s), 2 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot 2018-06-19T03:46:29Z <p>Adding 0 <a href="/wiki/ArXiv" title="ArXiv">arxiv eprint(s)</a>, 2 <a href="/wiki/Bibcode" title="Bibcode">bibcode(s)</a> and 0 <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi(s)</a>. Did it miss something? Report bugs, errors, and suggestions at <a href="/wiki/User_talk:Bibcode_Bot" title="User talk:Bibcode Bot">User talk:Bibcode Bot</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:46, 19 June 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''Bat algorithm''' is a [[metaheuristic]] algorithm for [[global optimization]]. It was inspired by the echolocation behaviour of [[microbats]], with varying pulse rates of emission and loudness.&lt;ref&gt;J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press, (1996).&lt;/ref&gt;&lt;ref&gt;P. Richardson, Bats. Natural History Museum, London, (2008)&lt;/ref&gt; The Bat algorithm was developed by [[Xin-She Yang]] in 2010.&lt;ref&gt;{{cite journal | last1 = Yang | first1 = X. S. | year = 2010 | title = A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) | arxiv = 1004.4170| journal = Studies in Computational Intelligence | volume = 284 | issue = | pages = 65–74 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''Bat algorithm''' is a [[metaheuristic]] algorithm for [[global optimization]]. It was inspired by the echolocation behaviour of [[microbats]], with varying pulse rates of emission and loudness.&lt;ref&gt;J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press, (1996).&lt;/ref&gt;&lt;ref&gt;P. Richardson, Bats. Natural History Museum, London, (2008)&lt;/ref&gt; The Bat algorithm was developed by [[Xin-She Yang]] in 2010.&lt;ref&gt;{{cite journal | last1 = Yang | first1 = X. S. | year = 2010 | title = A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) | arxiv = 1004.4170| journal = Studies in Computational Intelligence | volume = 284 | issue = | pages = 65–74<ins style="font-weight: bold; text-decoration: none;"> | bibcode = 2010arXiv1004.4170Y</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Metaphor ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Metaphor ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idealization of the [[Animal echolocation|echolocation]] of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity &lt;math&gt;v_i&lt;/math&gt; at position (solution) &lt;math&gt;x_i&lt;/math&gt; with a varying frequency or wavelength and loudness &lt;math&gt;A_i&lt;/math&gt;. As it searches and finds its prey, it changes frequency, loudness and pulse emission rate &lt;math&gt;r&lt;/math&gt;. Search is intensified by a local [[random walk]]. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in Matlab/Octave is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang&lt;ref&gt;Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).&lt;/ref&gt; where a demo program in Matlab/Octave is available, while a comprehensive review is carried out by Parpinelli and Lopes.&lt;ref&gt;{{cite journal | last1 = Parpinelli | first1 = R. S. | last2 = Lopes | first2 = H. S. | year = 2011 | title = New inspirations in swarm intelligence: a survey,Int | url = | journal = J. Bio-Inspired Computation | volume = 3 | issue = | pages = 1–16 | doi=10.1504/ijbic.2011.038700}}&lt;/ref&gt; A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.&lt;ref&gt;{{cite journal | last1 = Tsai | first1 = P. W. | last2 = Pan | first2 = J. S. | last3 = Liao | first3 = B. Y. | last4 = Tsai | first4 = M. J. | last5 = Istanda | first5 = V. | year = 2012 | title = Bat algorithm inspired algorithm for solving numerical optimization problems | url = | journal = Applied Mechanics and Materials | volume = 148-149 | issue = | pages = 134–137 | doi=10.4028/www.scientific.net/amm.148-149.134<ins style="font-weight: bold; text-decoration: none;">| bibcode = 2011AMM...148..134T </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> </tr> </table> Bibcode Bot