https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Bayesian_approaches_to_brain_function Bayesian approaches to brain function - Revision history 2025-06-18T17:24:55Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.5 https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1293189596&oldid=prev Headbomb: /* Neural coding */ mark free doi 2025-05-31T07:32:14Z <p><span class="autocomment">Neural coding: </span> mark free doi</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:32, 31 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Many theoretical studies ask how the nervous system could implement Bayesian algorithms. Examples are the work of Pouget, Zemel, Deneve, Latham, Hinton and Dayan. George and [[Jeff Hawkins|Hawkins]] published a paper that establishes a model of cortical information processing called [[hierarchical temporal memory]] that is based on Bayesian network of [[Markov chain]]s. They further map this mathematical model to the existing knowledge about the architecture of cortex and show how neurons could recognize patterns by hierarchical Bayesian inference.&lt;ref&gt;George D, Hawkins J, 2009 Towards a Mathematical Theory of Cortical Micro-circuits" ''PLoS Comput Biol'' 5(10) e1000532. {{doi|10.1371/journal.pcbi.1000532}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Many theoretical studies ask how the nervous system could implement Bayesian algorithms. Examples are the work of Pouget, Zemel, Deneve, Latham, Hinton and Dayan. George and [[Jeff Hawkins|Hawkins]] published a paper that establishes a model of cortical information processing called [[hierarchical temporal memory]] that is based on Bayesian network of [[Markov chain]]s. They further map this mathematical model to the existing knowledge about the architecture of cortex and show how neurons could recognize patterns by hierarchical Bayesian inference.&lt;ref&gt;George D, Hawkins J, 2009 Towards a Mathematical Theory of Cortical Micro-circuits" ''PLoS Comput Biol'' 5(10) e1000532. {{doi|10.1371/journal.pcbi.1000532<ins style="font-weight: bold; text-decoration: none;">|doi-access=free</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Electrophysiology==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Electrophysiology==</div></td> </tr> </table> Headbomb https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1265996299&oldid=prev Citation bot: Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Computational neuroscience | #UCB_Category 113/122 2024-12-29T16:31:49Z <p>Removed URL that duplicated identifier. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Computational_neuroscience" title="Category:Computational neuroscience">Category:Computational neuroscience</a> | #UCB_Category 113/122</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:31, 29 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |last1=Tassinari |first1=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last1=Hudson |first1=Todd E. |last2=Maloney |first2=Laurence T. |last3=Landy |first3=Michael S. |date=2008 |title=Optimal Compensation for Temporal Uncertainty in Movement Planning |journal=PLOS Computational Biology |language=en |volume=4 |issue=7 |pages=e1000130 |doi=10.1371/journal.pcbi.1000130|doi-access=free |pmid=18654619 |pmc=2442880 |bibcode=2008PLSCB...4E0130H }}&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal<del style="font-weight: bold; text-decoration: none;"> | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887</del> | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 | doi-access=free }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |last1=Tassinari |first1=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last1=Hudson |first1=Todd E. |last2=Maloney |first2=Laurence T. |last3=Landy |first3=Michael S. |date=2008 |title=Optimal Compensation for Temporal Uncertainty in Movement Planning |journal=PLOS Computational Biology |language=en |volume=4 |issue=7 |pages=e1000130 |doi=10.1371/journal.pcbi.1000130|doi-access=free |pmid=18654619 |pmc=2442880 |bibcode=2008PLSCB...4E0130H }}&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 | doi-access=free }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1265529706&oldid=prev DreamRimmer Alt: per User talk:Doug Weller#Lamptonian 2024-12-27T10:37:55Z <p>per <a href="/wiki/User_talk:Doug_Weller#Lamptonian" title="User talk:Doug Weller">User talk:Doug Weller#Lamptonian</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:37, 27 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 60:</td> <td colspan="2" class="diff-lineno">Line 60:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Probabilistic models]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Probabilistic models]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theoretical accounts of general intelligence]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> </table> DreamRimmer Alt https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1264576224&oldid=prev Lamptonian at 13:26, 22 December 2024 2024-12-22T13:26:02Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:26, 22 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 60:</td> <td colspan="2" class="diff-lineno">Line 60:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Probabilistic models]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Probabilistic models]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theoretical accounts of general intelligence]]</div></td> </tr> </table> Lamptonian https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1245960452&oldid=prev OAbot: Open access bot: doi updated in citation with #oabot. 2024-09-16T03:06:23Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:06, 16 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |last1=Tassinari |first1=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last1=Hudson |first1=Todd E. |last2=Maloney |first2=Laurence T. |last3=Landy |first3=Michael S. |date=2008 |title=Optimal Compensation for Temporal Uncertainty in Movement Planning |journal=PLOS Computational Biology |language=en |volume=4 |issue=7 |pages=e1000130 |doi=10.1371/journal.pcbi.1000130|doi-access=free |pmid=18654619 |pmc=2442880 |bibcode=2008PLSCB...4E0130H }}&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |last1=Tassinari |first1=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last1=Hudson |first1=Todd E. |last2=Maloney |first2=Laurence T. |last3=Landy |first3=Michael S. |date=2008 |title=Optimal Compensation for Temporal Uncertainty in Movement Planning |journal=PLOS Computational Biology |language=en |volume=4 |issue=7 |pages=e1000130 |doi=10.1371/journal.pcbi.1000130|doi-access=free |pmid=18654619 |pmc=2442880 |bibcode=2008PLSCB...4E0130H }}&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132<ins style="font-weight: bold; text-decoration: none;"> | doi-access=free</ins> }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1244713705&oldid=prev Josve05a: /* Psychophysics */ | Add: bibcode, pmc, pmid, doi-access, authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this tool. Report bugs. | #UCB_Gadget 2024-09-08T18:48:56Z <p><span class="autocomment">Psychophysics: </span> | Add: bibcode, pmc, pmid, doi-access, authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this tool</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:48, 8 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Tassinari |<del style="font-weight: bold; text-decoration: none;">first</del>=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;Hudson <del style="font-weight: bold; text-decoration: none;">TE,</del> Maloney <del style="font-weight: bold; text-decoration: none;">LT</del> <del style="font-weight: bold; text-decoration: none;">&amp;</del> Landy <del style="font-weight: bold; text-decoration: none;">MS</del>. <del style="font-weight: bold; text-decoration: none;">(</del>2008<del style="font-weight: bold; text-decoration: none;">). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130</del> Optimal <del style="font-weight: bold; text-decoration: none;">compensation</del> for <del style="font-weight: bold; text-decoration: none;">temporal</del> <del style="font-weight: bold; text-decoration: none;">uncertainty</del> in <del style="font-weight: bold; text-decoration: none;">movement</del> <del style="font-weight: bold; text-decoration: none;">planning].</del> <del style="font-weight: bold; text-decoration: none;">PLoS</del> Computational Biology<del style="font-weight: bold; text-decoration: none;">,</del> 4<del style="font-weight: bold; text-decoration: none;">(</del>7<del style="font-weight: bold; text-decoration: none;">)</del>.&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Tassinari |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Hadley |last2=Hudson |first2=Todd E. |last3=Landy |first3=Michael S. |date=2006 |title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https://www.jneurosci.org/content/26/40/10154 |journal=Journal of Neuroscience |language=en |volume=26 |issue=40 |pages=10154–10163 |doi=10.1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}&lt;/ref&gt;&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite journal |last1=</ins>Hudson <ins style="font-weight: bold; text-decoration: none;">|first1=Todd</ins> <ins style="font-weight: bold; text-decoration: none;">E. |last2=</ins>Maloney <ins style="font-weight: bold; text-decoration: none;">|first2=Laurence</ins> <ins style="font-weight: bold; text-decoration: none;">T.</ins> <ins style="font-weight: bold; text-decoration: none;">|last3=</ins>Landy <ins style="font-weight: bold; text-decoration: none;">|first3=Michael S</ins>. <ins style="font-weight: bold; text-decoration: none;">|date=</ins>2008 <ins style="font-weight: bold; text-decoration: none;">|title=</ins>Optimal <ins style="font-weight: bold; text-decoration: none;">Compensation</ins> for <ins style="font-weight: bold; text-decoration: none;">Temporal</ins> <ins style="font-weight: bold; text-decoration: none;">Uncertainty</ins> in <ins style="font-weight: bold; text-decoration: none;">Movement</ins> <ins style="font-weight: bold; text-decoration: none;">Planning</ins> <ins style="font-weight: bold; text-decoration: none;">|journal=PLOS</ins> Computational Biology <ins style="font-weight: bold; text-decoration: none;">|language=en |volume=</ins>4<ins style="font-weight: bold; text-decoration: none;"> |issue=</ins>7<ins style="font-weight: bold; text-decoration: none;"> |pages=e1000130 |doi=10</ins>.<ins style="font-weight: bold; text-decoration: none;">1371/journal.pcbi.1000130|doi-access=free |pmid=18654619 |pmc=2442880 |bibcode=2008PLSCB...4E0130H }}</ins>&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> Josve05a https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1244713244&oldid=prev Josve05a: /* Psychophysics */ 2024-09-08T18:44:56Z <p><span class="autocomment">Psychophysics</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:44, 8 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;Tassinari <del style="font-weight: bold; text-decoration: none;">H,</del> Hudson <del style="font-weight: bold; text-decoration: none;">TE</del> <del style="font-weight: bold; text-decoration: none;">&amp;</del> Landy <del style="font-weight: bold; text-decoration: none;">MS</del>. <del style="font-weight: bold; text-decoration: none;">(</del>2006<del style="font-weight: bold; text-decoration: none;">).</del> <del style="font-weight: bold; text-decoration: none;">[http</del>://www.jneurosci.org<del style="font-weight: bold; text-decoration: none;">/cgi</del>/content<del style="font-weight: bold; text-decoration: none;">/abstract</del>/26/40/10154 <del style="font-weight: bold; text-decoration: none;">Combining priors and noisy visual cues in a rapid pointing task]" ''</del>Journal of Neuroscience<del style="font-weight: bold; text-decoration: none;">''</del> 26<del style="font-weight: bold; text-decoration: none;">(</del>40<del style="font-weight: bold; text-decoration: none;">),</del> 10154–10163.&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite journal |last=</ins>Tassinari <ins style="font-weight: bold; text-decoration: none;">|first=Hadley</ins> <ins style="font-weight: bold; text-decoration: none;">|last2=</ins>Hudson <ins style="font-weight: bold; text-decoration: none;">|first2=Todd</ins> <ins style="font-weight: bold; text-decoration: none;">E.</ins> <ins style="font-weight: bold; text-decoration: none;">|last3=</ins>Landy <ins style="font-weight: bold; text-decoration: none;">|first3=Michael S</ins>. <ins style="font-weight: bold; text-decoration: none;">|date=</ins>2006 <ins style="font-weight: bold; text-decoration: none;">|title=Combining Priors and Noisy Visual Cues in a Rapid Pointing Task |url=https</ins>://www.jneurosci.org/content/26/40/10154 <ins style="font-weight: bold; text-decoration: none;">|journal=</ins>Journal of Neuroscience <ins style="font-weight: bold; text-decoration: none;">|language=en |volume=</ins>26<ins style="font-weight: bold; text-decoration: none;"> |issue=</ins>40 <ins style="font-weight: bold; text-decoration: none;">|pages=</ins>10154–10163<ins style="font-weight: bold; text-decoration: none;"> |doi=10</ins>.<ins style="font-weight: bold; text-decoration: none;">1523/JNEUROSCI.2779-06.2006 |issn=0270-6474 |pmc=6674625 |pmid=17021171}}</ins>&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;{{cite journal | url=http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html | doi=10.1038/nature02169 | title=Bayesian integration in sensorimotor learning | date=2004 | last1=Körding | first1=Konrad P. | last2=Wolpert | first2=Daniel M. | journal=Nature | volume=427 | issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur.427..244K }}&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> Josve05a https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1244712972&oldid=prev Josve05a: /* Psychophysics */ | Altered template type. Add: bibcode, pmid, pages, issue, volume, journal, date, title, doi, authors 1-2. Changed bare reference to CS1/2. | Use this tool. Report bugs. | #UCB_Gadget 2024-09-08T18:42:36Z <p><span class="autocomment">Psychophysics: </span> | Altered template type. Add: bibcode, pmid, pages, issue, volume, journal, date, title, doi, authors 1-2. Changed bare reference to CS1/2. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this tool</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:42, 8 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;Tassinari H, Hudson TE &amp; Landy MS. (2006). [http://www.jneurosci.org/cgi/content/abstract/26/40/10154 Combining priors and noisy visual cues in a rapid pointing task]" ''Journal of Neuroscience'' 26(40), 10154–10163.&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">Koerding</del> <del style="font-weight: bold; text-decoration: none;">KP</del> <del style="font-weight: bold; text-decoration: none;">&amp;</del> <del style="font-weight: bold; text-decoration: none;">Wolpert DM (2004). [</del>http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html Bayesian integration in sensorimotor learning<del style="font-weight: bold; text-decoration: none;">]</del>. <del style="font-weight: bold; text-decoration: none;">''</del>Nature<del style="font-weight: bold; text-decoration: none;">'',</del> 427<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">244–7</del>.&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;Tassinari H, Hudson TE &amp; Landy MS. (2006). [http://www.jneurosci.org/cgi/content/abstract/26/40/10154 Combining priors and noisy visual cues in a rapid pointing task]" ''Journal of Neuroscience'' 26(40), 10154–10163.&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;{{cite journal | url=http://www.sciencedirect.com/science/article/pii/S0042698999000887 | doi=10.1016/S0042-6989(99)00088-7 | title=Optimal integration of texture and motion cues to depth | journal=Vision Research | date=October 1999 | volume=39 | issue=21 | pages=3621–3629 | last1=Jacobs | first1=Robert A. | pmid=10746132 }}&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{cite</ins> <ins style="font-weight: bold; text-decoration: none;">journal</ins> <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">url=</ins>http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html <ins style="font-weight: bold; text-decoration: none;">| doi=10.1038/nature02169 | title=</ins>Bayesian integration in sensorimotor learning<ins style="font-weight: bold; text-decoration: none;"> | date=2004 | last1=Körding | first1=Konrad P</ins>. <ins style="font-weight: bold; text-decoration: none;">| last2=Wolpert | first2=Daniel M. | journal=</ins>Nature <ins style="font-weight: bold; text-decoration: none;">| volume=</ins>427 <ins style="font-weight: bold; text-decoration: none;">| issue=6971 | pages=244–247 | pmid=14724638 | bibcode=2004Natur</ins>.<ins style="font-weight: bold; text-decoration: none;">427..244K }}</ins>&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> Josve05a https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1244712884&oldid=prev Josve05a: /* Psychophysics */ | Altered template type. Add: pmid, pages, issue, volume, date, journal, title, doi, authors 1-1. Changed bare reference to CS1/2. | Use this tool. Report bugs. | #UCB_Gadget 2024-09-08T18:41:44Z <p><span class="autocomment">Psychophysics: </span> | Altered template type. Add: pmid, pages, issue, volume, date, journal, title, doi, authors 1-1. Changed bare reference to CS1/2. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this tool</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:41, 8 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Psychophysics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Bayesian inference in motor learning}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;Tassinari H, Hudson TE &amp; Landy MS. (2006). [http://www.jneurosci.org/cgi/content/abstract/26/40/10154 Combining priors and noisy visual cues in a rapid pointing task]" ''Journal of Neuroscience'' 26(40), 10154–10163.&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">Jacobs</del> <del style="font-weight: bold; text-decoration: none;">RA</del> <del style="font-weight: bold; text-decoration: none;">(1999).</del> <del style="font-weight: bold; text-decoration: none;">[https://archive.today/20130201225038/</del>http://www.sciencedirect.com/science<del style="font-weight: bold; text-decoration: none;">?_ob=ArticleURL&amp;_udi</del>=<del style="font-weight: bold; text-decoration: none;">B6T0W</del>-<del style="font-weight: bold; text-decoration: none;">3X3BTP4</del>-<del style="font-weight: bold; text-decoration: none;">D&amp;_user=10&amp;_rdoc=1&amp;_fmt=&amp;_orig=search&amp;_sort=d&amp;_docanchor=&amp;view</del>=<del style="font-weight: bold; text-decoration: none;">c&amp;_acct=C000050221&amp;_version=1&amp;_urlVersion=0&amp;_userid=10&amp;md5=839657cf68a414de392abcfaca2e198f </del>Optimal integration of texture and motion cues to depth<del style="font-weight: bold; text-decoration: none;">]"</del> <del style="font-weight: bold; text-decoration: none;">''</del>Vision Research<del style="font-weight: bold; text-decoration: none;">''</del> 39<del style="font-weight: bold; text-decoration: none;">(</del>21<del style="font-weight: bold; text-decoration: none;">),</del> <del style="font-weight: bold; text-decoration: none;">3621–9</del>.&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;Koerding KP &amp; Wolpert DM (2004). [http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html Bayesian integration in sensorimotor learning]. ''Nature'', 427, 244–7.&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A wide range of studies interpret the results of psychophysical experiments in light of Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate expressions of neural information processing, is also known for modeling sensory and motor decisions using Bayesian decision theory. Examples are the work of [[Michael S. Landy|Landy]],&lt;ref&gt;Tassinari H, Hudson TE &amp; Landy MS. (2006). [http://www.jneurosci.org/cgi/content/abstract/26/40/10154 Combining priors and noisy visual cues in a rapid pointing task]" ''Journal of Neuroscience'' 26(40), 10154–10163.&lt;/ref&gt;&lt;ref&gt;Hudson TE, Maloney LT &amp; Landy MS. (2008). [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000130 Optimal compensation for temporal uncertainty in movement planning]. PLoS Computational Biology, 4(7).&lt;/ref&gt; Jacobs,&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{cite</ins> <ins style="font-weight: bold; text-decoration: none;">journal</ins> <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">url=</ins>http://www.sciencedirect.com/science<ins style="font-weight: bold; text-decoration: none;">/article/pii/S0042698999000887 | doi</ins>=<ins style="font-weight: bold; text-decoration: none;">10.1016/S0042</ins>-<ins style="font-weight: bold; text-decoration: none;">6989(99)00088</ins>-<ins style="font-weight: bold; text-decoration: none;">7 | title</ins>=Optimal integration of texture and motion cues to depth <ins style="font-weight: bold; text-decoration: none;">| journal=</ins>Vision Research <ins style="font-weight: bold; text-decoration: none;">| date=October 1999 | volume=</ins>39<ins style="font-weight: bold; text-decoration: none;"> | issue=</ins>21 <ins style="font-weight: bold; text-decoration: none;">| pages=3621–3629 | last1=Jacobs | first1=Robert A</ins>.<ins style="font-weight: bold; text-decoration: none;"> | pmid=10746132 }}</ins>&lt;/ref&gt;&lt;ref&gt;Battaglia PW, Jacobs RA &amp; Aslin RN (2003). [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1391 Bayesian integration of visual and auditory signals for spatial localization]. Journal of the Optical Society of America, 20(7), 1391–7.&lt;/ref&gt; Jordan, Knill,&lt;ref&gt;Knill DC (2005). [http://journalofvision.org//5/2/2/ Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception]. Journal of Vision, 5(2), 103:15.&lt;/ref&gt;&lt;ref&gt;Knill DC (2007). [http://journalofvision.org//7/8/13/ Learning Bayesian priors for depth perception] {{Webarchive|url=https://web.archive.org/web/20081121060849/http://www.journalofvision.org/7/8/13/ |date=2008-11-21 }}. Journal of Vision, 7(8), 1–20.&lt;/ref&gt; Kording and Wolpert,&lt;ref&gt;Koerding KP &amp; Wolpert DM (2004). [http://www.nature.com/nature/journal/v427/n6971/full/nature02169.html Bayesian integration in sensorimotor learning]. ''Nature'', 427, 244–7.&lt;/ref&gt;&lt;ref&gt;Koerding KP, Ku S &amp; Wolpert DM (2004). [http://jn.physiology.org/cgi/content/abstract/92/5/3161 Bayesian integration in force estimation]" ''Journal of Neurophysiology'' 92, 3161–5.&lt;/ref&gt; and Goldreich.&lt;ref&gt;{{cite journal|last=Goldreich|first=D|title=A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions.|journal=PLOS ONE|date=Mar 28, 2007|volume=2|issue=3|pages=e333|pmid=17389923|doi=10.1371/journal.pone.0000333|pmc=1828626|bibcode=2007PLoSO...2..333G|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=Daniel|author2=Tong, Jonathan|title=Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions|journal=Frontiers in Psychology|date=10 May 2013|volume=4|issue=221|pages=221|doi=10.3389/fpsyg.2013.00221|pmid=23675360|pmc=3650428|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last=Goldreich|first=D|author2=Peterson, MA|s2cid=4931501|title=A Bayesian observer replicates convexity context effects in figure-ground perception.|journal=Seeing and Perceiving|year=2012|volume=25|issue=3–4|pages=365–95|pmid=22564398|doi=10.1163/187847612X634445}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Neural coding==</div></td> </tr> </table> Josve05a https://en.wikipedia.org/w/index.php?title=Bayesian_approaches_to_brain_function&diff=1229850231&oldid=prev Fuddle: new key for Category:Computational neuroscience: "" using HotCat 2024-06-19T01:25:17Z <p>new key for <a href="/wiki/Category:Computational_neuroscience" title="Category:Computational neuroscience">Category:Computational neuroscience</a>: &quot;&quot; using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:25, 19 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 56:</td> <td colspan="2" class="diff-lineno">Line 56:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Bayesian approaches to brain function}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Bayesian approaches to brain function}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational neuroscience<del style="font-weight: bold; text-decoration: none;">|*</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational neuroscience]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cognitive neuroscience]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cognitive neuroscience]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian statistics|Brain]]</div></td> </tr> </table> Fuddle