https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Birkhoff_algorithm Birkhoff algorithm - Revision history 2025-06-07T16:34:49Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.4 https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1285634059&oldid=prev JJMC89 bot III: Moving :Category:Matrices to :Category:Matrices (mathematics) per Wikipedia:Categories for discussion/Speedy 2025-04-14T21:02:00Z <p>Moving <a href="/w/index.php?title=Category:Matrices&amp;action=edit&amp;redlink=1" class="new" title="Category:Matrices (page does not exist)">Category:Matrices</a> to <a href="/wiki/Category:Matrices_(mathematics)" title="Category:Matrices (mathematics)">Category:Matrices (mathematics)</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Speedy" title="Wikipedia:Categories for discussion/Speedy">Wikipedia:Categories for discussion/Speedy</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:02, 14 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 90:</td> <td colspan="2" class="diff-lineno">Line 90:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Matrices]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Matrices<ins style="font-weight: bold; text-decoration: none;"> (mathematics)</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td> </tr> </table> JJMC89 bot III https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1217602276&oldid=prev Mazewaxie: WP:GENFIXES 2024-04-06T20:18:30Z <p><a href="/wiki/Wikipedia:GENFIXES" class="mw-redirect" title="Wikipedia:GENFIXES">WP:GENFIXES</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:18, 6 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 78:</td> <td colspan="2" class="diff-lineno">Line 78:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Valls et al.&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=<del style="font-weight: bold; text-decoration: none;">2399-2412</del>|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt; showed that it is possible to obtain an &lt;math&gt;\epsilon&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Valls et al.&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=<ins style="font-weight: bold; text-decoration: none;">2399–2412</ins>|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt; showed that it is possible to obtain an &lt;math&gt;\epsilon&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>-'''approximate decomposition''' with &lt;math&gt;O(\log(1/\epsilon^2))&lt;/math&gt; permutations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>-'''approximate decomposition''' with &lt;math&gt;O(\log(1/\epsilon^2))&lt;/math&gt; permutations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Mazewaxie https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1212348376&oldid=prev 129.41.46.2: /* Extensions */ 2024-03-07T11:30:26Z <p><span class="autocomment">Extensions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:30, 7 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 72:</td> <td colspan="2" class="diff-lineno">Line 72:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.<del style="font-weight: bold; text-decoration: none;">&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=2399-2412|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt;</del>&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Valls et al.&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=2399-2412|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt; showed that it is possible to obtain an &lt;math&gt;\epsilon&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>-'''approximate decomposition''' with &lt;math&gt;O(\log(1/\epsilon^2))&lt;/math&gt; permutations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> 129.41.46.2 https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1212346999&oldid=prev 129.41.46.2: /* Extensions */ 2024-03-07T11:17:57Z <p><span class="autocomment">Extensions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:17, 7 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 72:</td> <td colspan="2" class="diff-lineno">Line 72:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_3_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.</ins>&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=2399-2412|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_0_lhs"></a>&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=2399-2412|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> </table> 129.41.46.2 https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1212346756&oldid=prev 129.41.46.2: /* Extensions */ 2024-03-07T11:15:41Z <p><span class="autocomment">Extensions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:15, 7 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 72:</td> <td colspan="2" class="diff-lineno">Line 72:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;{{cite journal|last1=Valls|first1=Victor|last2=Iosifidis|first2=Georgios|last3=Tassiulas|first3=Leandros|date=Dec 2021|title=Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches |url=https://arxiv.org/pdf/2011.02752.pdf|journal=IEEE/ACM Transactions on Networking|volume=29|pages=2399-2412|doi=10.1109/TNET.2021.3088327}}&lt;/ref&gt;</ins>&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282|citeseerx=10.1.1.649.5582}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> </table> 129.41.46.2 https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1194883267&oldid=prev Sir Ibee: Open access status updates in citations with OAbot #oabot 2024-01-11T06:37:40Z <p>Open access status updates in citations with <a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">OAbot</a> #oabot</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:37, 11 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|s2cid=240083300 |issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282<ins style="font-weight: bold; text-decoration: none;">|citeseerx=10.1.1.649.5582</ins>}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite arXiv |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |class=cs.DS |eprint=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> </tr> </table> Sir Ibee https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1179525084&oldid=prev 2603:6011:2DF0:2340:5015:571E:848F:5DC9: /* Tools */ 2023-10-10T18:09:18Z <p><span class="autocomment">Tools</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:09, 10 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 45:</td> <td colspan="2" class="diff-lineno">Line 45:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Tools ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Tools ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''permutation set''' of an ''n''-by-''n'' matrix ''X'' is a set of ''n'' entries of ''X'' containing exactly one entry from each row and from each column. A theorem by [[Dénes Kőnig]] says that:&lt;ref&gt;{{citation|last=Kőnig|first=Dénes|title=Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére|journal=Matematikai és Természettudományi Értesítő|volume=34|pages=104–119|year=1916|authorlink=Dénes Kőnig}}.&lt;/ref&gt;&lt;ref name="lp" /&gt;{{rp|35}} &lt;blockquote&gt;''Every bistochastic matrix has a permutation-set in which all entries are positive.''&lt;/blockquote&gt;The '''positivity graph''' of an ''n''-by-''n'' matrix ''X'' is a [[bipartite graph]] with 2''n'' vertices, in which the vertices on one side are ''n'' rows and the vertices on the other side are the ''n'' columns, and there is an edge between a row and a column iff the entry at that row and column is positive. A permutation set with positive entries is equivalent to a [[perfect matching]] in the positivity graph. A perfect matching in a bipartite graph can be found in polynomial time, e.g. using any algorithm for [[maximum cardinality matching]]. [[Dénes Kőnig|Kőnig]]'s theorem is equivalent to the following:&lt;blockquote&gt;''The positivity graph of any bistochastic matrix admits a perfect matching.''&lt;/blockquote&gt;A matrix is called '''scaled-bistochastic''' if all elements are <del style="font-weight: bold; text-decoration: none;">weakly</del>-<del style="font-weight: bold; text-decoration: none;">positive</del>, and the sum of each row and column equals ''c'', where ''c'' is some positive constant. In other words, it is ''c'' times a bistochastic matrix. Since the positivity graph is not affected by scaling:&lt;blockquote&gt;''The positivity graph of any scaled-bistochastic matrix admits a perfect matching.''&lt;/blockquote&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''permutation set''' of an ''n''-by-''n'' matrix ''X'' is a set of ''n'' entries of ''X'' containing exactly one entry from each row and from each column. A theorem by [[Dénes Kőnig]] says that:&lt;ref&gt;{{citation|last=Kőnig|first=Dénes|title=Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére|journal=Matematikai és Természettudományi Értesítő|volume=34|pages=104–119|year=1916|authorlink=Dénes Kőnig}}.&lt;/ref&gt;&lt;ref name="lp" /&gt;{{rp|35}} &lt;blockquote&gt;''Every bistochastic matrix has a permutation-set in which all entries are positive.''&lt;/blockquote&gt;The '''positivity graph''' of an ''n''-by-''n'' matrix ''X'' is a [[bipartite graph]] with 2''n'' vertices, in which the vertices on one side are ''n'' rows and the vertices on the other side are the ''n'' columns, and there is an edge between a row and a column iff the entry at that row and column is positive. A permutation set with positive entries is equivalent to a [[perfect matching]] in the positivity graph. A perfect matching in a bipartite graph can be found in polynomial time, e.g. using any algorithm for [[maximum cardinality matching]]. [[Dénes Kőnig|Kőnig]]'s theorem is equivalent to the following:&lt;blockquote&gt;''The positivity graph of any bistochastic matrix admits a perfect matching.''&lt;/blockquote&gt;A matrix is called '''scaled-bistochastic''' if all elements are <ins style="font-weight: bold; text-decoration: none;">non</ins>-<ins style="font-weight: bold; text-decoration: none;">negative</ins>, and the sum of each row and column equals ''c'', where ''c'' is some positive constant. In other words, it is ''c'' times a bistochastic matrix. Since the positivity graph is not affected by scaling:&lt;blockquote&gt;''The positivity graph of any scaled-bistochastic matrix admits a perfect matching.''&lt;/blockquote&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td> </tr> </table> 2603:6011:2DF0:2340:5015:571E:848F:5DC9 https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1134712165&oldid=prev Graeme Bartlett: space ; coefficienct fix 2023-01-20T05:03:14Z <p>space ; coefficienct fix</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:03, 20 January 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 67:</td> <td colspan="2" class="diff-lineno">Line 67:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Application in fair division ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Application in fair division ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the [[fair random assignment]] problem, there are ''n'' objects and ''n'' people with different preferences over the objects. It is required to give an object to each person. To attain fairness, the allocation is randomized: for each (person,object) pair, a probability is calculated, such that the sum of probabilities for each person and for each object is 1. The [[probabilistic-serial procedure]] can compute the probabilities such that each agent, looking at the matrix of probabilities, prefers his row of probabilities over the rows of all other people (this property is called [[envy-freeness]]). This raises the question of how to implement this randomized allocation in practice? One cannot just randomize for each object separately, since this may result in allocations in which some people get many objects while other people get no objects.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the [[fair random assignment]] problem, there are ''n'' objects and ''n'' people with different preferences over the objects. It is required to give an object to each person. To attain fairness, the allocation is randomized: for each (person,<ins style="font-weight: bold; text-decoration: none;"> </ins>object) pair, a probability is calculated, such that the sum of probabilities for each person and for each object is 1. The [[probabilistic-serial procedure]] can compute the probabilities such that each agent, looking at the matrix of probabilities, prefers his row of probabilities over the rows of all other people (this property is called [[envy-freeness]]). This raises the question of how to implement this randomized allocation in practice? One cannot just randomize for each object separately, since this may result in allocations in which some people get many objects while other people get no objects.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Here, Birkhoff's algorithm is useful. The matrix of probabilities, calculated by the probabilistic-serial algorithm, is bistochastic. Birkhoff's algorithm can decompose it into a convex combination of permutation matrices. Each permutation matrix represents a deterministic assignment, in which every agent receives exactly one object. The <del style="font-weight: bold; text-decoration: none;">coefficienct</del> of each such matrix is interpreted as a probability; based on the calculated probabilities, it is possible to pick one assignment at random and implement it.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Here, Birkhoff's algorithm is useful. The matrix of probabilities, calculated by the probabilistic-serial algorithm, is bistochastic. Birkhoff's algorithm can decompose it into a convex combination of permutation matrices. Each permutation matrix represents a deterministic assignment, in which every agent receives exactly one object. The <ins style="font-weight: bold; text-decoration: none;">coefficient</ins> of each such matrix is interpreted as a probability; based on the calculated probabilities, it is possible to pick one assignment at random and implement it.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> </tr> </table> Graeme Bartlett https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1112396551&oldid=prev Citation bot: Alter: template type. Add: eprint, class, s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 4/24 2022-09-26T04:20:19Z <p>Alter: template type. Add: eprint, class, s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 4/24</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:20, 26 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 72:</td> <td colspan="2" class="diff-lineno">Line 72:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017|issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The problem of computing the Birkhoff decomposition with the '''minimum number of terms''' has been shown to be [[NP-hard]], but some heuristics for computing it are known.&lt;ref&gt;{{cite journal|last1=Dufossé|first1=Fanny|last2=Uçar|first2=Bora|date=May 2016|title=Notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01270331/file/bvn-laa.pdf|journal=Linear Algebra and Its Applications|volume=497|pages=108–115|doi=10.1016/j.laa.2016.02.023|doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Dufossé|first1=Fanny|last2=Kaya|first2=Kamer|last3=Panagiotas|first3=Ioannis|last4=Uçar|first4=Bora|date=2018|title=Further notes on Birkhoff–von Neumann decomposition of doubly stochastic matrices|url=https://hal.inria.fr/hal-01586245/file/bvn-results.pdf|journal=Linear Algebra and Its Applications|volume=554|pages=68–78|doi=10.1016/j.laa.2018.05.017<ins style="font-weight: bold; text-decoration: none;">|s2cid=240083300 </ins>|issn=0024-3795}}&lt;/ref&gt; This theorem can be extended for the general stochastic matrix with deterministic transition matrices.&lt;ref&gt;{{Cite journal|last1=Ye|first1=Felix X.-F.|last2=Wang|first2=Yue|last3=Qian|first3=Hong|year=2016|title=Stochastic dynamics: Markov chains and random transformations|journal=Discrete and Continuous Dynamical Systems - Series B|volume=21|issue=7|pages=2337–2361|doi=10.3934/dcdsb.2016050|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Budish|<del style="font-weight: bold; text-decoration: none;">first</del>=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Budish|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del> |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |<del style="font-weight: bold; text-decoration: none;">arxiv</del>=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins> |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |<ins style="font-weight: bold; text-decoration: none;">class=cs.DS |eprint</ins>=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Birkhoff_algorithm&diff=1112394646&oldid=prev Headbomb: /* Extensions */Various citation & identifier cleanup, plus AWB genfixes (arxiv version pointless when published) 2022-09-26T04:02:15Z <p><span class="autocomment">Extensions: </span>Various citation &amp; identifier cleanup, plus AWB genfixes (arxiv version pointless when published)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:02, 26 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 76:</td> <td colspan="2" class="diff-lineno">Line 76:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last=Budish|first=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Budish, Che, Kojima and Milgrom&lt;ref name=":12"&gt;{{Cite journal|last=Budish|first=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; generalize Birkhoff's algorithm to '''non-square matrices''', with some constraints on the feasible assignments. They also present a decomposition algorithm that minimizes the variance in the expected values.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{<del style="font-weight: bold; text-decoration: none;">Cite</del> <del style="font-weight: bold; text-decoration: none;">journal</del> |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |<del style="font-weight: bold; text-decoration: none;">url=http://</del>arxiv<del style="font-weight: bold; text-decoration: none;">.org/abs/2010.05984 |journal</del>=<del style="font-weight: bold; text-decoration: none;">arXiv:</del>2010.05984 <del style="font-weight: bold; text-decoration: none;">[cs, econ]</del>}}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Vijay Vazirani|Vazirani]]&lt;ref&gt;{{<ins style="font-weight: bold; text-decoration: none;">cite</ins> <ins style="font-weight: bold; text-decoration: none;">arxiv</ins> |last=Vazirani |first=Vijay V. |date=2020-10-14 |title=An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs |arxiv=2010.05984 }}&lt;/ref&gt; generalizes Birkhoff's algorithm to '''non-bipartite graphs'''.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Headbomb