https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Block_Lanczos_algorithm Block Lanczos algorithm - Revision history 2025-05-29T03:07:47Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=1181720740&oldid=prev Onel5969: Disambiguating links to Number field sieve (link changed to General number field sieve) using DisamAssist. 2023-10-24T20:23:53Z <p>Disambiguating links to <a href="/wiki/Number_field_sieve" title="Number field sieve">Number field sieve</a> (link changed to <a href="/wiki/General_number_field_sieve" title="General number field sieve">General number field sieve</a>) using <a href="/wiki/User:Qwertyytrewqqwerty/DisamAssist" title="User:Qwertyytrewqqwerty/DisamAssist">DisamAssist</a>.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:23, 24 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], the '''block Lanczos algorithm''' is an [[algorithm]] for finding the [[nullspace]] of a [[Matrix (mathematics)|matrix]] over a [[finite field]], using only multiplication of the matrix by long, thin matrices. Such matrices are considered as vectors of [[tuple]]s of finite-field entries, and so tend to be called 'vectors' in descriptions of the algorithm.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], the '''block Lanczos algorithm''' is an [[algorithm]] for finding the [[nullspace]] of a [[Matrix (mathematics)|matrix]] over a [[finite field]], using only multiplication of the matrix by long, thin matrices. Such matrices are considered as vectors of [[tuple]]s of finite-field entries, and so tend to be called 'vectors' in descriptions of the algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[number field sieve]], and its development has been entirely driven by this application.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[<ins style="font-weight: bold; text-decoration: none;">General number field sieve|</ins>number field sieve]], and its development has been entirely driven by this application.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |author-link=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |book-title=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |author-link=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |book-title=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; </div></td> </tr> </table> Onel5969 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=1094555967&oldid=prev 217.197.198.196: Restoring a link (to a description of the algorithm) and a sentence from an old revision 2022-06-23T10:16:09Z <p>Restoring a link (to a description of the algorithm) and a sentence from an old revision</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:16, 23 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[number field sieve]], and its development has been entirely driven by this application.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[number field sieve]], and its development has been entirely driven by this application.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |author-link=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |book-title=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Parallelization issues ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Parallelization issues ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> 217.197.198.196 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=1046040909&oldid=prev Ixfd64: {{linear-algebra-stub}} 2021-09-23T17:14:26Z <p>{{linear-algebra-stub}}</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:14, 23 September 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 11:</td> <td colspan="2" class="diff-lineno">Line 11:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{linear-algebra-stub}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical linear algebra]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical linear algebra]]</div></td> </tr> </table> Ixfd64 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=1027694203&oldid=prev 86.159.61.35: The block Lanczos method is far older than claimed, it goes back to at least the 70s. I don't know the original paper but it's definitely before 1995. 2021-06-09T12:41:45Z <p>The block Lanczos method is far older than claimed, it goes back to at least the 70s. I don&#039;t know the original paper but it&#039;s definitely before 1995.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:41, 9 June 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[block Wiedemann algorithm]] is more useful in contexts where several systems each large enough to hold the entire matrix are available, since in that algorithm the systems can run independently until a final stage at the end.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[block Wiedemann algorithm]] is more useful in contexts where several systems each large enough to hold the entire matrix are available, since in that algorithm the systems can run independently until a final stage at the end.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |author-link=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |book-title=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> 86.159.61.35 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=1000189854&oldid=prev Monkbot: Task 18 (cosmetic): eval 1 template: hyphenate params (2×); 2021-01-14T01:18:24Z <p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 1 template: hyphenate params (2×);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:18, 14 January 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |<del style="font-weight: bold; text-decoration: none;">authorlink</del>=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |<del style="font-weight: bold; text-decoration: none;">booktitle</del>=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |<ins style="font-weight: bold; text-decoration: none;">author-link</ins>=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |<ins style="font-weight: bold; text-decoration: none;">book-title</ins>=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 |doi-access=free }}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Monkbot https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=951708512&oldid=prev OAbot: Open access bot: doi added to citation with #oabot. 2020-04-18T13:16:16Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:16, 18 April 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9 }}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag|doi=10.1007/3-540-49264-X_9<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> }}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=876897190&oldid=prev David Eppstein: unstub 2019-01-05T05:53:01Z <p>unstub</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:53, 5 January 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 16:</td> <td colspan="2" class="diff-lineno">Line 16:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical linear algebra]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical linear algebra]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Linear-algebra-stub}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Algorithm-stub}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=874320741&oldid=prev Citation bot: Misc citation tidying. You can use this bot yourself. Report bugs here. | User-activated. 2018-12-18T14:39:06Z <p>Misc citation tidying. You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">User-activated</a>.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:39, 18 December 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2)<del style="font-weight: bold; text-decoration: none;"> |url=https://link.springer.com/chapter/10.1007/3-540-49264-X_9</del> |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag}}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag<ins style="font-weight: bold; text-decoration: none;">|doi=10.1007/3-540-49264-X_9 </ins>}}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=835923865&oldid=prev Ixfd64: fix dead link 2018-04-11T16:13:43Z <p>fix dead link</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:13, 11 April 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |url=<del style="font-weight: bold; text-decoration: none;">http</del>://<del style="font-weight: bold; text-decoration: none;">kolxo3</del>.<del style="font-weight: bold; text-decoration: none;">tiera</del>.<del style="font-weight: bold; text-decoration: none;">ru</del>/<del style="font-weight: bold; text-decoration: none;">_Papers</del>/<del style="font-weight: bold; text-decoration: none;">Numerical_methods</del>/<del style="font-weight: bold; text-decoration: none;">Integer%20factoring/Montgomery.%20Block%20Lanczos%20algorithm%20for%20GF%282%29%20linear%20algebra%2816s%29.ps.gz</del> |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag}}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm was developed by [[Peter Montgomery (mathematician)|Peter Montgomery]] and published in 1995;&lt;ref&gt;{{cite conference |last=Montgomery |first=P L |authorlink=Peter Montgomery (mathematician) |year=1995 |title=A Block Lanczos Algorithm for Finding Dependencies over GF(2) |url=<ins style="font-weight: bold; text-decoration: none;">https</ins>://<ins style="font-weight: bold; text-decoration: none;">link</ins>.<ins style="font-weight: bold; text-decoration: none;">springer</ins>.<ins style="font-weight: bold; text-decoration: none;">com</ins>/<ins style="font-weight: bold; text-decoration: none;">chapter</ins>/<ins style="font-weight: bold; text-decoration: none;">10.1007</ins>/<ins style="font-weight: bold; text-decoration: none;">3-540-49264-X_9</ins> |conference=EUROCRYPT '95 |booktitle=Lecture Notes in Computer Science |volume=921 |pages=106–120 |publisher=Springer-Verlag}}&lt;/ref&gt; it is based on, and bears a strong resemblance to, the [[Lanczos algorithm]] for finding [[eigenvalue]]s of large sparse real matrices.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Ixfd64 https://en.wikipedia.org/w/index.php?title=Block_Lanczos_algorithm&diff=576657556&oldid=prev Maxal at 23:55, 10 October 2013 2013-10-10T23:55:55Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:55, 10 October 2013</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">The</del> '''block Lanczos algorithm''' is <del style="font-weight: bold; text-decoration: none;">a</del> <del style="font-weight: bold; text-decoration: none;">procedure</del> for finding the [[nullspace]] of a [[Matrix (mathematics)|matrix]] over a [[finite field]], using only multiplication of the matrix by long, thin matrices. <del style="font-weight: bold; text-decoration: none;"> These long, thin</del> matrices are considered as vectors of <del style="font-weight: bold; text-decoration: none;">tuples</del> of finite-field entries, and so tend to be called 'vectors' in descriptions of the algorithm.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">In [[computer science]], the</ins> '''block Lanczos algorithm''' is <ins style="font-weight: bold; text-decoration: none;">an</ins> <ins style="font-weight: bold; text-decoration: none;">[[algorithm]]</ins> for finding the [[nullspace]] of a [[Matrix (mathematics)|matrix]] over a [[finite field]], using only multiplication of the matrix by long, thin matrices. <ins style="font-weight: bold; text-decoration: none;">Such</ins> matrices are considered as vectors of <ins style="font-weight: bold; text-decoration: none;">[[tuple]]s</ins> of finite-field entries, and so tend to be called 'vectors' in descriptions of the algorithm.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[number field sieve]], and its development has been entirely driven by this application.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The block Lanczos algorithm is amongst the most efficient methods known for finding nullspaces, which is the final stage in [[integer factorization]] algorithms such as the [[quadratic sieve]] and [[number field sieve]], and its development has been entirely driven by this application.</div></td> </tr> <!-- diff cache key enwiki:diff:1.41:old-576656342:rev-576657556:wikidiff2=table:1.14.1:ff290eae --> </table> Maxal