https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Brain_storm_optimization_algorithm
Brain storm optimization algorithm - Revision history
2025-06-17T23:15:53Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.5
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=1251884063&oldid=prev
Citation bot: Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Algorithms and data structures stubs | #UCB_Category 53/92
2024-10-18T16:42:00Z
<p>Added bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Algorithms_and_data_structures_stubs" title="Category:Algorithms and data structures stubs">Category:Algorithms and data structures stubs</a> | #UCB_Category 53/92</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:42, 18 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{context|date=November 2019}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{context|date=November 2019}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''brain storm optimization''' algorithm is a [[heuristic algorithm]] that focuses on solving multi-modal problems, such as [[radio antennas]] design worked on by [[Yahya Rahmat-Samii]], inspired by the [[brainstorming]] process, proposed by Dr. [[Yuhui Shi]].<ref>{{cite book |last=Shi |first=Yuhui |year=2011 |chapter=Brain Storm Optimization Algorithm |editor-last1=Tan |editor-first1=Y. |editor-last2=Shi |editor-first2=Y. |editor-last3=Chai |editor-first3=Y. |editor-last4=Wang |editor-first4=G. |title=Advances in Swarm Intelligence |volume=6728 |pages=303–309 |doi=10.1007/978-3-642-21515-5_36|isbn=978-3-642-21514-8 |series=Lecture Notes in Computer Science }}</ref><ref>{{cite journal |last1=Qiu |first1=Huaxin |last2=Duan |first2=Haibin |title=Receding horizon control for multiple UAV formation flight based on modified brain storm optimization |journal=Nonlinear Dynamics |volume=78 |issue=3 |pages=1973–1988 |doi=10.1007/s11071-014-1579-7|year=2014 |s2cid=120591309 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''brain storm optimization''' algorithm is a [[heuristic algorithm]] that focuses on solving multi-modal problems, such as [[radio antennas]] design worked on by [[Yahya Rahmat-Samii]], inspired by the [[brainstorming]] process, proposed by Dr. [[Yuhui Shi]].<ref>{{cite book |last=Shi |first=Yuhui |year=2011 |chapter=Brain Storm Optimization Algorithm |editor-last1=Tan |editor-first1=Y. |editor-last2=Shi |editor-first2=Y. |editor-last3=Chai |editor-first3=Y. |editor-last4=Wang |editor-first4=G. |title=Advances in Swarm Intelligence |volume=6728 |pages=303–309 |doi=10.1007/978-3-642-21515-5_36|isbn=978-3-642-21514-8 |series=Lecture Notes in Computer Science }}</ref><ref>{{cite journal |last1=Qiu |first1=Huaxin |last2=Duan |first2=Haibin |title=Receding horizon control for multiple UAV formation flight based on modified brain storm optimization |journal=Nonlinear Dynamics |volume=78 |issue=3 |pages=1973–1988 |doi=10.1007/s11071-014-1579-7|year=2014<ins style="font-weight: bold; text-decoration: none;"> |bibcode=2014NonDy..78.1973Q</ins> |s2cid=120591309 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{citation needed|date=September 2020}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{citation needed|date=September 2020}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free<ins style="font-weight: bold; text-decoration: none;"> |bibcode=2018IEEEA...619968S</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |year=2018 |volume=51 |issue=28 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite book |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 |s2cid=199379609 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |year=2018 |volume=51 |issue=28 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite book |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 |s2cid=199379609 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=1146787283&oldid=prev
Jarble: adding Template:Optimization algorithms
2023-03-26T23:35:44Z
<p>adding <a href="/wiki/Template:Optimization_algorithms" title="Template:Optimization algorithms">Template:Optimization algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:35, 26 March 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Optimization algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Heuristic algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Heuristic algorithms]]</div></td>
</tr>
</table>
Jarble
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=1055320486&oldid=prev
Citation bot: Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | Category:Algorithms and data structures stubs | #UCB_Category 17/84
2021-11-15T05:19:21Z
<p>Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | <a href="/wiki/Category:Algorithms_and_data_structures_stubs" title="Category:Algorithms and data structures stubs">Category:Algorithms and data structures stubs</a> | #UCB_Category 17/84</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:19, 15 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |year=2018 |volume=51 |issue=28 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite book |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |year=2018 |volume=51 |issue=28 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite book |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019<ins style="font-weight: bold; text-decoration: none;"> |s2cid=199379609</ins> }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=1030747749&oldid=prev
Citation bot: Alter: template type. Add: issue, year, s2cid. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 19/162
2021-06-27T20:16:42Z
<p>Alter: template type. Add: issue, year, s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 19/162</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:16, 27 June 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{context|date=November 2019}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{context|date=November 2019}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''brain storm optimization''' algorithm is a [[heuristic algorithm]] that focuses on solving multi-modal problems, such as [[radio antennas]] design worked on by [[Yahya Rahmat-Samii]], inspired by the [[brainstorming]] process, proposed by Dr. [[Yuhui Shi]].<ref>{{cite book |last=Shi |first=Yuhui |year=2011 |chapter=Brain Storm Optimization Algorithm |editor-last1=Tan |editor-first1=Y. |editor-last2=Shi |editor-first2=Y. |editor-last3=Chai |editor-first3=Y. |editor-last4=Wang |editor-first4=G. |title=Advances in Swarm Intelligence |volume=6728 |pages=303–309 |doi=10.1007/978-3-642-21515-5_36|isbn=978-3-642-21514-8 |series=Lecture Notes in Computer Science }}</ref><ref>{{cite journal |last1=Qiu |first1=Huaxin |last2=Duan |first2=Haibin |title=Receding horizon control for multiple UAV formation flight based on modified brain storm optimization |journal=Nonlinear Dynamics |volume=78 |issue=3 |pages=1973–1988 |doi=10.1007/s11071-014-1579-7|year=2014 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''brain storm optimization''' algorithm is a [[heuristic algorithm]] that focuses on solving multi-modal problems, such as [[radio antennas]] design worked on by [[Yahya Rahmat-Samii]], inspired by the [[brainstorming]] process, proposed by Dr. [[Yuhui Shi]].<ref>{{cite book |last=Shi |first=Yuhui |year=2011 |chapter=Brain Storm Optimization Algorithm |editor-last1=Tan |editor-first1=Y. |editor-last2=Shi |editor-first2=Y. |editor-last3=Chai |editor-first3=Y. |editor-last4=Wang |editor-first4=G. |title=Advances in Swarm Intelligence |volume=6728 |pages=303–309 |doi=10.1007/978-3-642-21515-5_36|isbn=978-3-642-21514-8 |series=Lecture Notes in Computer Science }}</ref><ref>{{cite journal |last1=Qiu |first1=Huaxin |last2=Duan |first2=Haibin |title=Receding horizon control for multiple UAV formation flight based on modified brain storm optimization |journal=Nonlinear Dynamics |volume=78 |issue=3 |pages=1973–1988 |doi=10.1007/s11071-014-1579-7|year=2014<ins style="font-weight: bold; text-decoration: none;"> |s2cid=120591309</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |volume=51 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite <del style="font-weight: bold; text-decoration: none;">journal</del> |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine<ins style="font-weight: bold; text-decoration: none;"> |year=2018</ins> |volume=51<ins style="font-weight: bold; text-decoration: none;"> |issue=28</ins> |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite <ins style="font-weight: bold; text-decoration: none;">book</ins> |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|publisher=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=1030737529&oldid=prev
Headbomb: clean up, replaced: |journal=Springer → |publisher=Springer
2021-06-27T19:20:59Z
<p>clean up, replaced: |journal=Springer → |publisher=Springer</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:20, 27 June 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{<del style="font-weight: bold; text-decoration: none;">cn</del>|date=September 2020}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{<ins style="font-weight: bold; text-decoration: none;">citation needed</ins>|date=September 2020}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |volume=51 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|<del style="font-weight: bold; text-decoration: none;">journal</del>=Springer Nature<del style="font-weight: bold; text-decoration: none;"> Switzerland AG, Cham</del> |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |volume=51 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|<ins style="font-weight: bold; text-decoration: none;">publisher</ins>=Springer Nature |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Heuristic algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Heuristic algorithms]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Algorithm-stub}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Algorithm-stub}}</div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=976770323&oldid=prev
AnomieBOT: Dating maintenance tags: {{Cn}}
2020-09-04T22:08:53Z
<p>Dating maintenance tags: {{Cn}}</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:08, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{cn}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{cn<ins style="font-weight: bold; text-decoration: none;">|date=September 2020</ins>}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
</tr>
</table>
AnomieBOT
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=976767959&oldid=prev
Headbomb: free doi
2020-09-04T21:48:45Z
<p>free doi</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:48, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{cn}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{cn}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 <del style="font-weight: bold; text-decoration: none;">|url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017</del>|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |volume=51 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=IFAC-PapersOnLine |volume=51 |pages=13–18 |doi=10.1016/j.ifacol.2018.11.670 |doi-access=free}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=976767909&oldid=prev
Headbomb: ce
2020-09-04T21:48:22Z
<p>ce</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:48, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=<del style="font-weight: bold; text-decoration: none;">International Federation of Automatic Control</del> |volume=51 |pages=13–18 |<del style="font-weight: bold; text-decoration: none;">url</del>=<del style="font-weight: bold; text-decoration: none;">https:</del>/<del style="font-weight: bold; text-decoration: none;">/www</del>.<del style="font-weight: bold; text-decoration: none;">sciencedirect</del>.<del style="font-weight: bold; text-decoration: none;">com/science/article/pii/S2405896318333883</del> |<del style="font-weight: bold; text-decoration: none;">accessdate</del>=<del style="font-weight: bold; text-decoration: none;">6 November 2018</del>}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=<ins style="font-weight: bold; text-decoration: none;">IFAC-PapersOnLine</ins> |volume=51 |pages=13–18 |<ins style="font-weight: bold; text-decoration: none;">doi</ins>=<ins style="font-weight: bold; text-decoration: none;">10.1016</ins>/<ins style="font-weight: bold; text-decoration: none;">j</ins>.<ins style="font-weight: bold; text-decoration: none;">ifacol</ins>.<ins style="font-weight: bold; text-decoration: none;">2018.11.670</ins> |<ins style="font-weight: bold; text-decoration: none;">doi-access</ins>=<ins style="font-weight: bold; text-decoration: none;">free</ins>}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun S. |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=DEStech Transactions on Engineering and Technology Research |date=3 April 2018 |issue=icmm |doi=10.12783/dtetr/icmm2017/20342 |doi-access=free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=976767827&oldid=prev
Headbomb: ce
2020-09-04T21:47:45Z
<p>ce</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:47, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=International Federation of Automatic Control |volume=51 |pages=13–18 |url=https://www.sciencedirect.com/science/article/pii/S2405896318333883 |accessdate=6 November 2018}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun <del style="font-weight: bold; text-decoration: none;">Steed</del> |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal= <del style="font-weight: bold; text-decoration: none;">ENGINEERING</del> and <del style="font-weight: bold; text-decoration: none;">TECHNOLOGY</del> <del style="font-weight: bold; text-decoration: none;">RESEARCH</del> |<del style="font-weight: bold; text-decoration: none;">url</del>=<del style="font-weight: bold; text-decoration: none;">http://dpi-proceedings</del>.<del style="font-weight: bold; text-decoration: none;">com/index.php</del>/dtetr/<del style="font-weight: bold; text-decoration: none;">article/view</del>/20342 |<del style="font-weight: bold; text-decoration: none;">accessdate</del>=<del style="font-weight: bold; text-decoration: none;">16 December 2017</del>}}</ref><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A number of comparison studies are conducted between [[Particle swarm optimization|PSO]] and BSO.<ref>{{cite journal |last1=Sato |first1=Mayuko |last2=Fukuyama |first2=Yoshikazu |title=Total Optimization of Smart City by Modified Brain Storm Optimization |journal=International Federation of Automatic Control |volume=51 |pages=13–18 |url=https://www.sciencedirect.com/science/article/pii/S2405896318333883 |accessdate=6 November 2018}}</ref> Recently published book contains much more up to date references.<ref>{{cite journal |last1=Cheng |first1=S. |last2=Shi |first2=Y. |title=Brain Storm Optimization Algorithms: Concepts, Principles and Applications, Part of Adaptation, Learning and Optimization Books|journal=Springer Nature Switzerland AG, Cham |volume=23 |doi=10.1007/978-3-030-15070-9 |isbn=978-3-030-15069-3 |series=Adaptation, Learning, and Optimization |year=2019 }}</ref> It was used to design 5G network as well.<ref>{{cite journal |last1=Wu |first1=Qiong |last2=Xu |first2=Tong |last3=Huang |first3=Jun <ins style="font-weight: bold; text-decoration: none;">S.</ins> |title=A Quantum Twin Brain Storm Optimization for Fog Computing in 5G |journal=<ins style="font-weight: bold; text-decoration: none;">DEStech</ins> <ins style="font-weight: bold; text-decoration: none;">Transactions on Engineering</ins> and <ins style="font-weight: bold; text-decoration: none;">Technology</ins> <ins style="font-weight: bold; text-decoration: none;">Research</ins> |<ins style="font-weight: bold; text-decoration: none;">date</ins>=<ins style="font-weight: bold; text-decoration: none;">3 April 2018 |issue=icmm |doi=10</ins>.<ins style="font-weight: bold; text-decoration: none;">12783</ins>/dtetr/<ins style="font-weight: bold; text-decoration: none;">icmm2017</ins>/20342 |<ins style="font-weight: bold; text-decoration: none;">doi-access</ins>=<ins style="font-weight: bold; text-decoration: none;">free</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Brain_storm_optimization_algorithm&diff=976767664&oldid=prev
Headbomb: -predatory source
2020-09-04T21:46:24Z
<p>-<a href="/wiki/Predatory_publishing" title="Predatory publishing">predatory source</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:46, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than 200 papers related to BSO algorithms have appeared in various journals and conferences. There have also been special issues and special sessions on Brain Storm Optimization algorithm in journals and various conferences, such as Memetic Computing Journal.<ref>{{cite web |title=Keynote Speakers-ICCEM 2019 |url=https://iccem2019.tongji.edu.cn/Keynote_Speakers.htm |publisher=ICCEM 2019 conference |accessdate=16 August 2019}}</ref><ref>{{cite journal |last1=Cheng |first1=Shi |last2=Shi |first2=Yuhui |title=Thematic issue on "Brain Storm Optimization Algorithms" |journal=Memetic Computing |volume=10 |issue=4 |pages=351–352 |doi=10.1007/s12293-018-0276-3|year=2018 |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,<del style="font-weight: bold; text-decoration: none;"><ref></del>{{<del style="font-weight: bold; text-decoration: none;">cite journal |last1=Qi |first1=Yaqian |last2=Xu |first2=Tong |last3=Huang |first3=Jun Steed |title=Analysis of Risk Management for the Coal Mine Operations |journal=Energy and Power Engineering |volume=10 |pages=1–7 |url=https://www.researchgate.net/publication/309666155 |accessdate=6 April 2017</del>}}<del style="font-weight: bold; text-decoration: none;"></ref></del> and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There are a number of variants of the algorithms as well, such as Hypo Variance Brain Storm Optimization, where the object function evaluation is based on the hypo or sub variance rather than Gaussian variance,{{<ins style="font-weight: bold; text-decoration: none;">cn</ins>}} and Global-best Brain Storm Optimization, where the global-best incorporates a re-initialization scheme that is triggered by the current state of the population, combined with per-variable updates and fitness-based grouping.<ref>{{cite journal |last1=El-Abd |first1=Mohammed |title=Global-best brain storm optimization algorithm |journal=Swarm and Evolutionary Computation |volume=37 |pages=27–44 |doi=10.1016/j.swevo.2017.05.001 |year=2017 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Carleton University]] researchers proposed another variant by using a periodic [[quantum]] learning strategy to provides new momentum, enabling individuals to escape local optima ([[local optimum]]).<ref>{{cite journal |last1=Song |first1=Zhenshou |last2=Peng |first2=Jiaqi |last3=Li |first3=Chunquan|last4=Liu |first4=Peter X. |title=A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy |journal=IEEE Access |volume=6 |pages=19968–19983 |url=https://ir.library.carleton.ca/pub/16853 |accessdate=23 November 2017|doi=10.1109/ACCESS.2017.2776958 |year=2018 |doi-access=free }}</ref> </div></td>
</tr>
</table>
Headbomb