https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=C4.5_algorithm
C4.5 algorithm - Revision history
2025-05-30T04:30:53Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1230632825&oldid=prev
Trulyy: Added image
2024-06-23T20:39:51Z
<p>Added image</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:39, 23 June 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for making decision trees}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for making decision trees}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More footnotes|date=July 2008}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More footnotes|date=July 2008}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Diagramm_beispiel_sarah_geht_segeln.png | thumb | right]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''C4.5''' is an algorithm used to generate a [[decision tree]] developed by [[Ross Quinlan]].<ref>Quinlan, J. R. C4.5: ''Programs for Machine Learning''. Morgan Kaufmann Publishers, 1993.</ref> C4.5 is an extension of Quinlan's earlier [[ID3 algorithm]]. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a [[Statistical classification|statistical classifier]]. In 2011, authors of the [[Weka (machine learning)|Weka]] machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date".<ref>{{cite web |url=http://www.cs.waikato.ac.nz/~ml/weka/book.html |title=Data Mining: Practical machine learning tools and techniques, 3rd Edition |author=Ian H. Witten |author2=Eibe Frank |author3=Mark A. Hall |year=2011 |publisher=Morgan Kaufmann, San Francisco | page=191 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''C4.5''' is an algorithm used to generate a [[decision tree]] developed by [[Ross Quinlan]].<ref>Quinlan, J. R. C4.5: ''Programs for Machine Learning''. Morgan Kaufmann Publishers, 1993.</ref> C4.5 is an extension of Quinlan's earlier [[ID3 algorithm]]. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a [[Statistical classification|statistical classifier]]. In 2011, authors of the [[Weka (machine learning)|Weka]] machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date".<ref>{{cite web |url=http://www.cs.waikato.ac.nz/~ml/weka/book.html |title=Data Mining: Practical machine learning tools and techniques, 3rd Edition |author=Ian H. Witten |author2=Eibe Frank |author3=Mark A. Hall |year=2011 |publisher=Morgan Kaufmann, San Francisco | page=191 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Trulyy
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1223955067&oldid=prev
LucasBrown: Adding local short description: "Algorithm for making decision trees", overriding Wikidata description "decision trees algorithm"
2024-05-15T11:08:27Z
<p>Adding local <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Algorithm for making decision trees", overriding Wikidata description "decision trees algorithm"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:08, 15 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for making decision trees}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More footnotes|date=July 2008}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More footnotes|date=July 2008}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''C4.5''' is an algorithm used to generate a [[decision tree]] developed by [[Ross Quinlan]].<ref>Quinlan, J. R. C4.5: ''Programs for Machine Learning''. Morgan Kaufmann Publishers, 1993.</ref> C4.5 is an extension of Quinlan's earlier [[ID3 algorithm]]. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a [[Statistical classification|statistical classifier]]. In 2011, authors of the [[Weka (machine learning)|Weka]] machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date".<ref>{{cite web |url=http://www.cs.waikato.ac.nz/~ml/weka/book.html |title=Data Mining: Practical machine learning tools and techniques, 3rd Edition |author=Ian H. Witten |author2=Eibe Frank |author3=Mark A. Hall |year=2011 |publisher=Morgan Kaufmann, San Francisco | page=191 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''C4.5''' is an algorithm used to generate a [[decision tree]] developed by [[Ross Quinlan]].<ref>Quinlan, J. R. C4.5: ''Programs for Machine Learning''. Morgan Kaufmann Publishers, 1993.</ref> C4.5 is an extension of Quinlan's earlier [[ID3 algorithm]]. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a [[Statistical classification|statistical classifier]]. In 2011, authors of the [[Weka (machine learning)|Weka]] machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date".<ref>{{cite web |url=http://www.cs.waikato.ac.nz/~ml/weka/book.html |title=Data Mining: Practical machine learning tools and techniques, 3rd Edition |author=Ian H. Witten |author2=Eibe Frank |author3=Mark A. Hall |year=2011 |publisher=Morgan Kaufmann, San Francisco | page=191 }}</ref></div></td>
</tr>
</table>
LucasBrown
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1193823934&oldid=prev
Revanchist317: /* Algorithm */
2024-01-05T21:05:59Z
<p><span class="autocomment">Algorithm</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:05, 5 January 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[Information gain in decision trees|information gain]] (difference in <del style="font-weight: bold; text-decoration: none;">[[Entropy (information theory)|</del>entropy<del style="font-weight: bold; text-decoration: none;">]]</del>). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[Information gain in decision trees|information gain]] (difference in entropy). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
</tr>
</table>
Revanchist317
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1135567285&oldid=prev
Frap at 13:38, 25 January 2023
2023-01-25T13:38:01Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:38, 25 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 27:</td>
<td colspan="2" class="diff-lineno">Line 27:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''J48''' is an [[open source]] [[Java (programming language)|Java]] implementation of the C4.5 algorithm in the [[Weka (machine learning)|Weka]] [[data mining]] tool.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''J48''' is an [[open source]] [[Java (programming language)|Java]] implementation of the C4.5 algorithm in the [[Weka (machine learning)|Weka]] [[data mining]] tool.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Improvements from <del style="font-weight: bold; text-decoration: none;">ID.3</del> algorithm==</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Improvements from <ins style="font-weight: bold; text-decoration: none;">ID3</ins> algorithm==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 made a number of improvements to ID3. Some of these are:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 made a number of improvements to ID3. Some of these are:</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 48:</td>
<td colspan="2" class="diff-lineno">Line 48:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Winnowing - a C5.0 option automatically [[Winnow (algorithm)|winnow]]s the attributes to remove those that may be unhelpful.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Winnowing - a C5.0 option automatically [[Winnow (algorithm)|winnow]]s the attributes to remove those that may be unhelpful.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Source for a single-threaded Linux version of C5.0 is available under the GPL.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Source for a single-threaded Linux version of C5.0 is available under the <ins style="font-weight: bold; text-decoration: none;">[[GNU General Public License]] (</ins>GPL<ins style="font-weight: bold; text-decoration: none;">)</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td>
</tr>
<!-- diff cache key enwiki:diff:1.41:old-1070998146:rev-1135567285:wikidiff2=table:1.14.1:ff290eae -->
</table>
Frap
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1070998146&oldid=prev
Clog Wolf: /* Algorithm */fix, typo(s) fixed: ously- → ously
2022-02-10T10:08:20Z
<p><span class="autocomment">Algorithm: </span>fix, <a href="/wiki/Wikipedia:AWB/T" class="mw-redirect" title="Wikipedia:AWB/T">typo(s) fixed</a>: ously- → ously</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:08, 10 February 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[<del style="font-weight: bold; text-decoration: none;">Information_gain_in_decision_trees</del>|information gain]] (difference in [[Entropy (information theory)|entropy]]). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[<ins style="font-weight: bold; text-decoration: none;">Information gain in decision trees</ins>|information gain]] (difference in [[Entropy (information theory)|entropy]]). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the decision tree saying to choose that class.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the decision tree saying to choose that class.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree using the expected value of the class.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree using the expected value of the class.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Instance of previously<del style="font-weight: bold; text-decoration: none;">-</del>unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the expected value.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Instance of previously<ins style="font-weight: bold; text-decoration: none;"> </ins>unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the expected value.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Pseudocode===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Pseudocode===</div></td>
</tr>
</table>
Clog Wolf
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1018953987&oldid=prev
Kotskokos: /* Algorithm */ removed excess spaces
2021-04-20T19:20:25Z
<p><span class="autocomment">Algorithm: </span> removed excess spaces</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:20, 20 April 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C4.5 builds decision trees from a set of training data in the same way as [[ID3 algorithm|ID3]], using the concept of [[Entropy (information theory)|information entropy]]. The training data is a set <math>S = {s_1, s_2, ...}</math> of already classified samples. Each sample <math> s_i</math> consists of a p-dimensional vector <math>(x_{1,i}, x_{2,i}, ...,x_{p,i}) </math>, where the <math> x_j </math> represent attribute values or [[Feature (machine learning)|features]] of the sample, as well as the class in which <math> s_i </math> falls.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[Information_gain_in_decision_trees|information gain]] (difference in [[Entropy (information theory)|entropy]]).<del style="font-weight: bold; text-decoration: none;"> </del> The attribute with the highest normalized information gain is chosen to make the decision.<del style="font-weight: bold; text-decoration: none;"> </del> The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized [[Information_gain_in_decision_trees|information gain]] (difference in [[Entropy (information theory)|entropy]]). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then [[Recursion (computer science)|recurses]] on the [[Partition of a set|partitioned]] sublists.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This algorithm has a few [[Base case (recursion)|base cases]].</div></td>
</tr>
</table>
Kotskokos
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1008669989&oldid=prev
MrOllie: Restored revision 943211739 by Brendon.eric.lucas (talk): WP:EL
2021-02-24T13:16:17Z
<p>Restored revision 943211739 by <a href="/wiki/Special:Contributions/Brendon.eric.lucas" title="Special:Contributions/Brendon.eric.lucas">Brendon.eric.lucas</a> (<a href="/w/index.php?title=User_talk:Brendon.eric.lucas&action=edit&redlink=1" class="new" title="User talk:Brendon.eric.lucas (page does not exist)">talk</a>): <a href="/wiki/Wikipedia:EL" class="mw-redirect" title="Wikipedia:EL">WP:EL</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:16, 24 February 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 61:</td>
<td colspan="2" class="diff-lineno">Line 61:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Original implementation on Ross Quinlan's homepage: [http://www.rulequest.com/Personal/ http://www.rulequest.com/Personal/]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Original implementation on Ross Quinlan's homepage: [http://www.rulequest.com/Personal/ http://www.rulequest.com/Personal/]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.rulequest.com/see5-info.html See5 and C5.0]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.rulequest.com/see5-info.html See5 and C5.0]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* [https://github.com/serengil/chefboost An implementation of C4.5 in Python]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:C4.5 Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:C4.5 Algorithm}}</div></td>
</tr>
</table>
MrOllie
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=1008636907&oldid=prev
Johncasey: python implementation
2021-02-24T08:44:14Z
<p>python implementation</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:44, 24 February 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 61:</td>
<td colspan="2" class="diff-lineno">Line 61:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Original implementation on Ross Quinlan's homepage: [http://www.rulequest.com/Personal/ http://www.rulequest.com/Personal/]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Original implementation on Ross Quinlan's homepage: [http://www.rulequest.com/Personal/ http://www.rulequest.com/Personal/]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.rulequest.com/see5-info.html See5 and C5.0]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.rulequest.com/see5-info.html See5 and C5.0]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://github.com/serengil/chefboost An implementation of C4.5 in Python]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:C4.5 Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:C4.5 Algorithm}}</div></td>
</tr>
</table>
Johncasey
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=943211739&oldid=prev
Brendon.eric.lucas: Changed "recur" to "recurse" in pseudocode description of algorithm. This was likely a typo, as "recurse" is the verb form of "recursion", and the standard implementation of the DT algorithm is in fact recursive.
2020-02-29T15:21:51Z
<p>Changed "recur" to "recurse" in pseudocode description of algorithm. This was likely a typo, as "recurse" is the verb form of "recursion", and the standard implementation of the DT algorithm is in fact recursive.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:21, 29 February 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>#Let ''a_best'' be the attribute with the highest normalized information gain.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>#Let ''a_best'' be the attribute with the highest normalized information gain.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>#Create a decision ''node'' that splits on ''a_best''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>#Create a decision ''node'' that splits on ''a_best''.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>#<del style="font-weight: bold; text-decoration: none;">Recur</del> on the sublists obtained by splitting on ''a_best'', and add those nodes as children of ''node''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>#<ins style="font-weight: bold; text-decoration: none;">Recurse</ins> on the sublists obtained by splitting on ''a_best'', and add those nodes as children of ''node''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
</table>
Brendon.eric.lucas
https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&diff=941931655&oldid=prev
Frap: /* pseudocode */ MOS:HEAD
2020-02-21T14:53:33Z
<p><span class="autocomment">pseudocode: </span> MOS:HEAD</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:53, 21 February 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Instance of previously-unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the expected value.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Instance of previously-unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the expected value.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>===<del style="font-weight: bold; text-decoration: none;">pseudocode</del>===</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>===<ins style="font-weight: bold; text-decoration: none;">Pseudocode</ins>===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[pseudocode]], the general algorithm for building decision trees is:<ref>S.B. Kotsiantis, "Supervised Machine Learning: A Review of Classification Techniques", ''Informatica'' 31(2007) 249-268, 2007</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[pseudocode]], the general algorithm for building decision trees is:<ref>S.B. Kotsiantis, "Supervised Machine Learning: A Review of Classification Techniques", ''Informatica'' 31(2007) 249-268, 2007</ref></div></td>
</tr>
</table>
Frap