https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Color-codingColor-coding - Revision history2025-06-07T09:34:00ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.4https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1258011184&oldid=prevDavid Eppstein: Undid revision 1257998436 by Pateldarshak10 (talk) a summary of the main idea is not an application2024-11-17T17:58:32Z<p>Undid revision <a href="/wiki/Special:Diff/1257998436" title="Special:Diff/1257998436">1257998436</a> by <a href="/wiki/Special:Contributions/Pateldarshak10" title="Special:Contributions/Pateldarshak10">Pateldarshak10</a> (<a href="/wiki/User_talk:Pateldarshak10" title="User talk:Pateldarshak10">talk</a>) a summary of the main idea is not an application</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:58, 17 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs. <ref name="orig">Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4 (Jul. 1995), 844–856. DOI= http://doi.acm.org/10.1145/210332.210337</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>David Eppsteinhttps://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257998436&oldid=prevPateldarshak10: I have added citation for my edits on application of Random Coloring.2024-11-17T16:34:02Z<p>I have added citation for my edits on application of Random Coloring.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:34, 17 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs. <ref name="orig">Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4 (Jul. 1995), 844–856. DOI= http://doi.acm.org/10.1145/210332.210337</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>Pateldarshak10https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257995694&oldid=prevNotcharizard: Restored revision 1250833346 by JJMC89 bot III (talk): No citation2024-11-17T16:12:47Z<p>Restored revision 1250833346 by <a href="/wiki/Special:Contributions/JJMC89_bot_III" title="Special:Contributions/JJMC89 bot III">JJMC89 bot III</a> (<a href="/wiki/User_talk:JJMC89_bot_III" class="mw-redirect" title="User talk:JJMC89 bot III">talk</a>): No citation</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:12, 17 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 48:</td>
<td colspan="2" class="diff-lineno">Line 48:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
</table>Notcharizardhttps://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257995476&oldid=prevPateldarshak10: I have added application based on Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 19952024-11-17T16:11:03Z<p>I have added application based on Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:11, 17 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 48:</td>
<td colspan="2" class="diff-lineno">Line 48:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with <math>k=O(\log n)</math> vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
</table>Pateldarshak10https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1250833346&oldid=prevJJMC89 bot III: Moving :Category:Algorithms in graph theory to :Category:Graph algorithms per Wikipedia:Categories for discussion/Log/2024 October 42024-10-12T19:54:51Z<p>Moving <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> to <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:54, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 58:</td>
<td colspan="2" class="diff-lineno">Line 58:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Algorithms</del> <del style="font-weight: bold; text-decoration: none;">in graph theory</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Graph</ins> <ins style="font-weight: bold; text-decoration: none;">algorithms</ins>]]</div></td>
</tr>
</table>JJMC89 bot IIIhttps://en.wikipedia.org/w/index.php?title=Color-coding&diff=1250713993&oldid=prevJJMC89 bot III: Moving :Category:Graph algorithms to :Category:Algorithms in graph theory per Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms2024-10-12T02:22:05Z<p>Moving <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> to <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4#Category:Graph_algorithms" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:22, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 58:</td>
<td colspan="2" class="diff-lineno">Line 58:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Graph</del> <del style="font-weight: bold; text-decoration: none;">algorithms</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Algorithms</ins> <ins style="font-weight: bold; text-decoration: none;">in graph theory</ins>]]</div></td>
</tr>
</table>JJMC89 bot IIIhttps://en.wikipedia.org/w/index.php?title=Color-coding&diff=1187818286&oldid=prevCHHC(dec): correct the format2023-12-01T16:31:57Z<p>correct the format</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:31, 1 December 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of <math>k!/k^k > e^{-k}</math> to become colorful, since there are <math>k^k</math> ways of coloring the {{mvar|k}} vertices on the cycle, among which there are <math>k!</math> colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time <math>O(V^\omega)</math>, where <math>\omega</math> is the matrix multiplication constant. Therefore, it takes <math>e^k\cdot O(V^\omega)</math> overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of <math>k!/k^k > e^{-k}</math> to become colorful, since there are <math>k^k</math> ways of coloring the {{mvar|k}} vertices on the cycle, among which there are <math>k!</math> colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time <math>O(V^\omega)</math>, where <math>\omega</math> is the matrix multiplication constant. Therefore, it takes <math>e^k\cdot O(V^\omega)</math> overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''<sub>1</sub>, ''C''<sub>2</sub>}} of size <math>k/2</math> each. Note that {{mvar|V}} can be divided into {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} accordingly, and let {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} denote the subgraphs induced by {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} respectively. Then, recursively find colorful paths of length <math>k/2 - 1</math> in each of {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}}. Suppose the boolean matrix {{math|''A''<sub>1</sub>}} and {{math|''A''<sub>2</sub>}} represent the connectivity of each pair of vertices in {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''<sub>1</sub>}} and those of {{math|''V''<sub>2</sub>}}, the boolean product <math>A_1BA_2</math> gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is <math>t(k) \le 2^k\cdot t(k/2)</math>, which yields a runtime of <math>2^{O(k)}\cdot V^\omega. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor<ref>Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.</ref> that finds colorful paths themselves can be incorporated into it.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''<sub>1</sub>, ''C''<sub>2</sub>}} of size <math>k/2</math> each. Note that {{mvar|V}} can be divided into {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} accordingly, and let {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} denote the subgraphs induced by {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} respectively. Then, recursively find colorful paths of length <math>k/2 - 1</math> in each of {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}}. Suppose the boolean matrix {{math|''A''<sub>1</sub>}} and {{math|''A''<sub>2</sub>}} represent the connectivity of each pair of vertices in {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''<sub>1</sub>}} and those of {{math|''V''<sub>2</sub>}}, the boolean product <math>A_1BA_2</math> gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is <math>t(k) \le 2^k\cdot t(k/2)</math>, which yields a runtime of <math>2^{O(k)}\cdot V^\omega<ins style="font-weight: bold; text-decoration: none;"></math></ins>. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor<ref>Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.</ref> that finds colorful paths themselves can be incorporated into it.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td>
</tr>
</table>CHHC(dec)https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1187818149&oldid=prevCHHC(dec): delete a misleading inference.2023-12-01T16:30:52Z<p>delete a misleading inference.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:30, 1 December 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of <math>k!/k^k > e^{-k}</math> to become colorful, since there are <math>k^k</math> ways of coloring the {{mvar|k}} vertices on the cycle, among which there are <math>k!</math> colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time <math>O(V^\omega)</math>, where <math>\omega</math> is the matrix multiplication constant. Therefore, it takes <math>e^k\cdot O(V^\omega)</math> overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of <math>k!/k^k > e^{-k}</math> to become colorful, since there are <math>k^k</math> ways of coloring the {{mvar|k}} vertices on the cycle, among which there are <math>k!</math> colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time <math>O(V^\omega)</math>, where <math>\omega</math> is the matrix multiplication constant. Therefore, it takes <math>e^k\cdot O(V^\omega)</math> overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''<sub>1</sub>, ''C''<sub>2</sub>}} of size <math>k/2</math> each. Note that {{mvar|V}} can be divided into {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} accordingly, and let {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} denote the subgraphs induced by {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} respectively. Then, recursively find colorful paths of length <math>k/2 - 1</math> in each of {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}}. Suppose the boolean matrix {{math|''A''<sub>1</sub>}} and {{math|''A''<sub>2</sub>}} represent the connectivity of each pair of vertices in {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''<sub>1</sub>}} and those of {{math|''V''<sub>2</sub>}}, the boolean product <math>A_1BA_2</math> gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is <math>t(k) \le 2^k\cdot t(k/2)</math>, which yields a runtime of <math>2^{O(k)}\cdot V^\omega<del style="font-weight: bold; text-decoration: none;"> = O(V^\omega)</math></del>. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor<ref>Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.</ref> that finds colorful paths themselves can be incorporated into it.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''<sub>1</sub>, ''C''<sub>2</sub>}} of size <math>k/2</math> each. Note that {{mvar|V}} can be divided into {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} accordingly, and let {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} denote the subgraphs induced by {{math|''V''<sub>1</sub>}} and {{math|''V''<sub>2</sub>}} respectively. Then, recursively find colorful paths of length <math>k/2 - 1</math> in each of {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}}. Suppose the boolean matrix {{math|''A''<sub>1</sub>}} and {{math|''A''<sub>2</sub>}} represent the connectivity of each pair of vertices in {{math|''G''<sub>1</sub>}} and {{math|''G''<sub>2</sub>}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''<sub>1</sub>}} and those of {{math|''V''<sub>2</sub>}}, the boolean product <math>A_1BA_2</math> gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is <math>t(k) \le 2^k\cdot t(k/2)</math>, which yields a runtime of <math>2^{O(k)}\cdot V^\omega. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor<ref>Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.</ref> that finds colorful paths themselves can be incorporated into it.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td>
</tr>
</table>CHHC(dec)https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1115906832&oldid=prevAcasteigts: /* Results */2022-10-13T20:37:40Z<p><span class="autocomment">Results</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:37, 13 October 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** <math>O(|V|^\omega \log |V|)</math> worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].<ref>[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** <math>O(|V|^\omega \log |V|)</math> worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].<ref>[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} expected time, or</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'')}} expected time, or</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del> log <del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} worst-case time.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'' log ''V'')}} worst-case time.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log <del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log ''V'')}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td>
</tr>
</table>Acasteigtshttps://en.wikipedia.org/w/index.php?title=Color-coding&diff=1115906490&oldid=prevAcasteigts: /* Results */Further math typos2022-10-13T20:35:46Z<p><span class="autocomment">Results: </span>Further math typos</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:35, 13 October 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** <math>O(|V|^\omega \log |V|)</math> worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].<ref>[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** <math>O(|V|^\omega \log |V|)</math> worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].<ref>[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'')}} expected time, or</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} expected time, or</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'' log ''V'')}} worst-case time.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins> log <ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} worst-case time.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log ''V'')}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log <ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td>
</tr>
</table>Acasteigts