https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Color-coding Color-coding - Revision history 2025-06-07T09:34:00Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.4 https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1258011184&oldid=prev David Eppstein: Undid revision 1257998436 by Pateldarshak10 (talk) a summary of the main idea is not an application 2024-11-17T17:58:32Z <p>Undid revision <a href="/wiki/Special:Diff/1257998436" title="Special:Diff/1257998436">1257998436</a> by <a href="/wiki/Special:Contributions/Pateldarshak10" title="Special:Contributions/Pateldarshak10">Pateldarshak10</a> (<a href="/wiki/User_talk:Pateldarshak10" title="User talk:Pateldarshak10">talk</a>) a summary of the main idea is not an application</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:58, 17 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 49:</td> <td colspan="2" class="diff-lineno">Line 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs. &lt;ref name="orig"&gt;Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4 (Jul. 1995), 844–856. DOI= http://doi.acm.org/10.1145/210332.210337&lt;/ref&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257998436&oldid=prev Pateldarshak10: I have added citation for my edits on application of Random Coloring. 2024-11-17T16:34:02Z <p>I have added citation for my edits on application of Random Coloring.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:34, 17 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 49:</td> <td colspan="2" class="diff-lineno">Line 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs. &lt;ref name="orig"&gt;Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4 (Jul. 1995), 844–856. DOI= http://doi.acm.org/10.1145/210332.210337&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Pateldarshak10 https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257995694&oldid=prev Notcharizard: Restored revision 1250833346 by JJMC89 bot III (talk): No citation 2024-11-17T16:12:47Z <p>Restored revision 1250833346 by <a href="/wiki/Special:Contributions/JJMC89_bot_III" title="Special:Contributions/JJMC89 bot III">JJMC89 bot III</a> (<a href="/wiki/User_talk:JJMC89_bot_III" class="mw-redirect" title="User talk:JJMC89 bot III">talk</a>): No citation</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:12, 17 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 48:</td> <td colspan="2" class="diff-lineno">Line 48:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> </table> Notcharizard https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1257995476&oldid=prev Pateldarshak10: I have added application based on Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995 2024-11-17T16:11:03Z <p>I have added application based on Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:11, 17 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 48:</td> <td colspan="2" class="diff-lineno">Line 48:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with &lt;math&gt;k=O(\log n)&lt;/math&gt; vertices in a network {{mvar|G}} with {{mvar|n}} vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Color coding provides an efficient randomized approximation approach for solving subgraph isomorphism problems, where the goal is to determine if a smaller graph is present as a subgraph in a larger graph. The random coloring is also applied in finding cycles in minor-closed families of graphs.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> </table> Pateldarshak10 https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1250833346&oldid=prev JJMC89 bot III: Moving :Category:Algorithms in graph theory to :Category:Graph algorithms per Wikipedia:Categories for discussion/Log/2024 October 4 2024-10-12T19:54:51Z <p>Moving <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&amp;action=edit&amp;redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> to <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:54, 12 October 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 58:</td> <td colspan="2" class="diff-lineno">Line 58:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Algorithms</del> <del style="font-weight: bold; text-decoration: none;">in graph theory</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Graph</ins> <ins style="font-weight: bold; text-decoration: none;">algorithms</ins>]]</div></td> </tr> </table> JJMC89 bot III https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1250713993&oldid=prev JJMC89 bot III: Moving :Category:Graph algorithms to :Category:Algorithms in graph theory per Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms 2024-10-12T02:22:05Z <p>Moving <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> to <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&amp;action=edit&amp;redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4#Category:Graph_algorithms" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:22, 12 October 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 58:</td> <td colspan="2" class="diff-lineno">Line 58:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Color-Coding}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Graph</del> <del style="font-weight: bold; text-decoration: none;">algorithms</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Algorithms</ins> <ins style="font-weight: bold; text-decoration: none;">in graph theory</ins>]]</div></td> </tr> </table> JJMC89 bot III https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1187818286&oldid=prev CHHC(dec): correct the format 2023-12-01T16:31:57Z <p>correct the format</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:31, 1 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of &lt;math&gt;k!/k^k &gt; e^{-k}&lt;/math&gt; to become colorful, since there are &lt;math&gt;k^k&lt;/math&gt; ways of coloring the {{mvar|k}} vertices on the cycle, among which there are &lt;math&gt;k!&lt;/math&gt; colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time &lt;math&gt;O(V^\omega)&lt;/math&gt;, where &lt;math&gt;\omega&lt;/math&gt; is the matrix multiplication constant. Therefore, it takes &lt;math&gt;e^k\cdot O(V^\omega)&lt;/math&gt; overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of &lt;math&gt;k!/k^k &gt; e^{-k}&lt;/math&gt; to become colorful, since there are &lt;math&gt;k^k&lt;/math&gt; ways of coloring the {{mvar|k}} vertices on the cycle, among which there are &lt;math&gt;k!&lt;/math&gt; colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time &lt;math&gt;O(V^\omega)&lt;/math&gt;, where &lt;math&gt;\omega&lt;/math&gt; is the matrix multiplication constant. Therefore, it takes &lt;math&gt;e^k\cdot O(V^\omega)&lt;/math&gt; overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''&lt;sub&gt;1&lt;/sub&gt;, ''C''&lt;sub&gt;2&lt;/sub&gt;}} of size &lt;math&gt;k/2&lt;/math&gt; each. Note that {{mvar|V}} can be divided into {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} accordingly, and let {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} denote the subgraphs induced by {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} respectively. Then, recursively find colorful paths of length &lt;math&gt;k/2 - 1&lt;/math&gt; in each of {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}}. Suppose the boolean matrix {{math|''A''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''A''&lt;sub&gt;2&lt;/sub&gt;}} represent the connectivity of each pair of vertices in {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and those of {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}}, the boolean product &lt;math&gt;A_1BA_2&lt;/math&gt; gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is &lt;math&gt;t(k) \le 2^k\cdot t(k/2)&lt;/math&gt;, which yields a runtime of &lt;math&gt;2^{O(k)}\cdot V^\omega. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor&lt;ref&gt;Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.&lt;/ref&gt; that finds colorful paths themselves can be incorporated into it.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''&lt;sub&gt;1&lt;/sub&gt;, ''C''&lt;sub&gt;2&lt;/sub&gt;}} of size &lt;math&gt;k/2&lt;/math&gt; each. Note that {{mvar|V}} can be divided into {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} accordingly, and let {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} denote the subgraphs induced by {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} respectively. Then, recursively find colorful paths of length &lt;math&gt;k/2 - 1&lt;/math&gt; in each of {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}}. Suppose the boolean matrix {{math|''A''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''A''&lt;sub&gt;2&lt;/sub&gt;}} represent the connectivity of each pair of vertices in {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and those of {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}}, the boolean product &lt;math&gt;A_1BA_2&lt;/math&gt; gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is &lt;math&gt;t(k) \le 2^k\cdot t(k/2)&lt;/math&gt;, which yields a runtime of &lt;math&gt;2^{O(k)}\cdot V^\omega<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins>. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor&lt;ref&gt;Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.&lt;/ref&gt; that finds colorful paths themselves can be incorporated into it.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td> </tr> </table> CHHC(dec) https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1187818149&oldid=prev CHHC(dec): delete a misleading inference. 2023-12-01T16:30:52Z <p>delete a misleading inference.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:30, 1 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of &lt;math&gt;k!/k^k &gt; e^{-k}&lt;/math&gt; to become colorful, since there are &lt;math&gt;k^k&lt;/math&gt; ways of coloring the {{mvar|k}} vertices on the cycle, among which there are &lt;math&gt;k!&lt;/math&gt; colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time &lt;math&gt;O(V^\omega)&lt;/math&gt;, where &lt;math&gt;\omega&lt;/math&gt; is the matrix multiplication constant. Therefore, it takes &lt;math&gt;e^k\cdot O(V^\omega)&lt;/math&gt; overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By applying random coloring method, each simple cycle has a probability of &lt;math&gt;k!/k^k &gt; e^{-k}&lt;/math&gt; to become colorful, since there are &lt;math&gt;k^k&lt;/math&gt; ways of coloring the {{mvar|k}} vertices on the cycle, among which there are &lt;math&gt;k!&lt;/math&gt; colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph {{mvar|G}} in time &lt;math&gt;O(V^\omega)&lt;/math&gt;, where &lt;math&gt;\omega&lt;/math&gt; is the matrix multiplication constant. Therefore, it takes &lt;math&gt;e^k\cdot O(V^\omega)&lt;/math&gt; overall time to find a simple cycle of length {{mvar|k}} in {{mvar|G}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''&lt;sub&gt;1&lt;/sub&gt;, ''C''&lt;sub&gt;2&lt;/sub&gt;}} of size &lt;math&gt;k/2&lt;/math&gt; each. Note that {{mvar|V}} can be divided into {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} accordingly, and let {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} denote the subgraphs induced by {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} respectively. Then, recursively find colorful paths of length &lt;math&gt;k/2 - 1&lt;/math&gt; in each of {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}}. Suppose the boolean matrix {{math|''A''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''A''&lt;sub&gt;2&lt;/sub&gt;}} represent the connectivity of each pair of vertices in {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and those of {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}}, the boolean product &lt;math&gt;A_1BA_2&lt;/math&gt; gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is &lt;math&gt;t(k) \le 2^k\cdot t(k/2)&lt;/math&gt;, which yields a runtime of &lt;math&gt;2^{O(k)}\cdot V^\omega<del style="font-weight: bold; text-decoration: none;"> = O(V^\omega)&lt;/math&gt;</del>. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor&lt;ref&gt;Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.&lt;/ref&gt; that finds colorful paths themselves can be incorporated into it.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The colorful cycle-finding algorithm works by first finding all pairs of vertices in {{mvar|V}} that are connected by a simple path of length {{math|''k'' − 1}}, and then checking whether the two vertices in each pair are connected. Given a coloring function {{math|''c'' : ''V'' → {1, ..., ''k''} }} to color graph {{mvar|G}}, enumerate all partitions of the color set {{math|{1, ..., ''k''} }} into two subsets {{math|''C''&lt;sub&gt;1&lt;/sub&gt;, ''C''&lt;sub&gt;2&lt;/sub&gt;}} of size &lt;math&gt;k/2&lt;/math&gt; each. Note that {{mvar|V}} can be divided into {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} accordingly, and let {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} denote the subgraphs induced by {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}} respectively. Then, recursively find colorful paths of length &lt;math&gt;k/2 - 1&lt;/math&gt; in each of {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}}. Suppose the boolean matrix {{math|''A''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''A''&lt;sub&gt;2&lt;/sub&gt;}} represent the connectivity of each pair of vertices in {{math|''G''&lt;sub&gt;1&lt;/sub&gt;}} and {{math|''G''&lt;sub&gt;2&lt;/sub&gt;}} by a colorful path, respectively, and let {{mvar|B}} be the matrix describing the adjacency relations between vertices of {{math|''V''&lt;sub&gt;1&lt;/sub&gt;}} and those of {{math|''V''&lt;sub&gt;2&lt;/sub&gt;}}, the boolean product &lt;math&gt;A_1BA_2&lt;/math&gt; gives all pairs of vertices in {{mvar|V}} that are connected by a colorful path of length {{math|''k'' − 1}}. Thus, the recursive relation of matrix multiplications is &lt;math&gt;t(k) \le 2^k\cdot t(k/2)&lt;/math&gt;, which yields a runtime of &lt;math&gt;2^{O(k)}\cdot V^\omega. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor&lt;ref&gt;Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of Israel.&lt;/ref&gt; that finds colorful paths themselves can be incorporated into it.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Derandomization==</div></td> </tr> </table> CHHC(dec) https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1115906832&oldid=prev Acasteigts: /* Results */ 2022-10-13T20:37:40Z <p><span class="autocomment">Results</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:37, 13 October 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** &lt;math&gt;O(|V|^\omega \log |V|)&lt;/math&gt; worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].&lt;ref&gt;[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** &lt;math&gt;O(|V|^\omega \log |V|)&lt;/math&gt; worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].&lt;ref&gt;[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} expected time, or</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'')}} expected time, or</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del> log <del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} worst-case time.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'' log ''V'')}} worst-case time.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log <del style="font-weight: bold; text-decoration: none;">|</del>''V''<del style="font-weight: bold; text-decoration: none;">|</del>)}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log ''V'')}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td> </tr> </table> Acasteigts https://en.wikipedia.org/w/index.php?title=Color-coding&diff=1115906490&oldid=prev Acasteigts: /* Results */Further math typos 2022-10-13T20:35:46Z <p><span class="autocomment">Results: </span>Further math typos</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:35, 13 October 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** &lt;math&gt;O(|V|^\omega \log |V|)&lt;/math&gt; worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].&lt;ref&gt;[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** &lt;math&gt;O(|V|^\omega \log |V|)&lt;/math&gt; worst-case time, where {{mvar|ω}} is the exponent of [[matrix multiplication]].&lt;ref&gt;[[Coppersmith–Winograd algorithm|Coppersmith–Winograd Algorithm]]&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* For every fixed constant {{mvar|k}}, and every graph {{math|''G'' {{=}} (''V'', ''E'')}} that is in any nontrivial [[Minor (graph theory)#Minor-closed graph families|minor-closed graph family]] (e.g., a [[planar graph]]), if {{mvar|G}} contains a simple cycle of size {{mvar|k}}, then such cycle can be found in:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'')}} expected time, or</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} expected time, or</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(''V'' log ''V'')}} worst-case time.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** {{math|''O''(<ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins> log <ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} worst-case time.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log ''V'')}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* If a graph {{math|''G'' {{=}} (''V'', ''E'')}} contains a subgraph isomorphic to a bounded [[treewidth]] graph which has {{math|''O''(log <ins style="font-weight: bold; text-decoration: none;">|</ins>''V''<ins style="font-weight: bold; text-decoration: none;">|</ins>)}} vertices, then such a subgraph can be found in [[polynomial time]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==The method==</div></td> </tr> </table> Acasteigts