https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Common_coding_theory Common coding theory - Revision history 2025-06-28T13:49:24Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.7 https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1235956708&oldid=prev OAbot: Open access bot: hdl updated in citation with #oabot. 2024-07-22T03:23:09Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: hdl updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:23, 22 July 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 18:</td> <td colspan="2" class="diff-lineno">Line 18:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the early 21st century, the common coding theory received increased interest from researchers in developmental psychology,&lt;ref&gt;{{cite journal | last1 = Sommerville | first1 = J. A. | last2 = Decety | first2 = J. | year = 2006 | title = Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition | journal = Psychonomic Bulletin &amp; Review | volume = 13 | issue = 2| pages = 179–200 | doi=10.3758/bf03193831 | pmid=16892982| s2cid = 14689479 }}&lt;/ref&gt; [[cognitive neuroscience]],&lt;ref&gt;{{cite journal | last1 = Jackson | first1 = P.L. | last2 = Decety | first2 = J. | year = 2004 | title = Motor cognition: A new paradigm to investigate social interactions | doi = 10.1016/j.conb.2004.01.020 | pmid = 15082334 | journal = Current Opinion in Neurobiology | volume = 14 | issue = 2| pages = 1–5 | s2cid = 36205586 }}&lt;/ref&gt; robotics,&lt;ref&gt;{{cite book |last1=Proctor |last2=Vu |name-list-style=amp |year=2006 |title=Stimulus-response compatibility: Data, theory and application |publisher=Taylor &amp; Francis |isbn=0-415-31536-0 }}&lt;/ref&gt; and social psychology.&lt;ref&gt;{{cite journal | last1 = Dijksterhuis | first1 = A. | last2 = Bargh | first2 = J.A. | year = 2001 | title = The perception-behavior expressway: automatic effects of social perception on social behavior | journal = Advances in Experimental Social Psychology | volume = 33 | pages = 1–40 |doi=10.1016/S0065-2601(01)80003-4 | isbn = 9780120152339 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the early 21st century, the common coding theory received increased interest from researchers in developmental psychology,&lt;ref&gt;{{cite journal | last1 = Sommerville | first1 = J. A. | last2 = Decety | first2 = J. | year = 2006 | title = Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition | journal = Psychonomic Bulletin &amp; Review | volume = 13 | issue = 2| pages = 179–200 | doi=10.3758/bf03193831 | pmid=16892982| s2cid = 14689479 }}&lt;/ref&gt; [[cognitive neuroscience]],&lt;ref&gt;{{cite journal | last1 = Jackson | first1 = P.L. | last2 = Decety | first2 = J. | year = 2004 | title = Motor cognition: A new paradigm to investigate social interactions | doi = 10.1016/j.conb.2004.01.020 | pmid = 15082334 | journal = Current Opinion in Neurobiology | volume = 14 | issue = 2| pages = 1–5 | s2cid = 36205586 }}&lt;/ref&gt; robotics,&lt;ref&gt;{{cite book |last1=Proctor |last2=Vu |name-list-style=amp |year=2006 |title=Stimulus-response compatibility: Data, theory and application |publisher=Taylor &amp; Francis |isbn=0-415-31536-0 }}&lt;/ref&gt; and social psychology.&lt;ref&gt;{{cite journal | last1 = Dijksterhuis | first1 = A. | last2 = Bargh | first2 = J.A. | year = 2001 | title = The perception-behavior expressway: automatic effects of social perception on social behavior | journal = Advances in Experimental Social Psychology | volume = 33 | pages = 1–40 |doi=10.1016/S0065-2601(01)80003-4 | isbn = 9780120152339<ins style="font-weight: bold; text-decoration: none;"> | hdl = 2066/207586 | hdl-access = free</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Commensurate representation==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Commensurate representation==</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1215362698&oldid=prev Revirvlkodlaku at 18:01, 24 March 2024 2024-03-24T18:01:38Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:01, 24 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cognitive psychology}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cognitive psychology<ins style="font-weight: bold; text-decoration: none;"> theory</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Common coding theory''' is a [[cognitive psychology]] theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action. More important, seeing an event activates the action associated with that event, and performing an action activates the associated perceptual event.&lt;ref&gt;{{cite book |last=Prinz |first=W. |year=1984 |chapter=Modes of linkage between perception and action |editor-first=W. |editor-last=Prinz |editor2-first=A.-F. |editor2-last=Sanders |title=Cognition and motor processes |pages=185–193 |location=New York |publisher=Springer |isbn=0-387-12855-7 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Common coding theory''' is a [[cognitive psychology]] theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action. More important, seeing an event activates the action associated with that event, and performing an action activates the associated perceptual event.&lt;ref&gt;{{cite book |last=Prinz |first=W. |year=1984 |chapter=Modes of linkage between perception and action |editor-first=W. |editor-last=Prinz |editor2-first=A.-F. |editor2-last=Sanders |title=Cognition and motor processes |pages=185–193 |location=New York |publisher=Springer |isbn=0-387-12855-7 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Revirvlkodlaku https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1215362657&oldid=prev Revirvlkodlaku at 18:01, 24 March 2024 2024-03-24T18:01:21Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:01, 24 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cognitive psychology}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Common coding theory''' is a [[cognitive psychology]] theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action. More important, seeing an event activates the action associated with that event, and performing an action activates the associated perceptual event.&lt;ref&gt;{{cite book |last=Prinz |first=W. |year=1984 |chapter=Modes of linkage between perception and action |editor-first=W. |editor-last=Prinz |editor2-first=A.-F. |editor2-last=Sanders |title=Cognition and motor processes |pages=185–193 |location=New York |publisher=Springer |isbn=0-387-12855-7 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Common coding theory''' is a [[cognitive psychology]] theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action. More important, seeing an event activates the action associated with that event, and performing an action activates the associated perceptual event.&lt;ref&gt;{{cite book |last=Prinz |first=W. |year=1984 |chapter=Modes of linkage between perception and action |editor-first=W. |editor-last=Prinz |editor2-first=A.-F. |editor2-last=Sanders |title=Cognition and motor processes |pages=185–193 |location=New York |publisher=Springer |isbn=0-387-12855-7 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Revirvlkodlaku https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1150146758&oldid=prev Citation bot: Add: s2cid. | Use this bot. Report bugs. | Suggested by Spinixster | Category:Cognitive science | #UCB_Category 146/187 2023-04-16T15:31:54Z <p>Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Spinixster | <a href="/wiki/Category:Cognitive_science" title="Category:Cognitive science">Category:Cognitive science</a> | #UCB_Category 146/187</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:31, 16 April 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[Binding and Retrieval in Action Control|Binding and retrieval in action control (BRAC)]] framework.&lt;ref name="Fringsetal2020"&gt;Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., &amp; Philipp, A.: ''Binding and retrieval in action control (BRAC).'' In: ''Trends in Cognitive Sciences'', Nr. 24, 2020, p. 375–387.&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682<ins style="font-weight: bold; text-decoration: none;"> | s2cid = 22345373</ins> }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[Binding and Retrieval in Action Control|Binding and retrieval in action control (BRAC)]] framework.&lt;ref name="Fringsetal2020"&gt;Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., &amp; Philipp, A.: ''Binding and retrieval in action control (BRAC).'' In: ''Trends in Cognitive Sciences'', Nr. 24, 2020, p. 375–387.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1109246421&oldid=prev David Eppstein: Tamar Flash 2022-09-08T19:35:01Z <p><a href="/wiki/Tamar_Flash" title="Tamar Flash">Tamar Flash</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:35, 8 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar [[neural coding]] for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T. | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474| bibcode = 2007PNAS..10420582D | doi-access = free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar [[neural coding]] for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T.<ins style="font-weight: bold; text-decoration: none;">|author6-link=Tamar Flash</ins> | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474| bibcode = 2007PNAS..10420582D | doi-access = free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1091122407&oldid=prev Kku: link [nN]eural coding 2022-06-02T09:51:22Z <p>link [nN]eural coding</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:51, 2 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar neural coding for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T. | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474| bibcode = 2007PNAS..10420582D | doi-access = free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar <ins style="font-weight: bold; text-decoration: none;">[[</ins>neural coding<ins style="font-weight: bold; text-decoration: none;">]]</ins> for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T. | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474| bibcode = 2007PNAS..10420582D | doi-access = free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| bibcode = 2008PLoSO...3.3690E| doi-access = free}}&lt;/ref&gt;</div></td> </tr> </table> Kku https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1068106719&oldid=prev BattyBot: Fixed CS1 errors: extra text: volume and general fixes 2022-01-26T17:34:00Z <p>Fixed <a href="/wiki/Category:CS1_errors:_extra_text:_volume" title="Category:CS1 errors: extra text: volume">CS1 errors: extra text: volume</a> and <a href="/wiki/Wikipedia:AWB/GF" class="mw-redirect" title="Wikipedia:AWB/GF">general fixes</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:34, 26 January 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 23:</td> <td colspan="2" class="diff-lineno">Line 23:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Ideomotor principle==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Ideomotor principle==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In line with the ideomotor theory of [[William James]] (1890) and [[Hermann Lotze]] (1852), the common coding theory posits that actions are represented in terms of their perceptual consequences. Actions are represented like any other events, the sole distinctive feature being that they are (or can be) generated through bodily movements. Perceivable action consequences may vary on two major dimensions: resident vs. remote effects, and 'cool' versus 'hot' outcomes (i.e., reward values associated with action outcomes).&lt;ref&gt;{{cite book |last1=Dickinson |first1=A. |last2=Balleine |first2=B. W. |year=2002 |chapter=The role of learning in the operation of motivational systems |editor-first=H. |editor-last=Pashler |editor2-first=R. |editor2-last=Gallistel |title=Stevens' handbook of experimental psychology |volume=<del style="font-weight: bold; text-decoration: none;">Vol. </del>3 |pages=497–533 |location=New York |publisher=John Wiley |isbn=0-471-38047-4 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In line with the ideomotor theory of [[William James]] (1890) and [[Hermann Lotze]] (1852), the common coding theory posits that actions are represented in terms of their perceptual consequences. Actions are represented like any other events, the sole distinctive feature being that they are (or can be) generated through bodily movements. Perceivable action consequences may vary on two major dimensions: resident vs. remote effects, and 'cool' versus 'hot' outcomes (i.e., reward values associated with action outcomes).&lt;ref&gt;{{cite book |last1=Dickinson |first1=A. |last2=Balleine |first2=B. W. |year=2002 |chapter=The role of learning in the operation of motivational systems |editor-first=H. |editor-last=Pashler |editor2-first=R. |editor2-last=Gallistel |title=Stevens' handbook of experimental psychology |volume=3 |pages=497–533 |location=New York |publisher=John Wiley |isbn=0-471-38047-4 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When individuals perform actions they learn what their movements lead to (Ideomotor learning). The ideomotor theory claims that these associations can also be used in the reverse order (cf. William James, 1890 II, p.&amp;nbsp;526): When individuals perceive events of which they know (from previous learning) that they may result from certain movements, perception of these events may evoke the movements leading to them (Ideomotor control). The distinction between learning and control is equivalent to the distinction between forward and inverse computation in motor learning and control.&lt;ref&gt;{{cite book |author-link=Daniel Wolpert |last1=Wolpert |first1=D. |author-link2=Zoubin Ghahramani |last2=Ghahramani |first2=Z. |year=2004 |chapter=Computational motor control |editor-first=M. S. |editor-last=Gazzaniga |title=The cognitive neurosciences |edition=3rd |pages=485–494 |location=Cambridge, MA |publisher=MIT Press |isbn=0-262-07254-8 }}&lt;/ref&gt; Ideomotor learning supports prediction and anticipation of action outcomes, given current action. Ideomotor control supports selection and control of action, given intended outcomes.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When individuals perform actions they learn what their movements lead to (Ideomotor learning). The ideomotor theory claims that these associations can also be used in the reverse order (cf. William James, 1890 II, p.&amp;nbsp;526): When individuals perceive events of which they know (from previous learning) that they may result from certain movements, perception of these events may evoke the movements leading to them (Ideomotor control). The distinction between learning and control is equivalent to the distinction between forward and inverse computation in motor learning and control.&lt;ref&gt;{{cite book |author-link=Daniel Wolpert |last1=Wolpert |first1=D. |author-link2=Zoubin Ghahramani |last2=Ghahramani |first2=Z. |year=2004 |chapter=Computational motor control |editor-first=M. S. |editor-last=Gazzaniga |title=The cognitive neurosciences |edition=3rd |pages=485–494 |location=Cambridge, MA |publisher=MIT Press |isbn=0-262-07254-8 }}&lt;/ref&gt; Ideomotor learning supports prediction and anticipation of action outcomes, given current action. Ideomotor control supports selection and control of action, given intended outcomes.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=<del style="font-weight: bold; text-decoration: none;">Vol. </del>XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=<del style="font-weight: bold; text-decoration: none;">Vol. </del>2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[<del style="font-weight: bold; text-decoration: none;">Binding_and_Retrieval_in_Action_Control</del>|Binding and retrieval in action control (BRAC)]] framework.&lt;ref name="Fringsetal2020"&gt;Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., &amp; Philipp, A.: ''Binding and retrieval in action control (BRAC).'' In: ''Trends in Cognitive Sciences'', Nr. 24, 2020, p. 375–387.&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[<ins style="font-weight: bold; text-decoration: none;">Binding and Retrieval in Action Control</ins>|Binding and retrieval in action control (BRAC)]] framework.&lt;ref name="Fringsetal2020"&gt;Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., &amp; Philipp, A.: ''Binding and retrieval in action control (BRAC).'' In: ''Trends in Cognitive Sciences'', Nr. 24, 2020, p. 375–387.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> BattyBot https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1055878597&oldid=prev Citation bot: Add: bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Enactive cognition | #UCB_Category 28/28 2021-11-18T10:31:41Z <p>Add: bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | <a href="/wiki/Category:Enactive_cognition" title="Category:Enactive cognition">Category:Enactive cognition</a> | #UCB_Category 28/28</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:31, 18 November 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar neural coding for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T. | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474| doi-access = free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar neural coding for [[motion perception]] and production.&lt;ref&gt;{{cite journal | last1 = Eran Dayan | first1 = E. | last2 = Casile | first2 = A. | last3 = Levit-Binnun | first3 = N. | last4 = Giese | first4 = M.A. | last5 = Hendler | first5 = T. | last6 = Flash | first6 = T. | year = 2007 | title = Neural representations of kinematic laws of motion: Evidence for action-perception coupling | journal = PNAS | volume = 104 | issue = 51| pages = 20582–20587 | doi=10.1073/pnas.0710033104 | pmid=18079289 | pmc=2154474<ins style="font-weight: bold; text-decoration: none;">| bibcode = 2007PNAS..10420582D </ins>| doi-access = free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby demonstrating that action execution and perception are represented using a common code.&lt;ref&gt;{{Cite journal | doi = 10.1371/journal.pone.0003690| title = Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data| journal = PLOS ONE| volume = 3| issue = 11| pages = e3690| year = 2008| last1 = Etzel | first1 = J. A. | last2 = Gazzola | first2 = V. | last3 = Keysers | first3 = C. | pmid=18997869 | pmc=2577733<ins style="font-weight: bold; text-decoration: none;">| bibcode = 2008PLoSO...3.3690E</ins>| doi-access = free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the early 21st century, the common coding theory received increased interest from researchers in developmental psychology,&lt;ref&gt;{{cite journal | last1 = Sommerville | first1 = J. A. | last2 = Decety | first2 = J. | year = 2006 | title = Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition | journal = Psychonomic Bulletin &amp; Review | volume = 13 | issue = 2| pages = 179–200 | doi=10.3758/bf03193831 | pmid=16892982| s2cid = 14689479 }}&lt;/ref&gt; [[cognitive neuroscience]],&lt;ref&gt;{{cite journal | last1 = Jackson | first1 = P.L. | last2 = Decety | first2 = J. | year = 2004 | title = Motor cognition: A new paradigm to investigate social interactions | doi = 10.1016/j.conb.2004.01.020 | pmid = 15082334 | journal = Current Opinion in Neurobiology | volume = 14 | issue = 2| pages = 1–5 | s2cid = 36205586 }}&lt;/ref&gt; robotics,&lt;ref&gt;{{cite book |last1=Proctor |last2=Vu |name-list-style=amp |year=2006 |title=Stimulus-response compatibility: Data, theory and application |publisher=Taylor &amp; Francis |isbn=0-415-31536-0 }}&lt;/ref&gt; and social psychology.&lt;ref&gt;{{cite journal | last1 = Dijksterhuis | first1 = A. | last2 = Bargh | first2 = J.A. | year = 2001 | title = The perception-behavior expressway: automatic effects of social perception on social behavior | journal = Advances in Experimental Social Psychology | volume = 33 | pages = 1–40 |doi=10.1016/S0065-2601(01)80003-4 | isbn = 9780120152339 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the early 21st century, the common coding theory received increased interest from researchers in developmental psychology,&lt;ref&gt;{{cite journal | last1 = Sommerville | first1 = J. A. | last2 = Decety | first2 = J. | year = 2006 | title = Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition | journal = Psychonomic Bulletin &amp; Review | volume = 13 | issue = 2| pages = 179–200 | doi=10.3758/bf03193831 | pmid=16892982| s2cid = 14689479 }}&lt;/ref&gt; [[cognitive neuroscience]],&lt;ref&gt;{{cite journal | last1 = Jackson | first1 = P.L. | last2 = Decety | first2 = J. | year = 2004 | title = Motor cognition: A new paradigm to investigate social interactions | doi = 10.1016/j.conb.2004.01.020 | pmid = 15082334 | journal = Current Opinion in Neurobiology | volume = 14 | issue = 2| pages = 1–5 | s2cid = 36205586 }}&lt;/ref&gt; robotics,&lt;ref&gt;{{cite book |last1=Proctor |last2=Vu |name-list-style=amp |year=2006 |title=Stimulus-response compatibility: Data, theory and application |publisher=Taylor &amp; Francis |isbn=0-415-31536-0 }}&lt;/ref&gt; and social psychology.&lt;ref&gt;{{cite journal | last1 = Dijksterhuis | first1 = A. | last2 = Bargh | first2 = J.A. | year = 2001 | title = The perception-behavior expressway: automatic effects of social perception on social behavior | journal = Advances in Experimental Social Psychology | volume = 33 | pages = 1–40 |doi=10.1016/S0065-2601(01)80003-4 | isbn = 9780120152339 }}&lt;/ref&gt;</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1050760286&oldid=prev ZoppoT: /* Related approaches */ Source added 2021-10-19T19:00:46Z <p><span class="autocomment">Related approaches: </span> Source added</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:00, 19 October 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=Vol. XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=Vol. 2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=Vol. XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=Vol. 2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[Binding_and_Retrieval_in_Action_Control|Binding and retrieval in action control (BRAC)]] framework.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt; Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[Binding_and_Retrieval_in_Action_Control|Binding and retrieval in action control (BRAC)]] framework.<ins style="font-weight: bold; text-decoration: none;">&lt;ref name="Fringsetal2020"&gt;Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., &amp; Philipp, A.: ''Binding and retrieval in action control (BRAC).'' In: ''Trends in Cognitive Sciences'', Nr. 24, 2020, p. 375–387.&lt;/ref&gt;</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> ZoppoT https://en.wikipedia.org/w/index.php?title=Common_coding_theory&diff=1050760145&oldid=prev ZoppoT: /* Related approaches */ Added a link to the BRAC framework (Binding and retrieval in action control) 2021-10-19T18:59:51Z <p><span class="autocomment">Related approaches: </span> Added a link to the BRAC framework (Binding and retrieval in action control)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:59, 19 October 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Related approaches==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=Vol. XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=Vol. 2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links. [[Motor theory of speech perception|Motor theories of speech]] and action perception have made a case for motor contributions to perception.&lt;ref&gt;{{cite book |last=Viviani |first=P. |year=2002 |chapter=Motor competence in the perception of dynamic events: A tutorial |editor-first=W. |editor-last=Prinz |editor2-first=B. |editor2-last=Hommel |title=Common mechanisms in perception and action: Attention and Performance |volume=Vol. XIX |pages=406–442 |location=Oxford |publisher=Oxford University Press |isbn=0-19-851069-1 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Liberman | first1 = A. M. | s2cid = 14469676 | year = 1982 | title = On finding that speech is special | journal = American Psychologist | volume = 37 | issue = 2| pages = 148–167 | doi=10.1037/0003-066x.37.2.148}}&lt;/ref&gt; Close non-representational connections between perception and action have also been claimed by ecological approaches.&lt;ref&gt;{{cite book |last1=Fowler |first1=C. A. |last2=Turvey |first2=M. T. |year=1982 |chapter=Observational perspective and descriptive level in perceiving and acting |editor-first=W. B. |editor-last=Weimer |editor2-first=D. S. |editor2-last=Palermo |title=Cognition and the symbolic processes |volume=Vol. 2 |pages=1–19 |location=Hillsdale, NJ |publisher=Lawrence Erlbaum |isbn=0-89859-066-3 }}&lt;/ref&gt;&lt;ref&gt;{{cite book |last=Gibson |first=J. J. |year=1979 |title=The ecological approach to visual perception |location=Boston |publisher=Houghton Mifflin |isbn=0-395-27049-9 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Today common coding theory is closely related to research and theory in two intersecting fields of study: [[Mirror neurons]] systems and [[embodied cognition]]. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain.&lt;ref&gt;{{cite journal | last1 = Rizzolatti | first1 = G. | last2 = Craighero | first2 = L. | s2cid = 1729870 | year = 2004 | title = The mirror-neuron system | journal = Annual Review of Neuroscience | volume = 27 | pages = 169–192 | doi=10.1146/annurev.neuro.27.070203.144230 | pmid=15217330}}&lt;/ref&gt; As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action.&lt;ref&gt;{{cite book |last=Noë |first=A. |year=2004 |title=Action in Perception |publisher=MIT Press |isbn=0-262-14088-8 }}&lt;/ref&gt;&lt;ref&gt;{{cite journal | last1 = Barsalou | first1 = L. W. | year = 2008 | title = Grounded cognition | journal = Annual Review of Psychology | volume = 59 | pages = 617–645 | doi=10.1146/annurev.psych.59.103006.093639| pmid = 17705682 }}&lt;/ref&gt;<ins style="font-weight: bold; text-decoration: none;"> Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the [[Binding_and_Retrieval_in_Action_Control|Binding and retrieval in action control (BRAC)]] framework.</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> ZoppoT