https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=DPLL_algorithm DPLL algorithm - Revision history 2025-05-25T19:29:50Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276987229&oldid=prev JamesHDavenport: /* References */ DLL is 1962 in Comm ACM, not 1961 2025-02-21T23:35:34Z <p><span class="autocomment">References: </span> DLL is 1962 in Comm ACM, not 1961</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:35, 21 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 187:</td> <td colspan="2" class="diff-lineno">Line 187:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue=7</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue=7</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| pages = 394–397</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| pages = 394–397</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>| year=<del style="font-weight: bold; text-decoration: none;">1961</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| year=<ins style="font-weight: bold; text-decoration: none;">1962</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=https://archive.org/details/machineprogramfo00davi</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=https://archive.org/details/machineprogramfo00davi</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| doi=10.1145/368273.368557| hdl=2027/mdp.39015095248095</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| doi=10.1145/368273.368557| hdl=2027/mdp.39015095248095</div></td> </tr> </table> JamesHDavenport https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276586808&oldid=prev Zontasticality: fix grammar mistake 2025-02-19T18:20:35Z <p>fix grammar mistake</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:20, 19 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 69:</td> <td colspan="2" class="diff-lineno">Line 69:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]]-similar notation can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail <del style="font-weight: bold; text-decoration: none;">or</del> find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.&lt;ref&gt;{{Cite journal |last=Nieuwenhuis |first=Robert |last2=Oliveras |first2=Albert |last3=Tinelli |first3=Cesare |date=2006-11-01 |title=Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) |url=https://dl.acm.org/doi/10.1145/1217856.1217859 |journal=J. ACM |volume=53 |issue=6 |pages=937–977 |doi=10.1145/1217856.1217859 |issn=0004-5411}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Krstić |first=Sava |last2=Goel |first2=Amit |date=2007 |editor-last=Konev |editor-first=Boris |editor2-last=Wolter |editor2-first=Frank |title=Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL |url=https://link.springer.com/chapter/10.1007/978-3-540-74621-8_1 |journal=Frontiers of Combining Systems |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=1–27 |doi=10.1007/978-3-540-74621-8_1 |isbn=978-3-540-74621-8}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]]-similar notation can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail <ins style="font-weight: bold; text-decoration: none;">to</ins> find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.&lt;ref&gt;{{Cite journal |last=Nieuwenhuis |first=Robert |last2=Oliveras |first2=Albert |last3=Tinelli |first3=Cesare |date=2006-11-01 |title=Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) |url=https://dl.acm.org/doi/10.1145/1217856.1217859 |journal=J. ACM |volume=53 |issue=6 |pages=937–977 |doi=10.1145/1217856.1217859 |issn=0004-5411}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Krstić |first=Sava |last2=Goel |first2=Amit |date=2007 |editor-last=Konev |editor-first=Boris |editor2-last=Wolter |editor2-first=Frank |title=Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL |url=https://link.springer.com/chapter/10.1007/978-3-540-74621-8_1 |journal=Frontiers of Combining Systems |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=1–27 |doi=10.1007/978-3-540-74621-8_1 |isbn=978-3-540-74621-8}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> </tr> </table> Zontasticality https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276411659&oldid=prev Zontasticality: add relevant citations for sequent calculus rules 2025-02-18T18:30:13Z <p>add relevant citations for sequent calculus rules</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:30, 18 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 69:</td> <td colspan="2" class="diff-lineno">Line 69:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.{{<del style="font-weight: bold; text-decoration: none;">cn</del>|date=<del style="font-weight: bold; text-decoration: none;">February</del> <del style="font-weight: bold; text-decoration: none;">2025</del>}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]]<ins style="font-weight: bold; text-decoration: none;">-similar notation</ins> can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.<ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;</ins>{{<ins style="font-weight: bold; text-decoration: none;">Cite journal |last=Nieuwenhuis |first=Robert |last2=Oliveras |first2=Albert |last3=Tinelli |first3=Cesare </ins>|date=<ins style="font-weight: bold; text-decoration: none;">2006-11-01</ins> <ins style="font-weight: bold; text-decoration: none;">|title=Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) |url=https://dl.acm.org/doi/10.1145/1217856.1217859 |journal=J. ACM |volume=53 |issue=6 |pages=937–977 |doi=10.1145/1217856.1217859 |issn=0004-5411</ins>}}<ins style="font-weight: bold; text-decoration: none;">&lt;/ref&gt;&lt;ref&gt;{{Cite journal |last=Krstić |first=Sava |last2=Goel |first2=Amit |date=2007 |editor-last=Konev |editor-first=Boris |editor2-last=Wolter |editor2-first=Frank |title=Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL |url=https://link.springer.com/chapter/10.1007/978-3-540-74621-8_1 |journal=Frontiers of Combining Systems |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=1–27 |doi=10.1007/978-3-540-74621-8_1 |isbn=978-3-540-74621-8}}&lt;/ref&gt;</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> </tr> </table> Zontasticality https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276256837&oldid=prev AnomieBOT: Dating maintenance tags: {{Cn}} 2025-02-17T20:34:07Z <p>Dating maintenance tags: {{Cn}}</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:34, 17 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 69:</td> <td colspan="2" class="diff-lineno">Line 69:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.{{cn}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.{{cn<ins style="font-weight: bold; text-decoration: none;">|date=February 2025</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> </tr> </table> AnomieBOT https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276253584&oldid=prev Jochen Burghardt: /* Formalization */ 2025-02-17T20:13:41Z <p><span class="autocomment">Formalization</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:13, 17 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 69:</td> <td colspan="2" class="diff-lineno">Line 69:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.<ins style="font-weight: bold; text-decoration: none;">{{cn}}</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> </tr> </table> Jochen Burghardt https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1276219694&oldid=prev Zontasticality: add section for sequent calculus formalization 2025-02-17T16:13:23Z <p>add section for sequent calculus formalization</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:13, 17 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 67:</td> <td colspan="2" class="diff-lineno">Line 67:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Davis–Logemann–Loveland algorithm depends on the choice of ''branching literal'', which is the literal considered in the backtracking step. As a result, this is not exactly an algorithm, but rather a family of algorithms, one for each possible way of choosing the branching literal. Efficiency is strongly affected by the choice of the branching literal: there exist instances for which the running time is constant or exponential depending on the choice of the branching literals. Such choice functions are also called [[heuristic function]]s or branching heuristics.&lt;ref&gt;{{Cite book | last1 = Marques-Silva | first1 = João P.| chapter = The Impact of Branching Heuristics in Propositional Satisfiability Algorithms | doi = 10.1007/3-540-48159-1_5 | title = Progress in Artificial Intelligence: 9th Portuguese Conference on Artificial Intelligence, EPIA '99 Évora, Portugal, September 21–24, 1999 Proceedings | editor1-first = Pedro | editor1-last = Barahona | editor2-first = José J. | editor2-last = Alferes| series = [[Lecture Notes in Computer Science|LNCS]] | volume = 1695 | pages = 62–63 | year = 1999 | isbn = 978-3-540-66548-9 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Davis–Logemann–Loveland algorithm depends on the choice of ''branching literal'', which is the literal considered in the backtracking step. As a result, this is not exactly an algorithm, but rather a family of algorithms, one for each possible way of choosing the branching literal. Efficiency is strongly affected by the choice of the branching literal: there exist instances for which the running time is constant or exponential depending on the choice of the branching literals. Such choice functions are also called [[heuristic function]]s or branching heuristics.&lt;ref&gt;{{Cite book | last1 = Marques-Silva | first1 = João P.| chapter = The Impact of Branching Heuristics in Propositional Satisfiability Algorithms | doi = 10.1007/3-540-48159-1_5 | title = Progress in Artificial Intelligence: 9th Portuguese Conference on Artificial Intelligence, EPIA '99 Évora, Portugal, September 21–24, 1999 Proceedings | editor1-first = Pedro | editor1-last = Barahona | editor2-first = José J. | editor2-last = Alferes| series = [[Lecture Notes in Computer Science|LNCS]] | volume = 1695 | pages = 62–63 | year = 1999 | isbn = 978-3-540-66548-9 }}&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== Formalization ===</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[sequent calculus]] can be used to formalize many rewriting algorithms, including DPLL. The following are the 5 rules a DPLL solver can apply in order to either find or fail or find a satisfying assignment, i.e. &lt;math&gt;A = (l_1, \neg l_2, l_3, ...)&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If a clause in the formula &lt;math&gt;\Phi&lt;/math&gt; has exactly one unassigned literal &lt;math&gt;l&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, with all other literals in the clause appearing negatively, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea a currently false clause with only one unset variable left forces that variable to be set in such a way as to make the entire clause true, otherwise the formula will not be satisfied.''&lt;math display="block"&gt;\frac{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \begin{array}{c}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \{l_1, \dots, l_n, l\} \in \Phi \;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \neg l_1, \dots, \neg l_n \in A \;\;\;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> l, \neg l \notin A</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{array}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A := A \; l</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>} \text{ (Propagate)}&lt;/math&gt;If a literal &lt;math&gt;l&lt;/math&gt; appears in the formula &lt;math&gt;\Phi&lt;/math&gt; but its negation &lt;math&gt;\neg l&lt;/math&gt; does not, and &lt;math&gt;l&lt;/math&gt; and &lt;math&gt;\neg l&lt;/math&gt; are not in &lt;math&gt;A&lt;/math&gt;, extend &lt;math&gt;A&lt;/math&gt; with &lt;math&gt;l&lt;/math&gt;. ''This rule represents the idea that if a variable appears only purely positively or purely negatively in a formula, all the instances can be set to true or false to make their corresponding clauses true.''&lt;math display="block"&gt;\frac{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \begin{array}{c}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> l \text{ literal of } \Phi \;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \neg l \text{ not literal of } \Phi \;\;\;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> l, \neg l \notin A</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{array}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A := A \; l</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>} \text{ (Pure)}&lt;/math&gt;If a literal &lt;math&gt;l&lt;/math&gt; is in the set of literals of &lt;math&gt;\Phi&lt;/math&gt; and neither &lt;math&gt;l&lt;/math&gt; nor &lt;math&gt;\neg l&lt;/math&gt; is in &lt;math&gt;A&lt;/math&gt;, then decide on the truth value of &lt;math&gt;l&lt;/math&gt; and extend &lt;math&gt;A&lt;/math&gt; with the decision literal &lt;math&gt;\bullet l&lt;/math&gt;. ''This rule represents the idea that if you aren't forced to do an assignment, you must choose a variable to assign and make note which assignment was a choice so you can go back if the choice didn't result in a satisfying assignment.''&lt;math display="block"&gt;\frac{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \begin{array}{c}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> l \in \text{Lits}(\Phi) \;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> l, \neg l \notin A</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{array}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A := A \;\bullet\; l</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>} \text{ (Decide)}&lt;/math&gt;If a clause &lt;math&gt;\{l_1, \dots, l_n\}&lt;/math&gt; is in &lt;math&gt;\Phi&lt;/math&gt;, and their negations &lt;math&gt;\neg l_1, \dots, \neg l_n&lt;/math&gt; are in &lt;math&gt;A&lt;/math&gt;, and &lt;math&gt;A&lt;/math&gt; can be represented as &lt;math&gt;A = A' \;\bullet\; l \; N&lt;/math&gt; where &lt;math&gt;\bullet \notin N&lt;/math&gt;, then backtrack by setting &lt;math&gt;A&lt;/math&gt; to &lt;math&gt;A' \; \neg l&lt;/math&gt;. ''This rule represents the idea that if you reach a contradiction in trying to find a valid assignment, you need to go back to where you previously did a decision between two assignments and pick the other one.''&lt;math display="block"&gt;\frac{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \begin{array}{c}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \{l_1, \dots, l_n\} \in \Phi \;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \neg l_1, \dots, \neg l_n \in A \;\;\;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A = A' \;\bullet\; l \; N \;\;\;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \bullet \notin N</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{array}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A := A' \; \neg l</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>} \text{ (Backtrack)}&lt;/math&gt;If a clause &lt;math&gt;\{l_1, \dots, l_n\}&lt;/math&gt; is in &lt;math&gt;\Phi&lt;/math&gt;, and their negations &lt;math&gt;\neg l_1, \dots, \neg l_n&lt;/math&gt; are in &lt;math&gt;A&lt;/math&gt;, and there is no conflict marker &lt;math&gt;\bullet&lt;/math&gt; in &lt;math&gt;A&lt;/math&gt;, then the DPLL algorithm fails. ''This rule represents the idea that if you reach a contradiction but there wasn't anything you could have done differently on the way there, the formula is unsatisfiable.''&lt;math display="block"&gt;\frac{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \begin{array}{c}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \{l_1, \dots, l_n\} \in \Phi \;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \neg l_1, \dots, \neg l_n \in A \;\;\;\;\;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \bullet \notin A</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{array}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}{</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{Fail}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>} \text{ (Fail)}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Visualization===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Visualization===</div></td> </tr> </table> Zontasticality https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1273639048&oldid=prev Jochen Burghardt: /* References */ now in side tab 2025-02-03T08:39:38Z <p><span class="autocomment">References: </span> now in side tab</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:39, 3 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 119:</td> <td colspan="2" class="diff-lineno">Line 119:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{commons category|Davis-Putnam-Logemann-Loveland algorithm}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''General'''</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''General'''</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td> </tr> </table> Jochen Burghardt https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1273490934&oldid=prev Cedar101: /* Visualization */ set perrow 2025-02-02T15:27:09Z <p><span class="autocomment">Visualization: </span> set perrow</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:27, 2 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 76:</td> <td colspan="2" class="diff-lineno">Line 76:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It ''does not'' use learning or non-chronological backtracking (introduced in 1996).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* It ''does not'' use learning or non-chronological backtracking (introduced in 1996).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example with visualization of a DPLL algorithm having chronological backtracking:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An example with visualization of a DPLL algorithm having chronological backtracking:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;gallery&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;gallery<ins style="font-weight: bold; text-decoration: none;"> perrow="4" widths="200px"</ins>&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Image:Dpll1.png|All clauses making a CNF formula</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Image:Dpll1.png|All clauses making a CNF formula</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Image:Dpll2.png|Pick a variable</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Image:Dpll2.png|Pick a variable</div></td> </tr> </table> Cedar101 https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1205162827&oldid=prev Urban Versis 32: Adding local short description: "Type of search algorithm", overriding Wikidata description "algorithm for solving the CNF-SAT problem" 2024-02-09T01:12:19Z <p>Adding local <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: &quot;Type of search algorithm&quot;, overriding Wikidata description &quot;algorithm for solving the CNF-SAT problem&quot;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:12, 9 February 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Type of search algorithm}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Infobox algorithm</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Infobox algorithm</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|name=DPLL</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|name=DPLL</div></td> </tr> </table> Urban Versis 32 https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&diff=1200623722&oldid=prev 131.111.185.41: /* The algorithm */ 2024-01-29T22:43:59Z <p><span class="autocomment">The algorithm</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:43, 29 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 32:</td> <td colspan="2" class="diff-lineno">Line 32:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>; [[Unit propagation]] : If a clause is a ''unit clause'', i.e. it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary. Unit propagation consists in removing every clause containing a unit clause's literal and in discarding the complement of a unit clause's literal from every clause containing that complement. In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the naive search space.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>; [[Unit propagation]] : If a clause is a ''unit clause'', i.e. it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary. Unit propagation consists in removing every clause containing a unit clause's literal and in discarding the complement of a unit clause's literal from every clause containing that complement. In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the naive search space.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>; Pure literal elimination : If a [[propositional variable]] occurs with only one [[Polarity (mathematical logic)|polarity]] in the formula, it is called ''pure''. A pure literal can always be assigned in a way that makes all clauses containing it true. Thus, when it is assigned such way, these clauses do not constrain the search anymore, and can be deleted.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>; Pure literal elimination : If a [[propositional variable]] occurs with only one [[Polarity (mathematical logic)|polarity]] in the formula, it is called ''pure''. A pure literal can always be assigned in a way that makes all clauses containing it true. Thus, when it is assigned<ins style="font-weight: bold; text-decoration: none;"> in</ins> such<ins style="font-weight: bold; text-decoration: none;"> a</ins> way, these clauses do not constrain the search anymore, and can be deleted.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Unsatisfiability of a given partial assignment is detected if one clause becomes empty, i.e. if all its variables have been assigned in a way that makes the corresponding literals false. Satisfiability of the formula is detected either when all variables are assigned without generating the empty clause, or, in modern implementations, if all clauses are satisfied. Unsatisfiability of the complete formula can only be detected after exhaustive search.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Unsatisfiability of a given partial assignment is detected if one clause becomes empty, i.e. if all its variables have been assigned in a way that makes the corresponding literals false. Satisfiability of the formula is detected either when all variables are assigned without generating the empty clause, or, in modern implementations, if all clauses are satisfied. Unsatisfiability of the complete formula can only be detected after exhaustive search.</div></td> </tr> </table> 131.111.185.41