https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Distributed_source_coding Distributed source coding - Revision history 2025-05-24T23:46:31Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=1244027114&oldid=prev GreenC bot: Move 1 url. Wayback Medic 2.5 per WP:URLREQ#ieee.org pass 2 2024-09-04T17:14:37Z <p>Move 1 url. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#ieee.org" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#ieee.org</a> pass 2</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:14, 4 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 66:</td> <td colspan="2" class="diff-lineno">Line 66:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic framework of syndrome based DSC is that, for each source, its input space is partitioned into several cosets according to the particular channel coding method used. Every input of each source gets an output indicating which coset the input belongs to, and the joint decoder can decode all inputs by received coset indices and dependence between sources. The design of channel codes should consider the correlation between input sources.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic framework of syndrome based DSC is that, for each source, its input space is partitioned into several cosets according to the particular channel coding method used. Every input of each source gets an output indicating which coset the input belongs to, and the joint decoder can decode all inputs by received coset indices and dependence between sources. The design of channel codes should consider the correlation between input sources.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A group of codes can be used to generate coset partitions,&lt;ref&gt;[https://ieeexplore.ieee.org/Xplore/login.jsp?url=%2Fxpls%2Ffreeabs_all.jsp%3Farnumber%3D21245&amp;authDecision=-203 "Coset codes. I. Introduction and geometrical classification" by G. D. Forney]&lt;/ref&gt; such as trellis codes and lattice codes. Pradhan and Ramchandran designed rules for construction of sub-codes for each source, and presented result of trellis-based coset constructions in DSC, which is based on [[convolution code]] and set-partitioning rules as in [[Trellis modulation]], as well as lattice code based DSC.&lt;ref name=discus/&gt;&lt;ref name=discus2/&gt; After this, embedded trellis code was proposed for asymmetric coding as an improvement over their results.&lt;ref&gt;[https://ieeexplore.ieee.org/<del style="font-weight: bold; text-decoration: none;">xpls</del>/<del style="font-weight: bold; text-decoration: none;">freeabs_all</del>.jsp?<del style="font-weight: bold; text-decoration: none;">arnumber</del>=<del style="font-weight: bold; text-decoration: none;">917167</del> "Design of trellis codes for source coding with side information at the decoder" by X. Wang and M. Orchard]&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A group of codes can be used to generate coset partitions,&lt;ref&gt;[https://ieeexplore.ieee.org/Xplore/login.jsp?url=%2Fxpls%2Ffreeabs_all.jsp%3Farnumber%3D21245&amp;authDecision=-203 "Coset codes. I. Introduction and geometrical classification" by G. D. Forney]&lt;/ref&gt; such as trellis codes and lattice codes. Pradhan and Ramchandran designed rules for construction of sub-codes for each source, and presented result of trellis-based coset constructions in DSC, which is based on [[convolution code]] and set-partitioning rules as in [[Trellis modulation]], as well as lattice code based DSC.&lt;ref name=discus/&gt;&lt;ref name=discus2/&gt; After this, embedded trellis code was proposed for asymmetric coding as an improvement over their results.&lt;ref&gt;[https://ieeexplore.ieee.org/<ins style="font-weight: bold; text-decoration: none;">Xplore</ins>/<ins style="font-weight: bold; text-decoration: none;">login</ins>.jsp?<ins style="font-weight: bold; text-decoration: none;">url</ins>=<ins style="font-weight: bold; text-decoration: none;">%2Fxpls%2Ffreeabs_all.jsp%3Farnumber%3D917167&amp;authDecision=-203</ins> "Design of trellis codes for source coding with side information at the decoder" by X. Wang and M. Orchard]&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>After DISCUS system was proposed, more sophisticated channel codes have been adapted to the DSC system, such as [[Turbo Code]], [[LDPC]] Code and Iterative Channel Code. The encoders of these codes are usually simple and easy to implement, while the decoders have much higher computational complexity and are able to get good performance by utilizing source statistics. With sophisticated channel codes which have performance approaching the capacity of the correlation channel, corresponding DSC system can approach the Slepian–Wolf bound.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>After DISCUS system was proposed, more sophisticated channel codes have been adapted to the DSC system, such as [[Turbo Code]], [[LDPC]] Code and Iterative Channel Code. The encoders of these codes are usually simple and easy to implement, while the decoders have much higher computational complexity and are able to get good performance by utilizing source statistics. With sophisticated channel codes which have performance approaching the capacity of the correlation channel, corresponding DSC system can approach the Slepian–Wolf bound.</div></td> </tr> </table> GreenC bot https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=1237706512&oldid=prev GreenC bot: Move 22 urls. Wayback Medic 2.5 per WP:URLREQ#ieee.org 2024-07-31T03:27:51Z <p>Move 22 urls. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#ieee.org" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#ieee.org</a></p> <a href="//en.wikipedia.org/w/index.php?title=Distributed_source_coding&amp;diff=1237706512&amp;oldid=1203103172">Show changes</a> GreenC bot https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=1203103172&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 2024-02-04T05:48:26Z <p>Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:48, 4 February 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 116:</td> <td colspan="2" class="diff-lineno">Line 116:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Large scale distributed quantization===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Large scale distributed quantization===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Unfortunately, the above approaches do not scale (in design or operational complexity requirements) to sensor networks of large sizes, a scenario where distributed compression is most helpful. If there are N sources transmitting at R bits each (with some distributed coding scheme), the number of possible reconstructions scales &lt;math&gt; 2^{NR}&lt;/math&gt;. Even for moderate values of N and R (say N=10, R = 2), prior design schemes become impractical. Recently, an approach,&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">[</del>http://www.scl.ece.ucsb.edu/pubs/pubs_D/d10_4.pdf "Towards large scale distributed source coding" by S. Ramaswamy, K. Viswanatha, A. Saxena and K. Rose<del style="font-weight: bold; text-decoration: none;">]</del>&lt;/ref&gt; using ideas borrowed from Fusion Coding of Correlated Sources, has been proposed where design and operational complexity are traded against decoder performance. This has allowed distributed quantizer design for network sizes reaching 60 sources, with substantial gains over traditional approaches.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Unfortunately, the above approaches do not scale (in design or operational complexity requirements) to sensor networks of large sizes, a scenario where distributed compression is most helpful. If there are N sources transmitting at R bits each (with some distributed coding scheme), the number of possible reconstructions scales &lt;math&gt; 2^{NR}&lt;/math&gt;. Even for moderate values of N and R (say N=10, R = 2), prior design schemes become impractical. Recently, an approach,&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite web |url=</ins>http://www.scl.ece.ucsb.edu/pubs/pubs_D/d10_4.pdf <ins style="font-weight: bold; text-decoration: none;">|title=</ins>"Towards large scale distributed source coding" by S. Ramaswamy, K. Viswanatha, A. Saxena and K. Rose<ins style="font-weight: bold; text-decoration: none;"> |access-date=2011-01-19 |archive-date=2011-04-01 |archive-url=https://web.archive.org/web/20110401145514/http://www.scl.ece.ucsb.edu/pubs/pubs_D/d10_4.pdf |url-status=dead }}</ins>&lt;/ref&gt; using ideas borrowed from Fusion Coding of Correlated Sources, has been proposed where design and operational complexity are traded against decoder performance. This has allowed distributed quantizer design for network sizes reaching 60 sources, with substantial gains over traditional approaches.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The central idea is the presence of a bit-subset selector which maintains a certain subset of the received (NR bits, in the above example) bits for each source. Let &lt;math&gt; \mathcal{B}&lt;/math&gt; be the set of all subsets of the NR bits i.e.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The central idea is the presence of a bit-subset selector which maintains a certain subset of the received (NR bits, in the above example) bits for each source. Let &lt;math&gt; \mathcal{B}&lt;/math&gt; be the set of all subsets of the NR bits i.e.</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=1172089351&oldid=prev Cornmazes at 21:52, 24 August 2023 2023-08-24T21:52:17Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:52, 24 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Problem in information theory and communication}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Information theory}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Information theory}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Distributed source coding''' ('''DSC''') is an important problem in [[information theory]] and [[communication]]. DSC problems regard the compression of multiple correlated information sources that do not communicate with each other.&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1328091 "Distributed source coding for sensor networks" by Z. Xiong, A.D. Liveris, and S. Cheng]&lt;/ref&gt; By modeling the correlation between multiple sources at the decoder side together with [[channel code]]s, DSC is able to shift the computational complexity from encoder side to decoder side, therefore provide appropriate frameworks for applications with complexity-constrained sender, such as [[sensor networks]] and video/multimedia compression (see [[distributed video coding]]&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&amp;arnumber=1657820&amp;isnumber=34703 "Distributed video coding in wireless sensor networks" by Puri, R. Majumdar, A. Ishwar, P. Ramchandran, K. ]&lt;/ref&gt;). One of the main properties of distributed source coding is that the computational burden in encoders is shifted to the joint decoder.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Distributed source coding''' ('''DSC''') is an important problem in [[information theory]] and [[communication]]. DSC problems regard the compression of multiple correlated information sources that do not communicate with each other.&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1328091 "Distributed source coding for sensor networks" by Z. Xiong, A.D. Liveris, and S. Cheng]&lt;/ref&gt; By modeling the correlation between multiple sources at the decoder side together with [[channel code]]s, DSC is able to shift the computational complexity from encoder side to decoder side, therefore provide appropriate frameworks for applications with complexity-constrained sender, such as [[sensor networks]] and video/multimedia compression (see [[distributed video coding]]&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&amp;arnumber=1657820&amp;isnumber=34703 "Distributed video coding in wireless sensor networks" by Puri, R. Majumdar, A. Ishwar, P. Ramchandran, K. ]&lt;/ref&gt;). One of the main properties of distributed source coding is that the computational burden in encoders is shifted to the joint decoder.</div></td> </tr> </table> Cornmazes https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=983161547&oldid=prev Physchris at 16:25, 12 October 2020 2020-10-12T16:25:33Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:25, 12 October 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 42:</td> <td colspan="2" class="diff-lineno">Line 42:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shortly after Slepian–Wolf theorem on lossless distributed compression was published, the extension to lossy compression with decoder side information was proposed as Wyner–Ziv theorem.&lt;ref name=wzbound/&gt; Similarly to lossless case, two statistically dependent i.i.d. sources &lt;math&gt;X&lt;/math&gt; and &lt;math&gt;Y&lt;/math&gt; are given, where &lt;math&gt;Y&lt;/math&gt; is available at the decoder side but not accessible at the encoder side. Instead of lossless compression in Slepian–Wolf theorem, Wyner–Ziv theorem looked into the lossy compression case.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shortly after Slepian–Wolf theorem on lossless distributed compression was published, the extension to lossy compression with decoder side information was proposed as Wyner–Ziv theorem.&lt;ref name=wzbound/&gt; Similarly to lossless case, two statistically dependent i.i.d. sources &lt;math&gt;X&lt;/math&gt; and &lt;math&gt;Y&lt;/math&gt; are given, where &lt;math&gt;Y&lt;/math&gt; is available at the decoder side but not accessible at the encoder side. Instead of lossless compression in Slepian–Wolf theorem, Wyner–Ziv theorem looked into the lossy compression case.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Wyner–Ziv theorem presents the achievable lower bound for the bit rate of &lt;math&gt;X&lt;/math&gt; at given distortion &lt;math&gt;D&lt;/math&gt;. It was found that for Gaussian memoryless sources and mean-squared error distortion, the lower bound for the bit rate of &lt;math&gt;X&lt;/math&gt; remain the same no matter whether side information is available at the encoder or not.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The </ins>Wyner–Ziv theorem presents the achievable lower bound for the bit rate of &lt;math&gt;X&lt;/math&gt; at given distortion &lt;math&gt;D&lt;/math&gt;. It was found that for Gaussian memoryless sources and mean-squared error distortion, the lower bound for the bit rate of &lt;math&gt;X&lt;/math&gt; remain the same no matter whether side information is available at the encoder or not.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Virtual channel==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Virtual channel==</div></td> </tr> </table> Physchris https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=959642878&oldid=prev Bender235: /* Non-asymmetric DSC for more than two sources */Replaced arXiv PDF link with more mobile-friendly abstract link, replaced: https://arxiv.org/pdf/ → https://arxiv.org/abs/ 2020-05-29T21:03:09Z <p><span class="autocomment">Non-asymmetric DSC for more than two sources: </span>Replaced <a href="/wiki/ArXiv" title="ArXiv">arXiv</a> PDF link with more mobile-friendly abstract link, replaced: https://arxiv.org/pdf/ → https://arxiv.org/abs/</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:03, 29 May 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 141:</td> <td colspan="2" class="diff-lineno">Line 141:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. Consider &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. Consider &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[https://arxiv.org/<del style="font-weight: bold; text-decoration: none;">pdf</del>/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[https://arxiv.org/<ins style="font-weight: bold; text-decoration: none;">abs</ins>/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A simplest set of &lt;math&gt; a, n, m&lt;/math&gt; to satisfy the packing bound with equality is &lt;math&gt; a=3, n=5, m=9 &lt;/math&gt;. However, it turns out that such syndrome code does not exist.&lt;ref&gt;[http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf "The Non-existence of Length-5 Slepian–Wolf Codes of Three Sources" by S. Cheng and R. Ma] {{webarchive |url=https://web.archive.org/web/20120425092322/http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf |date=April 25, 2012 }}&lt;/ref&gt; The simplest (perfect) syndrome code with more than two sources have &lt;math&gt; n = 21 &lt;/math&gt; and &lt;math&gt; m = 27 &lt;/math&gt;. Let</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A simplest set of &lt;math&gt; a, n, m&lt;/math&gt; to satisfy the packing bound with equality is &lt;math&gt; a=3, n=5, m=9 &lt;/math&gt;. However, it turns out that such syndrome code does not exist.&lt;ref&gt;[http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf "The Non-existence of Length-5 Slepian–Wolf Codes of Three Sources" by S. Cheng and R. Ma] {{webarchive |url=https://web.archive.org/web/20120425092322/http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf |date=April 25, 2012 }}&lt;/ref&gt; The simplest (perfect) syndrome code with more than two sources have &lt;math&gt; n = 21 &lt;/math&gt; and &lt;math&gt; m = 27 &lt;/math&gt;. Let</div></td> </tr> </table> Bender235 https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=895850936&oldid=prev BD2412: /* Non-asymmetric DSC for more than two sources */Replace "let us consider" statements per MOS:NOTED and consensus at Wikipedia talk:Manual of Style#"Let us consider" statements, replaced: Let us consider → Consider 2019-05-06T21:40:37Z <p><span class="autocomment">Non-asymmetric DSC for more than two sources: </span>Replace &quot;let us consider&quot; statements per <a href="/wiki/MOS:NOTED" class="mw-redirect" title="MOS:NOTED">MOS:NOTED</a> and consensus at <a href="/wiki/Wikipedia_talk:Manual_of_Style#&quot;Let_us_consider&quot;_statements" title="Wikipedia talk:Manual of Style">Wikipedia talk:Manual of Style#&quot;Let us consider&quot; statements</a>, replaced: Let us consider → Consider</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:40, 6 May 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 139:</td> <td colspan="2" class="diff-lineno">Line 139:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Non-asymmetric DSC for more than two sources==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Non-asymmetric DSC for more than two sources==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. <del style="font-weight: bold; text-decoration: none;">Let us consider</del> &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. <ins style="font-weight: bold; text-decoration: none;">Consider</ins> &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[https://arxiv.org/pdf/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[https://arxiv.org/pdf/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> </tr> </table> BD2412 https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=875701644&oldid=prev Fvultier: Information theory sidebar template. 2018-12-28T12:31:45Z <p>Information theory sidebar template.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:31, 28 December 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Information theory}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Distributed source coding''' ('''DSC''') is an important problem in [[information theory]] and [[communication]]. DSC problems regard the compression of multiple correlated information sources that do not communicate with each other.&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1328091 "Distributed source coding for sensor networks" by Z. Xiong, A.D. Liveris, and S. Cheng]&lt;/ref&gt; By modeling the correlation between multiple sources at the decoder side together with [[channel code]]s, DSC is able to shift the computational complexity from encoder side to decoder side, therefore provide appropriate frameworks for applications with complexity-constrained sender, such as [[sensor networks]] and video/multimedia compression (see [[distributed video coding]]&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&amp;arnumber=1657820&amp;isnumber=34703 "Distributed video coding in wireless sensor networks" by Puri, R. Majumdar, A. Ishwar, P. Ramchandran, K. ]&lt;/ref&gt;). One of the main properties of distributed source coding is that the computational burden in encoders is shifted to the joint decoder.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Distributed source coding''' ('''DSC''') is an important problem in [[information theory]] and [[communication]]. DSC problems regard the compression of multiple correlated information sources that do not communicate with each other.&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1328091 "Distributed source coding for sensor networks" by Z. Xiong, A.D. Liveris, and S. Cheng]&lt;/ref&gt; By modeling the correlation between multiple sources at the decoder side together with [[channel code]]s, DSC is able to shift the computational complexity from encoder side to decoder side, therefore provide appropriate frameworks for applications with complexity-constrained sender, such as [[sensor networks]] and video/multimedia compression (see [[distributed video coding]]&lt;ref&gt;[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&amp;arnumber=1657820&amp;isnumber=34703 "Distributed video coding in wireless sensor networks" by Puri, R. Majumdar, A. Ishwar, P. Ramchandran, K. ]&lt;/ref&gt;). One of the main properties of distributed source coding is that the computational burden in encoders is shifted to the joint decoder.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Fvultier https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=822455464&oldid=prev KolbertBot: Bot: HTTP→HTTPS (v481) 2018-01-26T13:40:12Z <p>Bot: <a href="/wiki/User:KolbertBot" title="User:KolbertBot">HTTP→HTTPS</a> (v481)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:40, 26 January 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 140:</td> <td colspan="2" class="diff-lineno">Line 140:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. Let us consider &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The syndrome approach can still be used for more than two sources. Let us consider &lt;math&gt;a&lt;/math&gt; binary sources of length-&lt;math&gt;n&lt;/math&gt; &lt;math&gt; \mathbf{x}_1,\mathbf{x}_2,\cdots, \mathbf{x}_a \in \{0,1\}^n &lt;/math&gt;. Let &lt;math&gt; \mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_s &lt;/math&gt; be the corresponding coding matrices of sizes &lt;math&gt; m_1 \times n, m_2 \times n, \cdots, m_a \times n&lt;/math&gt;. Then the input binary sources are compressed into &lt;math&gt; \mathbf{s}_1 = \mathbf{H}_1 \mathbf{x}_1, \mathbf{s}_2 = \mathbf{H}_2 \mathbf{x}_2, \cdots, \mathbf{s}_a = \mathbf{H}_a \mathbf{x}_a &lt;/math&gt; of total &lt;math&gt; m= m_1 + m_2 + \cdots m_a &lt;/math&gt; bits. Apparently, two source tuples cannot be recovered at the same time if they share the same syndrome. In other words, if all source tuples of interest have different syndromes, then one can recover them losslessly.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[<del style="font-weight: bold; text-decoration: none;">http</del>://arxiv.org/pdf/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>General theoretical result does not seem to exist. However, for a restricted kind of source so-called Hamming source &lt;ref name="HCMS"&gt;[<ins style="font-weight: bold; text-decoration: none;">https</ins>://arxiv.org/pdf/1001.4072 "Hamming Codes for Multiple Sources" by R. Ma and S. Cheng]&lt;/ref&gt; that only has at most one source different from the rest and at most one bit location not all identical, practical lossless DSC is shown to exist in some cases. For the case when there are more than two sources, the number of source tuple in a Hamming source is &lt;math&gt;2^n (a n + 1)&lt;/math&gt;. Therefore, a packing bound that &lt;math&gt;2^m \ge 2^n (a n + 1)&lt;/math&gt; obviously has to satisfy. When the packing bound is satisfied with equality, we may call such code to be perfect (an analogous of perfect code in error correcting code).&lt;ref name="HCMS" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A simplest set of &lt;math&gt; a, n, m&lt;/math&gt; to satisfy the packing bound with equality is &lt;math&gt; a=3, n=5, m=9 &lt;/math&gt;. However, it turns out that such syndrome code does not exist.&lt;ref&gt;[http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf "The Non-existence of Length-5 Slepian–Wolf Codes of Three Sources" by S. Cheng and R. Ma] {{webarchive |url=https://web.archive.org/web/20120425092322/http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf |date=April 25, 2012 }}&lt;/ref&gt; The simplest (perfect) syndrome code with more than two sources have &lt;math&gt; n = 21 &lt;/math&gt; and &lt;math&gt; m = 27 &lt;/math&gt;. Let</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A simplest set of &lt;math&gt; a, n, m&lt;/math&gt; to satisfy the packing bound with equality is &lt;math&gt; a=3, n=5, m=9 &lt;/math&gt;. However, it turns out that such syndrome code does not exist.&lt;ref&gt;[http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf "The Non-existence of Length-5 Slepian–Wolf Codes of Three Sources" by S. Cheng and R. Ma] {{webarchive |url=https://web.archive.org/web/20120425092322/http://tulsagrad.ou.edu/samuel_cheng/papers/dcc10.pdf |date=April 25, 2012 }}&lt;/ref&gt; The simplest (perfect) syndrome code with more than two sources have &lt;math&gt; n = 21 &lt;/math&gt; and &lt;math&gt; m = 27 &lt;/math&gt;. Let</div></td> </tr> </table> KolbertBot https://en.wikipedia.org/w/index.php?title=Distributed_source_coding&diff=803606562&oldid=prev 81.105.146.16: Heading formatting for asymmetric case 2017-10-03T14:50:58Z <p>Heading formatting for asymmetric case</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:50, 3 October 2017</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 86:</td> <td colspan="2" class="diff-lineno">Line 86:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Take the same example as in the previous '''Asymmetric DSC vs. Symmetric DSC''' part, this part presents the corresponding DSC schemes with coset codes and syndromes including asymmetric case and symmetric case. The Slepian–Wolf bound for DSC design is shown in the previous part.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Take the same example as in the previous '''Asymmetric DSC vs. Symmetric DSC''' part, this part presents the corresponding DSC schemes with coset codes and syndromes including asymmetric case and symmetric case. The Slepian–Wolf bound for DSC design is shown in the previous part.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=====Asymmetric case <del style="font-weight: bold; text-decoration: none;">(&lt;math&gt;R_X=3&lt;/math&gt;, &lt;math&gt;R_Y=7&lt;/math&gt;)</del>=====</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=====Asymmetric case =====</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In <del style="font-weight: bold; text-decoration: none;">this</del> case, the length of an input variable &lt;math&gt;\mathbf{y}&lt;/math&gt; from source &lt;math&gt;Y&lt;/math&gt; is 7 bits, therefore it can be sent lossless with 7 bits independent of any other bits. Based on the knowledge that &lt;math&gt;\mathbf{x}&lt;/math&gt; and &lt;math&gt;\mathbf{y}&lt;/math&gt; have Hamming distance at most one, for input &lt;math&gt;\mathbf{x}&lt;/math&gt; from source &lt;math&gt;X&lt;/math&gt;, since the receiver already has &lt;math&gt;\mathbf{y}&lt;/math&gt;, the only possible &lt;math&gt;\mathbf{x}&lt;/math&gt; are those with at most 1 distance from &lt;math&gt;\mathbf{y}&lt;/math&gt;. If we model the correlation between two sources as a virtual channel, which has input &lt;math&gt;\mathbf{x}&lt;/math&gt; and output &lt;math&gt;\mathbf{y}&lt;/math&gt;, as long as we get &lt;math&gt;\mathbf{y}&lt;/math&gt;, all we need to successfully "decode" &lt;math&gt;\mathbf{x}&lt;/math&gt; is "parity bits" with particular error correction ability, taking the difference between &lt;math&gt;\mathbf{x}&lt;/math&gt; and &lt;math&gt;\mathbf{y}&lt;/math&gt; as channel error. We can also model the problem with cosets partition. That is, we want to find a channel code, which is able to partition the space of input &lt;math&gt;X&lt;/math&gt; into several cosets, where each coset has a unique syndrome associated with it. With a given coset and &lt;math&gt;\mathbf{y}&lt;/math&gt;, there is only one &lt;math&gt;\mathbf{x}&lt;/math&gt; that is possible to be the input given the correlation between two sources.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In <ins style="font-weight: bold; text-decoration: none;">the</ins> case<ins style="font-weight: bold; text-decoration: none;"> where &lt;math&gt;R_X=3&lt;/math&gt; and &lt;math&gt;R_Y=7&lt;/math&gt;</ins>, the length of an input variable &lt;math&gt;\mathbf{y}&lt;/math&gt; from source &lt;math&gt;Y&lt;/math&gt; is 7 bits, therefore it can be sent lossless with 7 bits independent of any other bits. Based on the knowledge that &lt;math&gt;\mathbf{x}&lt;/math&gt; and &lt;math&gt;\mathbf{y}&lt;/math&gt; have Hamming distance at most one, for input &lt;math&gt;\mathbf{x}&lt;/math&gt; from source &lt;math&gt;X&lt;/math&gt;, since the receiver already has &lt;math&gt;\mathbf{y}&lt;/math&gt;, the only possible &lt;math&gt;\mathbf{x}&lt;/math&gt; are those with at most 1 distance from &lt;math&gt;\mathbf{y}&lt;/math&gt;. If we model the correlation between two sources as a virtual channel, which has input &lt;math&gt;\mathbf{x}&lt;/math&gt; and output &lt;math&gt;\mathbf{y}&lt;/math&gt;, as long as we get &lt;math&gt;\mathbf{y}&lt;/math&gt;, all we need to successfully "decode" &lt;math&gt;\mathbf{x}&lt;/math&gt; is "parity bits" with particular error correction ability, taking the difference between &lt;math&gt;\mathbf{x}&lt;/math&gt; and &lt;math&gt;\mathbf{y}&lt;/math&gt; as channel error. We can also model the problem with cosets partition. That is, we want to find a channel code, which is able to partition the space of input &lt;math&gt;X&lt;/math&gt; into several cosets, where each coset has a unique syndrome associated with it. With a given coset and &lt;math&gt;\mathbf{y}&lt;/math&gt;, there is only one &lt;math&gt;\mathbf{x}&lt;/math&gt; that is possible to be the input given the correlation between two sources.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this example, we can use the &lt;math&gt;(7,4, 3)&lt;/math&gt; binary [[Hamming Code]] &lt;math&gt;\mathbf{C}&lt;/math&gt;, with parity check matrix &lt;math&gt;\mathbf{H}&lt;/math&gt;. For an input &lt;math&gt;\mathbf{x}&lt;/math&gt; from source &lt;math&gt;X&lt;/math&gt;, only the syndrome given by &lt;math&gt;\mathbf{s}=\mathbf{H}\mathbf{x}&lt;/math&gt; is transmitted, which is 3 bits. With received &lt;math&gt;\mathbf{y}&lt;/math&gt; and &lt;math&gt;\mathbf{s}&lt;/math&gt;, suppose there are two inputs &lt;math&gt;\mathbf{x_1}&lt;/math&gt; and &lt;math&gt;\mathbf{x_2}&lt;/math&gt; with same syndrome &lt;math&gt;\mathbf{s}&lt;/math&gt;. That means &lt;math&gt;\mathbf{H}\mathbf{x_1}=\mathbf{H}\mathbf{x_2}&lt;/math&gt;, which is &lt;math&gt;\mathbf{H}(\mathbf{x_1}-\mathbf{x_2})=0&lt;/math&gt;. Since the minimum Hamming weight of &lt;math&gt;(7,4,3)&lt;/math&gt; Hamming Code is 3, &lt;math&gt;d_H(\mathbf{x_1}, \mathbf{x_2})\geq 3&lt;/math&gt;. Therefore, the input &lt;math&gt;\mathbf{x}&lt;/math&gt; can be recovered since &lt;math&gt;d_H(\mathbf{x}, \mathbf{y})\leq 1&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this example, we can use the &lt;math&gt;(7,4, 3)&lt;/math&gt; binary [[Hamming Code]] &lt;math&gt;\mathbf{C}&lt;/math&gt;, with parity check matrix &lt;math&gt;\mathbf{H}&lt;/math&gt;. For an input &lt;math&gt;\mathbf{x}&lt;/math&gt; from source &lt;math&gt;X&lt;/math&gt;, only the syndrome given by &lt;math&gt;\mathbf{s}=\mathbf{H}\mathbf{x}&lt;/math&gt; is transmitted, which is 3 bits. With received &lt;math&gt;\mathbf{y}&lt;/math&gt; and &lt;math&gt;\mathbf{s}&lt;/math&gt;, suppose there are two inputs &lt;math&gt;\mathbf{x_1}&lt;/math&gt; and &lt;math&gt;\mathbf{x_2}&lt;/math&gt; with same syndrome &lt;math&gt;\mathbf{s}&lt;/math&gt;. That means &lt;math&gt;\mathbf{H}\mathbf{x_1}=\mathbf{H}\mathbf{x_2}&lt;/math&gt;, which is &lt;math&gt;\mathbf{H}(\mathbf{x_1}-\mathbf{x_2})=0&lt;/math&gt;. Since the minimum Hamming weight of &lt;math&gt;(7,4,3)&lt;/math&gt; Hamming Code is 3, &lt;math&gt;d_H(\mathbf{x_1}, \mathbf{x_2})\geq 3&lt;/math&gt;. Therefore, the input &lt;math&gt;\mathbf{x}&lt;/math&gt; can be recovered since &lt;math&gt;d_H(\mathbf{x}, \mathbf{y})\leq 1&lt;/math&gt;.</div></td> </tr> </table> 81.105.146.16