https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Domain_generation_algorithm
Domain generation algorithm - Revision history
2025-06-25T18:09:00Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.6
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=1297239613&oldid=prev
RandFreeman: Adding local short description: "Algorithm used to generate large numbers of domain names", overriding Wikidata description "family of algorithms used by malware to obfuscate their original Command & Control servers' IP address"
2025-06-25T00:03:59Z
<p>Adding local <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Algorithm used to generate large numbers of domain names", overriding Wikidata description "family of algorithms used by malware to obfuscate their original Command & Control servers' IP address"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:03, 25 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm used to generate large numbers of domain names}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Domain generation algorithms''' (DGA) are algorithms seen in various families of [[malware]] that are used to periodically generate a large number of [[Domain Name System|domain names]] that can be used as rendezvous points with their [[command and control (malware)|command and control servers]]. The large number of potential rendezvous points makes it difficult for law enforcement to effectively shut down [[botnet]]s, since infected computers will attempt to contact some of these domain names every day to receive updates or commands. The use of [[public-key cryptography]] in malware code makes it unfeasible for law enforcement and other actors to mimic commands from the malware controllers as some worms will automatically reject any updates not [[digital signature|signed]] by the malware controllers.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Domain generation algorithms''' (DGA) are algorithms seen in various families of [[malware]] that are used to periodically generate a large number of [[Domain Name System|domain names]] that can be used as rendezvous points with their [[command and control (malware)|command and control servers]]. The large number of potential rendezvous points makes it difficult for law enforcement to effectively shut down [[botnet]]s, since infected computers will attempt to contact some of these domain names every day to receive updates or commands. The use of [[public-key cryptography]] in malware code makes it unfeasible for law enforcement and other actors to mimic commands from the malware controllers as some worms will automatically reject any updates not [[digital signature|signed]] by the malware controllers.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<!-- diff cache key enwiki:diff:1.41:old-1166501317:rev-1297239613:wikidiff2=table:1.14.1:ff290eae -->
</table>
RandFreeman
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=1166501317&oldid=prev
Citation bot: Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine
2023-07-22T00:17:24Z
<p>Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_CommandLine</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:17, 22 July 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.</ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last1=Kührer|first1=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite arXiv|last1=Curtin|first1=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last1=Pereira|first1=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arXiv|last1=Woodbridge|first1=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Yu|first1=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|<del style="font-weight: bold; text-decoration: none;">date</del>=2018|<del style="font-weight: bold; text-decoration: none;">title</del>=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf<del style="font-weight: bold; text-decoration: none;">|journal=2018 International Joint Conference on Neural Networks (IJCNN)</del>|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6|s2cid=52398612}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Koh|first1=Joewie J.|last2=Rhodes|first2=Barton|<del style="font-weight: bold; text-decoration: none;">date</del>=2018|<del style="font-weight: bold; text-decoration: none;">title</del>=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705<del style="font-weight: bold; text-decoration: none;">|journal=2018 IEEE International Conference on Big Data (Big Data)</del>|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6|s2cid=53793204}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arXiv|last1=Anderson|first1=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite arXiv|last1=Sidi|first1=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.</ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last1=Kührer|first1=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite arXiv|last1=Curtin|first1=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last1=Pereira|first1=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arXiv|last1=Woodbridge|first1=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Yu|first1=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|<ins style="font-weight: bold; text-decoration: none;">title</ins>=2018<ins style="font-weight: bold; text-decoration: none;"> International Joint Conference on Neural Networks (IJCNN) </ins>|<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=Character Level based Detection of DGA Domain Names<ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;">date=2018|chapter-</ins>url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6|s2cid=52398612}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Koh|first1=Joewie J.|last2=Rhodes|first2=Barton|<ins style="font-weight: bold; text-decoration: none;">title</ins>=2018<ins style="font-weight: bold; text-decoration: none;"> IEEE International Conference on Big Data (Big Data) </ins>|<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings<ins style="font-weight: bold; text-decoration: none;"> |date=2018</ins>|arxiv=1811.08705|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6|s2cid=53793204}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arXiv|last1=Anderson|first1=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite arXiv|last1=Sidi|first1=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=1068669787&oldid=prev
Citation bot: Alter: template type. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 751/1776
2022-01-29T18:29:44Z
<p>Alter: template type. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by AManWithNoPlan | #UCB_webform 751/1776</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:29, 29 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Recently, the technique has been adopted by other malware authors. According to network security firm [[Damballa (company)|Damballa]], the top-5 most prevalent DGA-based [[crimeware]] families are Conficker, Murofet, BankPatch, Bonnana and Bobax as of 2011.<ref>{{cite web|url=https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|archive-url=https://web.archive.org/web/20160403200600/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|url-status=dead|archive-date=2016-04-03|title=Top-5 Most Prevalent DGA-based Crimeware Families|page=4|publisher=[[Damballa (company)|Damballa]]}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Recently, the technique has been adopted by other malware authors. According to network security firm [[Damballa (company)|Damballa]], the top-5 most prevalent DGA-based [[crimeware]] families are Conficker, Murofet, BankPatch, Bonnana and Bobax as of 2011.<ref>{{cite web|url=https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|archive-url=https://web.archive.org/web/20160403200600/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|url-status=dead|archive-date=2016-04-03|title=Top-5 Most Prevalent DGA-based Crimeware Families|page=4|publisher=[[Damballa (company)|Damballa]]}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA can also combine words from a [[dictionary]] to generate domains. These dictionaries can be hard-coded in malware or taken from a publicly accessible source.<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Plohmann|<del style="font-weight: bold; text-decoration: none;">first</del>=Daniel|last2=Yakdan|first2=Khaled|last3=Klatt|first3=Michael|last4=Bader|first4=Johannes|last5=Gerhards-Padilla|first5=Elmar|date=2016|title=A Comprehensive Measurement Study of Domain Generating Malware|url=https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf|journal=25th USENIX Security Symposium|pages=263–278}}</ref> Domains generated by dictionary DGA tend to be more difficult to detect due to their similarity to legitimate domains.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA can also combine words from a [[dictionary]] to generate domains. These dictionaries can be hard-coded in malware or taken from a publicly accessible source.<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Plohmann|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Daniel|last2=Yakdan|first2=Khaled|last3=Klatt|first3=Michael|last4=Bader|first4=Johannes|last5=Gerhards-Padilla|first5=Elmar|date=2016|title=A Comprehensive Measurement Study of Domain Generating Malware|url=https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf|journal=25th USENIX Security Symposium|pages=263–278}}</ref> Domains generated by dictionary DGA tend to be more difficult to detect due to their similarity to legitimate domains.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.</ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|<del style="font-weight: bold; text-decoration: none;">last</del>=Kührer|<del style="font-weight: bold; text-decoration: none;">first</del>=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Curtin|<del style="font-weight: bold; text-decoration: none;">first</del>=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|<del style="font-weight: bold; text-decoration: none;">last</del>=Pereira|<del style="font-weight: bold; text-decoration: none;">first</del>=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Woodbridge|<del style="font-weight: bold; text-decoration: none;">first</del>=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Yu|<del style="font-weight: bold; text-decoration: none;">first</del>=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Koh|<del style="font-weight: bold; text-decoration: none;">first</del>=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Anderson|<del style="font-weight: bold; text-decoration: none;">first</del>=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Sidi|<del style="font-weight: bold; text-decoration: none;">first</del>=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.</ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Kührer|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Curtin|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Pereira|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Woodbridge|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Yu|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6<ins style="font-weight: bold; text-decoration: none;">|s2cid=52398612</ins>}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Koh|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6<ins style="font-weight: bold; text-decoration: none;">|s2cid=53793204</ins>}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Anderson|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Sidi|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=995051939&oldid=prev
Tom.Reding: Enum 1 author/editor WL; WP:GenFixes on
2020-12-18T23:43:49Z
<p>Enum 1 author/editor WL; <a href="/wiki/Wikipedia:GenFixes" class="mw-redirect" title="Wikipedia:GenFixes">WP:GenFixes</a> on</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:43, 18 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.<del style="font-weight: bold; text-decoration: none;"> </del></ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019.</ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 36:</td>
<td colspan="2" class="diff-lineno">Line 36:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">reflist</del>}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">Reflist</ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><br /></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=http://mtc.sri.com/Conficker|title=An Analysis of Conficker's Logic and Rendezvous Points|author=<del style="font-weight: bold; text-decoration: none;">[[</del>Phillip Porras<del style="font-weight: bold; text-decoration: none;">]]</del> |author2=Hassen Saidi |author3=Vinod Yegneswaran|work=Malware Threat Center|publisher=[[SRI International]] Computer Science Laboratory|date=2009-03-19|access-date=2013-06-14|url-status=dead|archive-url=https://archive.today/20130203001959/http://mtc.sri.com/Conficker|archive-date=2013-02-03}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=http://mtc.sri.com/Conficker|title=An Analysis of Conficker's Logic and Rendezvous Points|author=Phillip Porras<ins style="font-weight: bold; text-decoration: none;">|author-link=Phillip</ins> <ins style="font-weight: bold; text-decoration: none;">Porras</ins>|author2=Hassen Saidi |author3=Vinod Yegneswaran|work=Malware Threat Center|publisher=[[SRI International]] Computer Science Laboratory|date=2009-03-19|access-date=2013-06-14|url-status=dead|archive-url=https://archive.today/20130203001959/http://mtc.sri.com/Conficker|archive-date=2013-02-03}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite news|url=http://www.pcworld.com/article/250824/malware_authors_expand_use_of_domain_generation_algorithms_to_evade_detection.html|title=Malware Authors Expand Use of Domain Generation Algorithms to Evade Detection|work=[[PC World]]|author=Lucian Constantin|date=2012-02-27|access-date=2013-06-14}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite news|url=http://www.pcworld.com/article/250824/malware_authors_expand_use_of_domain_generation_algorithms_to_evade_detection.html|title=Malware Authors Expand Use of Domain Generation Algorithms to Evade Detection|work=[[PC World]]|author=Lucian Constantin|date=2012-02-27|access-date=2013-06-14}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=https://blogs.akamai.com/2018/01/a-death-match-of-domain-generation-algorithms.html|title=A Death Match of Domain Generation Algorithms|author=Hongliang Liu, Yuriy Yuzifovich|publisher=Akamai Technologies|date=2017-12-29|access-date=2019-03-15}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=https://blogs.akamai.com/2018/01/a-death-match-of-domain-generation-algorithms.html|title=A Death Match of Domain Generation Algorithms|author=Hongliang Liu, Yuriy Yuzifovich|publisher=Akamai Technologies|date=2017-12-29|access-date=2019-03-15}}</div></td>
</tr>
</table>
Tom.Reding
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=994333764&oldid=prev
Monkbot: Task 18 (cosmetic): eval 14 templates: del empty params (19×); hyphenate params (5×);
2020-12-15T04:40:21Z
<p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 14 templates: del empty params (19×); hyphenate params (5×);</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:40, 15 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Recently, the technique has been adopted by other malware authors. According to network security firm [[Damballa (company)|Damballa]], the top-5 most prevalent DGA-based [[crimeware]] families are Conficker, Murofet, BankPatch, Bonnana and Bobax as of 2011.<ref>{{cite web|url=https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|archive-url=https://web.archive.org/web/20160403200600/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|url-status=dead|archive-date=2016-04-03|title=Top-5 Most Prevalent DGA-based Crimeware Families|page=4|publisher=[[Damballa (company)|Damballa]]}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Recently, the technique has been adopted by other malware authors. According to network security firm [[Damballa (company)|Damballa]], the top-5 most prevalent DGA-based [[crimeware]] families are Conficker, Murofet, BankPatch, Bonnana and Bobax as of 2011.<ref>{{cite web|url=https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|archive-url=https://web.archive.org/web/20160403200600/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf|url-status=dead|archive-date=2016-04-03|title=Top-5 Most Prevalent DGA-based Crimeware Families|page=4|publisher=[[Damballa (company)|Damballa]]}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA can also combine words from a [[dictionary]] to generate domains. These dictionaries can be hard-coded in malware or taken from a publicly accessible source.<ref>{{Cite journal|last=Plohmann|first=Daniel|last2=Yakdan|first2=Khaled|last3=Klatt|first3=Michael|last4=Bader|first4=Johannes|last5=Gerhards-Padilla|first5=Elmar|date=2016|title=A Comprehensive Measurement Study of Domain Generating Malware|url=https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf|journal=25th USENIX Security Symposium<del style="font-weight: bold; text-decoration: none;">|volume=</del>|pages=263–278<del style="font-weight: bold; text-decoration: none;">|via=</del>}}</ref> Domains generated by dictionary DGA tend to be more difficult to detect due to their similarity to legitimate domains.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA can also combine words from a [[dictionary]] to generate domains. These dictionaries can be hard-coded in malware or taken from a publicly accessible source.<ref>{{Cite journal|last=Plohmann|first=Daniel|last2=Yakdan|first2=Khaled|last3=Klatt|first3=Michael|last4=Bader|first4=Johannes|last5=Gerhards-Padilla|first5=Elmar|date=2016|title=A Comprehensive Measurement Study of Domain Generating Malware|url=https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf|journal=25th USENIX Security Symposium|pages=263–278}}</ref> Domains generated by dictionary DGA tend to be more difficult to detect due to their similarity to legitimate domains.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019. </ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium<del style="font-weight: bold; text-decoration: none;">|volume=</del>|pages=491–506<del style="font-weight: bold; text-decoration: none;">|via=</del>}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023<del style="font-weight: bold; text-decoration: none;">|volume=|pages=|via=</del>|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791<del style="font-weight: bold; text-decoration: none;">|volume=|pages=|via=</del>|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE<del style="font-weight: bold; text-decoration: none;">|volume=</del>|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6<del style="font-weight: bold; text-decoration: none;">|via=</del>}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE<del style="font-weight: bold; text-decoration: none;">|volume=</del>|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969<del style="font-weight: bold; text-decoration: none;">|volume=|pages=|via=</del>|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909<del style="font-weight: bold; text-decoration: none;">|volume=|pages=|via=</del>|class=cs.CR}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019. </ref> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|pages=491–506}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|class=cs.CR}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 40:</td>
<td colspan="2" class="diff-lineno">Line 40:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=http://mtc.sri.com/Conficker|title=An Analysis of Conficker's Logic and Rendezvous Points|author=[[Phillip Porras]] |author2=Hassen Saidi |author3=Vinod Yegneswaran|work=Malware Threat Center|publisher=[[SRI International]] Computer Science Laboratory|date=2009-03-19|<del style="font-weight: bold; text-decoration: none;">accessdate</del>=2013-06-14|url-status=dead|<del style="font-weight: bold; text-decoration: none;">archiveurl</del>=https://archive.today/20130203001959/http://mtc.sri.com/Conficker|<del style="font-weight: bold; text-decoration: none;">archivedate</del>=2013-02-03}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=http://mtc.sri.com/Conficker|title=An Analysis of Conficker's Logic and Rendezvous Points|author=[[Phillip Porras]] |author2=Hassen Saidi |author3=Vinod Yegneswaran|work=Malware Threat Center|publisher=[[SRI International]] Computer Science Laboratory|date=2009-03-19|<ins style="font-weight: bold; text-decoration: none;">access-date</ins>=2013-06-14|url-status=dead|<ins style="font-weight: bold; text-decoration: none;">archive-url</ins>=https://archive.today/20130203001959/http://mtc.sri.com/Conficker|<ins style="font-weight: bold; text-decoration: none;">archive-date</ins>=2013-02-03}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite news|url=http://www.pcworld.com/article/250824/malware_authors_expand_use_of_domain_generation_algorithms_to_evade_detection.html|title=Malware Authors Expand Use of Domain Generation Algorithms to Evade Detection|work=[[PC World]]|author=Lucian Constantin|date=2012-02-27|<del style="font-weight: bold; text-decoration: none;">accessdate</del>=2013-06-14}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite news|url=http://www.pcworld.com/article/250824/malware_authors_expand_use_of_domain_generation_algorithms_to_evade_detection.html|title=Malware Authors Expand Use of Domain Generation Algorithms to Evade Detection|work=[[PC World]]|author=Lucian Constantin|date=2012-02-27|<ins style="font-weight: bold; text-decoration: none;">access-date</ins>=2013-06-14}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=https://blogs.akamai.com/2018/01/a-death-match-of-domain-generation-algorithms.html|title=A Death Match of Domain Generation Algorithms|author=Hongliang Liu, Yuriy Yuzifovich|publisher=Akamai Technologies|date=2017-12-29|<del style="font-weight: bold; text-decoration: none;">accessdate</del>=2019-03-15}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite web|url=https://blogs.akamai.com/2018/01/a-death-match-of-domain-generation-algorithms.html|title=A Death Match of Domain Generation Algorithms|author=Hongliang Liu, Yuriy Yuzifovich|publisher=Akamai Technologies|date=2017-12-29|<ins style="font-weight: bold; text-decoration: none;">access-date</ins>=2019-03-15}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20130518101218/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf DGAs in the Hands of Cyber-Criminals - Examining the state of the art in malware evasion techniques]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20130518101218/https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf DGAs in the Hands of Cyber-Criminals - Examining the state of the art in malware evasion techniques]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20130518123544/https://www.damballa.com/downloads/r_pubs/RN_DGAs-and-Cyber-Criminals-A-Case-Study.pdf DGAs and Cyber-Criminals: A Case Study]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20130518123544/https://www.damballa.com/downloads/r_pubs/RN_DGAs-and-Cyber-Criminals-A-Case-Study.pdf DGAs and Cyber-Criminals: A Case Study]</div></td>
</tr>
</table>
Monkbot
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=979632963&oldid=prev
JJMC89 bot III: Moving :Category:Articles with example Python code to :Category:Articles with example Python (programming language) code per Wikipedia:Categories for discussion/Speedy
2020-09-21T21:04:35Z
<p>Moving <a href="/w/index.php?title=Category:Articles_with_example_Python_code&action=edit&redlink=1" class="new" title="Category:Articles with example Python code (page does not exist)">Category:Articles with example Python code</a> to <a href="/wiki/Category:Articles_with_example_Python_(programming_language)_code" title="Category:Articles with example Python (programming language) code">Category:Articles with example Python (programming language) code</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Speedy" title="Wikipedia:Categories for discussion/Speedy">Wikipedia:Categories for discussion/Speedy</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:04, 21 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 47:</td>
<td colspan="2" class="diff-lineno">Line 47:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20120321142028/http://www.abuse.ch/?p=3387 How Criminals Defend Their Rogue Networks, Abuse.ch]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20120321142028/http://www.abuse.ch/?p=3387 How Criminals Defend Their Rogue Networks, Abuse.ch]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Articles with example Python code]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Articles with example Python<ins style="font-weight: bold; text-decoration: none;"> (programming language)</ins> code]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Botnets]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Botnets]]</div></td>
</tr>
</table>
JJMC89 bot III
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=975311046&oldid=prev
Ira Leviton: Fixed a typo found with Wikipedia:Typo Team/moss.
2020-08-27T20:44:39Z
<p>Fixed a typo found with <a href="/wiki/Wikipedia:Typo_Team/moss" title="Wikipedia:Typo Team/moss">Wikipedia:Typo Team/moss</a>.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:44, 27 August 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, an infected computer could create thousands of domain names such as: ''www.<gibberish>.com'' and would attempt to contact a portion of these with the purpose of receiving an update or commands.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, an infected computer could create thousands of domain names such as: ''www.<gibberish>.com'' and would attempt to contact a portion of these with the purpose of receiving an update or commands.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Embedding the DGA instead of a list of previously-generated (by the command and control <del style="font-weight: bold; text-decoration: none;">server(s)</del>) domains in the unobfuscated binary of the malware protects against a strings dump that could be fed into a network blacklisting appliance preemptively to attempt to restrict outbound communication from infected hosts within an enterprise.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Embedding the DGA instead of a list of previously-generated (by the command and control <ins style="font-weight: bold; text-decoration: none;">servers</ins>) domains in the unobfuscated binary of the malware protects against a strings dump that could be fed into a network blacklisting appliance preemptively to attempt to restrict outbound communication from infected hosts within an enterprise.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The technique was popularized by the family of worms [[Conficker]].a and .b which, at first generated 250 domain names per day. Starting with Conficker.C, the malware would generate 50,000 domain names every day of which it would attempt to contact 500, giving an infected machine a 1% possibility of being updated every day if the malware controllers registered only one domain per day. To prevent infected computers from updating their malware, law enforcement would have needed to pre-register 50,000 new domain names every day. From the point of view of botnet owner, they only have to register one or a few domains out of the several domains that each bot would query every day.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The technique was popularized by the family of worms [[Conficker]].a and .b which, at first generated 250 domain names per day. Starting with Conficker.C, the malware would generate 50,000 domain names every day of which it would attempt to contact 500, giving an infected machine a 1% possibility of being updated every day if the malware controllers registered only one domain per day. To prevent infected computers from updating their malware, law enforcement would have needed to pre-register 50,000 new domain names every day. From the point of view of botnet owner, they only have to register one or a few domains out of the several domains that each bot would query every day.</div></td>
</tr>
</table>
Ira Leviton
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=969424713&oldid=prev
WOSlinker: change source to syntaxhighlight
2020-07-25T10:06:56Z
<p>change source to syntaxhighlight</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:06, 25 July 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 12:</td>
<td colspan="2" class="diff-lineno">Line 12:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Example ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><<del style="font-weight: bold; text-decoration: none;">source</del> lang="python"></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><<ins style="font-weight: bold; text-decoration: none;">syntaxhighlight</ins> lang="python"></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>def generate_domain(year: int, month: int, day: int) -> str:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>def generate_domain(year: int, month: int, day: int) -> str:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> """Generate a domain name for the given date."""</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> """Generate a domain name for the given date."""</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 24:</td>
<td colspan="2" class="diff-lineno">Line 24:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> return domain + ".com"</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> return domain + ".com"</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></syntaxhighlight></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div></source></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, on January 7, 2014, this method would generate the domain name <code>intgmxdeadnxuyla.com</code>, while the following day, it would return <code>axwscwsslmiagfah.com</code>. This simple example was in fact used by malware like [[CryptoLocker]], before it switched to a more sophisticated variant.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, on January 7, 2014, this method would generate the domain name <code>intgmxdeadnxuyla.com</code>, while the following day, it would return <code>axwscwsslmiagfah.com</code>. This simple example was in fact used by malware like [[CryptoLocker]], before it switched to a more sophisticated variant.</div></td>
</tr>
</table>
WOSlinker
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=948737469&oldid=prev
Shateel: /* Further reading */ corrected citation by adding well researched article
2020-04-02T19:30:47Z
<p><span class="autocomment">Further reading: </span> corrected citation by adding well researched article</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:30, 2 April 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Detection==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>DGA domain names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|volume=|pages=491–506|via=}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|volume=|pages=|via=|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|volume=|pages=|via=|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|volume=|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6|via=}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|volume=|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|volume=|pages=|via=|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|volume=|pages=|via=|class=cs.CR}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>DGA domain<ins style="font-weight: bold; text-decoration: none;"><ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019. </ref></ins> names can be blocked using blacklists, but the coverage of these blacklists is either poor (public blacklists) or wildly inconsistent (commercial vendor blacklists).<ref>{{Citation|last=Kührer|first=Marc|title=Paint It Black: Evaluating the Effectiveness of Malware Blacklists|date=2014|url=https://christian-rossow.de/publications/blacklists-raid2014.pdf|work=Research in Attacks, Intrusions and Defenses|volume=8688|pages=1–21|editor-last=Stavrou|editor-first=Angelos|publisher=Springer International Publishing|doi=10.1007/978-3-319-11379-1_1|isbn=9783319113784|access-date=2019-03-15|last2=Rossow|first2=Christian|last3=Holz|first3=Thorsten|editor2-last=Bos|editor2-first=Herbert|editor3-last=Portokalidis|editor3-first=Georgios}}</ref> Detection techniques belong in two main classes: reactionary and real-time. Reactionary detection relies on non-supervised [[Cluster analysis|clustering techniques]] and contextual information like network NXDOMAIN responses,<ref>{{Cite journal|last=Antonakakis|first=Manos|display-authors=et al|date=2012|title=From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware|url=https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis|journal=21st USENIX Security Symposium|volume=|pages=491–506|via=}}</ref> [[WHOIS]] information,<ref>{{cite arxiv|last=Curtin|first=Ryan|last2=Gardner|first2=Andrew|last3=Grzonkowski|first3=Slawomir|last4=Kleymenov|first4=Alexey|last5=Mosquera|first5=Alejandro|date=2018|title=Detecting DGA domains with recurrent neural networks and side information|eprint=1810.02023|volume=|pages=|via=|class=cs.CR}}</ref> and passive DNS<ref>{{Citation|last=Pereira|first=Mayana|chapter=Dictionary Extraction and Detection of Algorithmically Generated Domain Names in Passive DNS Traffic|date=2018|chapter-url=http://faculty.washington.edu/mdecock/papers/mpereira2018a.pdf|volume=11050|pages=295–314|publisher=Springer International Publishing|doi=10.1007/978-3-030-00470-5_14|isbn=978-3-030-00469-9|access-date=2019-03-15|last2=Coleman|first2=Shaun|last3=Yu|first3=Bin|last4=De Cock|first4=Martine|last5=Nascimento|first5=Anderson|title=Research in Attacks, Intrusions, and Defenses|series=Lecture Notes in Computer Science}}</ref> to make an assessment of domain name legitimacy. Recent attempts at detecting DGA domain names with [[deep learning]] techniques have been extremely successful, with [[F1 score]]s of over 99%.<ref>{{cite arxiv|last=Woodbridge|first=Jonathan|last2=Anderson|first2=Hyrum|last3=Ahuja|first3=Anjum|last4=Grant|first4=Daniel|date=2016|title=Predicting Domain Generation Algorithms with Long Short-Term Memory Networks|eprint=1611.00791|volume=|pages=|via=|class=cs.CR}}</ref> These deep learning methods typically utilize [[Long short-term memory|LSTM]] and [[Convolutional neural network|CNN]] architectures,<ref>{{Cite journal|last=Yu|first=Bin|last2=Pan|first2=Jie|last3=Hu|first3=Jiaming|last4=Nascimento|first4=Anderson|last5=De Cock|first5=Martine|date=2018|title=Character Level based Detection of DGA Domain Names|url=http://faculty.washington.edu/mdecock/papers/byu2018a.pdf|journal=2018 International Joint Conference on Neural Networks (IJCNN)|location=Rio de Janeiro|publisher=IEEE|volume=|pages=1–8|doi=10.1109/IJCNN.2018.8489147|isbn=978-1-5090-6014-6|via=}}</ref> though deep [[word embedding]]s have shown great promise for detecting dictionary DGA.<ref>{{Cite journal|last=Koh|first=Joewie J.|last2=Rhodes|first2=Barton|date=2018|title=Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings|arxiv=1811.08705|journal=2018 IEEE International Conference on Big Data (Big Data)|location=Seattle, WA, USA|publisher=IEEE|volume=|pages=2966–2971|doi=10.1109/BigData.2018.8622066|isbn=978-1-5386-5035-6}}</ref> However, these deep learning approaches can be vulnerable to [[Adversarial machine learning|adversarial techniques]].<ref>{{cite arxiv|last=Anderson|first=Hyrum|last2=Woodbridge|first2=Jonathan|last3=Bobby|first3=Filar|date=2016|title=DeepDGA: Adversarially-Tuned Domain Generation and Detection|eprint=1610.01969|volume=|pages=|via=|class=cs.CR}}</ref><ref>{{cite arxiv|last=Sidi|first=Lior|last2=Nadler|first2=Asaf|last3=Shabtai|first3=Asaf|date=2019|title=MaskDGA: A Black-box Evasion Technique Against DGA Classifiers and Adversarial Defenses|eprint=1902.08909|volume=|pages=|via=|class=cs.CR}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 37:</td>
<td colspan="2" class="diff-lineno">Line 37:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><br /></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019. Retrieved retrieved_date.</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
</table>
Shateel
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&diff=948723501&oldid=prev
Shateel: /* References */
2020-04-02T17:55:17Z
<p><span class="autocomment">References</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:55, 2 April 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 37:</td>
<td colspan="2" class="diff-lineno">Line 37:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ref>Shateel A. Chowdhury, [https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ "DOMAIN GENERATION ALGORITHM – DGA IN MALWARE"], Aug 30, 2019. Retrieved retrieved_date.</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
</table>
Shateel