https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Fly_algorithm Fly algorithm - Revision history 2025-05-29T02:30:20Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1257060134&oldid=prev Fieari: adding lead, removing "lead missing" tag. 2024-11-13T01:15:06Z <p>adding lead, removing &quot;lead missing&quot; tag.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:15, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{intromissing|date=May 2024}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''Fly Algorithm''' is a computational method within the field of [[evolutionary algorithms]], designed for direct exploration of [[three-dimensional space|3D spaces]] in applications such as [[computer stereo vision]], [[robotics]], and [[medical imaging]]. Unlike traditional image-based [[stereopsis|stereovision]], which relies on matching features to construct 3D information, the Fly Algorithm operates by generating a 3D representation directly from random points, termed "flies." Each fly is a coordinate in 3D space, evaluated for its accuracy by comparing its projections in a scene. By iteratively refining the positions of flies based on fitness criteria, the algorithm can construct an optimized spatial representation. The Fly Algorithm has expanded into various fields, including applications in digital art, where it is used to generate complex visual patterns.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Fieari https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1227168332&oldid=prev Citation bot: Added bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles covered by WikiProject Wikify from May 2024 | #UCB_Category 319/461 2024-06-04T03:55:01Z <p>Added bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | <a href="/wiki/Category:Articles_covered_by_WikiProject_Wikify_from_May_2024" title="Category:Articles covered by WikiProject Wikify from May 2024">Category:Articles covered by WikiProject Wikify from May 2024</a> | #UCB_Category 319/461</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:55, 4 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 6:</td> <td colspan="2" class="diff-lineno">Line 6:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Fly Algorithm is a type of [[cooperative coevolution]] based on the Parisian approach.&lt;ref name=Collet2009&gt;{{cite book |title=Optimization in Signal and Image Processing|chapter=Artificial evolution and the Parisian approach: applications in the processing of signals and images|last2=Louchet|first2=Jean|last1=Collet|first1=Pierre|publisher=Wiley-ISTE|date=Oct 2009|isbn=9781848210448|editor1-last=Siarry|editor1-first=Patrick}}&lt;/ref&gt; The Fly Algorithm has first been developed in 1999 in the scope of the application of [[Evolutionary algorithms]] to [[computer stereo vision]].&lt;ref name=LouchetRFIA2000&gt;{{cite conference |title=L'algorithme des mouches : une stratégie d'évolution individuelle appliquée en stéréovision|last1=Louchet|first1=Jean|conference=Reconnaissance des Formes et Intelligence Artificielle (RFIA2000)|date=Feb 2000}}&lt;/ref&gt;&lt;ref name=Louchet2000ICPR&gt;{{cite conference |title=Stereo analysis using individual evolution strategy|last1=Louchet|first1=Jean|publisher=IEEE|conference=Proceedings of 15th International Conference on Pattern Recognition, 2000 (ICPR’00)|pages=908–911|date=Sep 2000|doi=10.1109/ICPR.2000.905580|isbn=0-7695-0750-6|location=Barcelona, Spain}}&lt;/ref&gt; Unlike the classical image-based approach to stereovision, which extracts image primitives then matches them in order to obtain 3-D information, the Fly Agorithm is based on the direct exploration of the 3-D space of the scene. A fly is defined as a 3-D point described by its coordinates (''x'', ''y'', ''z''). Once a random population of flies has been created in a search space corresponding to the field of view of the cameras, its evolution (based on the Evolutionary Strategy paradigm) used a [[fitness function]] that evaluates how likely the fly is lying on the visible surface of an object, based on the consistency of its image projections. To this end, the fitness function uses the grey levels, colours and/or textures of the calculated fly's projections.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Fly Algorithm is a type of [[cooperative coevolution]] based on the Parisian approach.&lt;ref name=Collet2009&gt;{{cite book |title=Optimization in Signal and Image Processing|chapter=Artificial evolution and the Parisian approach: applications in the processing of signals and images|last2=Louchet|first2=Jean|last1=Collet|first1=Pierre|publisher=Wiley-ISTE|date=Oct 2009|isbn=9781848210448|editor1-last=Siarry|editor1-first=Patrick}}&lt;/ref&gt; The Fly Algorithm has first been developed in 1999 in the scope of the application of [[Evolutionary algorithms]] to [[computer stereo vision]].&lt;ref name=LouchetRFIA2000&gt;{{cite conference |title=L'algorithme des mouches : une stratégie d'évolution individuelle appliquée en stéréovision|last1=Louchet|first1=Jean|conference=Reconnaissance des Formes et Intelligence Artificielle (RFIA2000)|date=Feb 2000}}&lt;/ref&gt;&lt;ref name=Louchet2000ICPR&gt;{{cite conference |title=Stereo analysis using individual evolution strategy|last1=Louchet|first1=Jean|publisher=IEEE|conference=Proceedings of 15th International Conference on Pattern Recognition, 2000 (ICPR’00)|pages=908–911|date=Sep 2000|doi=10.1109/ICPR.2000.905580|isbn=0-7695-0750-6|location=Barcelona, Spain}}&lt;/ref&gt; Unlike the classical image-based approach to stereovision, which extracts image primitives then matches them in order to obtain 3-D information, the Fly Agorithm is based on the direct exploration of the 3-D space of the scene. A fly is defined as a 3-D point described by its coordinates (''x'', ''y'', ''z''). Once a random population of flies has been created in a search space corresponding to the field of view of the cameras, its evolution (based on the Evolutionary Strategy paradigm) used a [[fitness function]] that evaluates how likely the fly is lying on the visible surface of an object, based on the consistency of its image projections. To this end, the fitness function uses the grey levels, colours and/or textures of the calculated fly's projections.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The first application field of the Fly Algorithm has been stereovision.&lt;ref name=LouchetRFIA2000 /&gt;&lt;ref name=Louchet2000ICPR /&gt;&lt;ref name=Louchet2001&gt;{{cite journal |title=Using an Individual Evolution Strategy for Stereovision|last1=Louchet|first1=Jean|pages=101–109|date=Jun 2001|doi=10.1023/A:1011544128842|volume=2|issue=2|journal=Genetic Programming and Evolvable Machines|s2cid=8953837}}&lt;/ref&gt;&lt;ref name=Boumaza2003&gt;{{cite conference |title=Mobile robot sensor fusion using flies|last1=Boumaza|first1=Amine|last2=Louchet|first2=Jean|publisher=Springer|conference=European Conference on Genetic Programming (EuroGP 2003)|pages=357–367|date=Apr 2003|doi=10.1007/3-540-36605-9_33|isbn=978-3-540-00976-4|location=Essex, UK|volume=2611|book-title=Lecture Notes on Computer Science}}&lt;/ref&gt; While classical `image priority' approaches use matching features from the stereo images in order to build a 3-D model, the Fly Algorithm directly explores the 3-D space and uses image data to evaluate the validity of 3-D hypotheses. A variant called the "Dynamic Flies" defines the fly as a 6-uple (''x'', ''y'', ''z'', ''x’'', ''y’'', ''z’'') involving the fly's velocity.&lt;ref name=Louchet2002&gt;{{cite book |title=Apprentissage Automatique et Evolution Artificielle|chapter=L’algorithme des mouches dynamiques: guider un robot par évolution artificielle en temps réel|last1=Louchet|first1=Jean|last2=Guyon|first2=Maud|last3=Lesot|first3=Marie-Jeanne|last4=Boumaza|first4=Amine|publisher=Hermes Sciences Publications|date=Mar 2002|isbn=978-2746203600|language=fr|chapter-url=http://jean.louchet.free.fr/publis/2001ECA.pdf|editor1-last=Lattaud|editor1-first=Claude}}&lt;/ref&gt;&lt;ref name=Louchet2002PatterRec&gt;{{cite journal |title=Dynamic Flies: a new pattern recognition tool applied to stereo sequence processing|last1=Louchet|first1=Jean|last2=Guyon|first2=Maud|last3=Lesot|first3=Marie-Jeanne|last4=Boumaza|first4=Amine|pages=335–345|date=Jan 2002|doi=10.1016/S0167-8655(01)00129-5|volume=23|issue=1–3|journal=Pattern Recognition Letters|url=http://jean.louchet.free.fr/publis/2001PRL.pdf}}&lt;/ref&gt; The velocity components are not explicitly taken into account in the fitness calculation but are used in the flies' positions updating and are subject to similar genetic operators (mutation, crossover).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The first application field of the Fly Algorithm has been stereovision.&lt;ref name=LouchetRFIA2000 /&gt;&lt;ref name=Louchet2000ICPR /&gt;&lt;ref name=Louchet2001&gt;{{cite journal |title=Using an Individual Evolution Strategy for Stereovision|last1=Louchet|first1=Jean|pages=101–109|date=Jun 2001|doi=10.1023/A:1011544128842|volume=2|issue=2|journal=Genetic Programming and Evolvable Machines|s2cid=8953837}}&lt;/ref&gt;&lt;ref name=Boumaza2003&gt;{{cite conference |title=Mobile robot sensor fusion using flies|last1=Boumaza|first1=Amine|last2=Louchet|first2=Jean|publisher=Springer|conference=European Conference on Genetic Programming (EuroGP 2003)|pages=357–367|date=Apr 2003|doi=10.1007/3-540-36605-9_33|isbn=978-3-540-00976-4|location=Essex, UK|volume=2611|book-title=Lecture Notes on Computer Science}}&lt;/ref&gt; While classical `image priority' approaches use matching features from the stereo images in order to build a 3-D model, the Fly Algorithm directly explores the 3-D space and uses image data to evaluate the validity of 3-D hypotheses. A variant called the "Dynamic Flies" defines the fly as a 6-uple (''x'', ''y'', ''z'', ''x’'', ''y’'', ''z’'') involving the fly's velocity.&lt;ref name=Louchet2002&gt;{{cite book |title=Apprentissage Automatique et Evolution Artificielle|chapter=L’algorithme des mouches dynamiques: guider un robot par évolution artificielle en temps réel|last1=Louchet|first1=Jean|last2=Guyon|first2=Maud|last3=Lesot|first3=Marie-Jeanne|last4=Boumaza|first4=Amine|publisher=Hermes Sciences Publications|date=Mar 2002|isbn=978-2746203600|language=fr|chapter-url=http://jean.louchet.free.fr/publis/2001ECA.pdf|editor1-last=Lattaud|editor1-first=Claude}}&lt;/ref&gt;&lt;ref name=Louchet2002PatterRec&gt;{{cite journal |title=Dynamic Flies: a new pattern recognition tool applied to stereo sequence processing|last1=Louchet|first1=Jean|last2=Guyon|first2=Maud|last3=Lesot|first3=Marie-Jeanne|last4=Boumaza|first4=Amine|pages=335–345|date=Jan 2002|doi=10.1016/S0167-8655(01)00129-5|volume=23|issue=1–3|journal=Pattern Recognition Letters<ins style="font-weight: bold; text-decoration: none;">|bibcode=2002PaReL..23..335L </ins>|url=http://jean.louchet.free.fr/publis/2001PRL.pdf}}&lt;/ref&gt; The velocity components are not explicitly taken into account in the fitness calculation but are used in the flies' positions updating and are subject to similar genetic operators (mutation, crossover).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The application of Flies to obstacle avoidance in vehicles&lt;ref name=Bomaza2001EvoIASP&gt;{{cite conference |title=Dynamic Flies: Using Real-time evolution in Robotics|last1=Boumaza|first1=Amine|last2=Louchet|first2=Jean|publisher=Springer|conference=Artificial Evolution in Image Analysis and Signal Processing (EVOIASP2001)|pages=288–297|date=Apr 2001|doi=10.1007/3-540-45365-2_30|isbn=978-3-540-41920-4|location=Como, Italy|volume=2037|book-title=Lecture Notes on Computer Science}}&lt;/ref&gt; exploits the fact that the population of flies is a time compliant, quasi-continuously evolving representation of the scene to directly generate vehicle control signals from the flies. The use of the Fly Algorithm is not strictly restricted to stereo images, as other sensors may be added (e.g. acoustic proximity sensors, etc.) as additional terms to the fitness function being optimised. Odometry information can also be used to speed up the updating of flies' positions, and conversely the flies positions can be used to provide localisation and mapping information.&lt;ref name=Louchet2009EvoIASP&gt;{{cite conference |title=Flies Open a Door to SLAM.|last1=Louchet|first1=Jean|last2=Sapin|first2=Emmanuel|publisher=Springer|conference=Applications of Evolutionary Computation (EvoApplications 2009)|pages=385–394|date=2009|doi= 10.1007/978-3-642-01129-0_43|location=Tübingen, Germany|volume=5484|book-title=Lecture Notes in Computer Science}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The application of Flies to obstacle avoidance in vehicles&lt;ref name=Bomaza2001EvoIASP&gt;{{cite conference |title=Dynamic Flies: Using Real-time evolution in Robotics|last1=Boumaza|first1=Amine|last2=Louchet|first2=Jean|publisher=Springer|conference=Artificial Evolution in Image Analysis and Signal Processing (EVOIASP2001)|pages=288–297|date=Apr 2001|doi=10.1007/3-540-45365-2_30|isbn=978-3-540-41920-4|location=Como, Italy|volume=2037|book-title=Lecture Notes on Computer Science}}&lt;/ref&gt; exploits the fact that the population of flies is a time compliant, quasi-continuously evolving representation of the scene to directly generate vehicle control signals from the flies. The use of the Fly Algorithm is not strictly restricted to stereo images, as other sensors may be added (e.g. acoustic proximity sensors, etc.) as additional terms to the fitness function being optimised. Odometry information can also be used to speed up the updating of flies' positions, and conversely the flies positions can be used to provide localisation and mapping information.&lt;ref name=Louchet2009EvoIASP&gt;{{cite conference |title=Flies Open a Door to SLAM.|last1=Louchet|first1=Jean|last2=Sapin|first2=Emmanuel|publisher=Springer|conference=Applications of Evolutionary Computation (EvoApplications 2009)|pages=385–394|date=2009|doi= 10.1007/978-3-642-01129-0_43|location=Tübingen, Germany|volume=5484|book-title=Lecture Notes in Computer Science}}&lt;/ref&gt;</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1224166237&oldid=prev AnomieBOT: Dating maintenance tags: {{Intromissing}} 2024-05-16T17:05:44Z <p>Dating maintenance tags: {{Intromissing}}</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:05, 16 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{intromissing}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{intromissing<ins style="font-weight: bold; text-decoration: none;">|date=May 2024</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> </table> AnomieBOT https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1224163413&oldid=prev Johnsoniensis: no lead 2024-05-16T16:45:10Z <p>no lead</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:45, 16 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_4_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_0_0_lhs"></a>{{Evolutionary algorithms}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=July 2018}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{intromissing}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_0_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_0_rhs"></a>{{Evolutionary algorithms}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Johnsoniensis https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1189357492&oldid=prev Citation bot: Add: s2cid. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 1595/1612 2023-12-11T09:40:47Z <p>Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Corvus florensis | #UCB_webform 1595/1612</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:40, 11 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Similar internal evolutionary engines are considered in classical [[evolutionary algorithm]], [[cooperative coevolution|cooperative coevolutionary algorithm]] and Parisian evolution. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Similar internal evolutionary engines are considered in classical [[evolutionary algorithm]], [[cooperative coevolution|cooperative coevolutionary algorithm]] and Parisian evolution. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The difference between [[cooperative coevolution|cooperative coevolutionary algorithm]] and Parisian evolution resides in the population's semantics. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The difference between [[cooperative coevolution|cooperative coevolutionary algorithm]] and Parisian evolution resides in the population's semantics. </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[cooperative coevolution|Cooperative coevolutionary algorithm]] divides a big problem into sub-problems (groups of individuals) and solves them separately toward the big problem.&lt;ref name=Mesejo2015&gt;{{cite journal |title=Artificial Neuron – Glia Networks Learning Approach Based on Cooperative Coevolution|last1=Mesejo|first1=Pablo|last2=Ibanez|first2=Oscar|last3=Fernandez-blanco|first3=Enrique|last4=Cedron|first4=Francisco|last5=Pazos|first5=Alejandro|last6=Porto-pazos|first6=Ana|pages=1550012|date=2015|doi=10.1142/S0129065715500124|pmid=25843127|volume=25|issue=4|journal=International Journal of Neural Systems|hdl=2183/17502|url=https://hal.inria.fr/hal-01221226/file/paperReviewed2.pdf}}&lt;/ref&gt; There is no interaction/breeding between individuals of the different sub-populations, only with individuals of the same sub-population. </div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[cooperative coevolution|Cooperative coevolutionary algorithm]] divides a big problem into sub-problems (groups of individuals) and solves them separately toward the big problem.&lt;ref name=Mesejo2015&gt;{{cite journal |title=Artificial Neuron – Glia Networks Learning Approach Based on Cooperative Coevolution|last1=Mesejo|first1=Pablo|last2=Ibanez|first2=Oscar|last3=Fernandez-blanco|first3=Enrique|last4=Cedron|first4=Francisco|last5=Pazos|first5=Alejandro|last6=Porto-pazos|first6=Ana|pages=1550012|date=2015|doi=10.1142/S0129065715500124|pmid=25843127|volume=25|issue=4|journal=International Journal of Neural Systems|hdl=2183/17502<ins style="font-weight: bold; text-decoration: none;">|s2cid=7653183 </ins>|url=https://hal.inria.fr/hal-01221226/file/paperReviewed2.pdf}}&lt;/ref&gt; There is no interaction/breeding between individuals of the different sub-populations, only with individuals of the same sub-population. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, Parisian [[evolutionary algorithms]] solve a whole problem as a big component. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, Parisian [[evolutionary algorithms]] solve a whole problem as a big component. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All population's individuals cooperate together to drive the whole population toward attractive areas of the search space.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All population's individuals cooperate together to drive the whole population toward attractive areas of the search space.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 66:</td> <td colspan="2" class="diff-lineno">Line 66:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Simultaneous localization and mapping|Simultaneous localization and mapping (SLAM)]]&lt;ref name=Louchet2009EvoIASP /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Simultaneous localization and mapping|Simultaneous localization and mapping (SLAM)]]&lt;ref name=Louchet2009EvoIASP /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Single-photon emission computed tomography|Single-photon emission computed tomography (SPECT)]] reconstruction &lt;ref name=Bousquet2007EA /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Single-photon emission computed tomography|Single-photon emission computed tomography (SPECT)]] reconstruction &lt;ref name=Bousquet2007EA /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* [[Positron emission tomography|Positron emission tomography (PET)]] reconstruction &lt;ref name=Vidal2009EA /&gt;&lt;ref name=Vidal2009MIC /&gt;&lt;ref name=Vidal2010EvoIASP /&gt;&lt;ref name=Vidal2010PPSN /&gt;&lt;ref name=Abbood2017SWEVO /&gt;&lt;ref name=Abbood2017EA&gt;{{cite conference |title=Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm|last1=Abbood|first1=Zainab Ali|last2=Vidal|first2=Franck P.|conference=13th Biennal International Conference on Artificial Evolution (EA-2017)|pages=106–119|date=2017|location=Paris, France|book-title=Lecture Notes in Computer Science|<del style="font-weight: bold; text-decoration: none;">ISBN</del>=978-2-9539267-7-4}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Positron emission tomography|Positron emission tomography (PET)]] reconstruction &lt;ref name=Vidal2009EA /&gt;&lt;ref name=Vidal2009MIC /&gt;&lt;ref name=Vidal2010EvoIASP /&gt;&lt;ref name=Vidal2010PPSN /&gt;&lt;ref name=Abbood2017SWEVO /&gt;&lt;ref name=Abbood2017EA&gt;{{cite conference |title=Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm|last1=Abbood|first1=Zainab Ali|last2=Vidal|first2=Franck P.|conference=13th Biennal International Conference on Artificial Evolution (EA-2017)|pages=106–119|date=2017|location=Paris, France|book-title=Lecture Notes in Computer Science|<ins style="font-weight: bold; text-decoration: none;">isbn</ins>=978-2-9539267-7-4}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Digital art]]&lt;ref name=Abbood2017EvoIASP /&gt;&lt;ref name=Abbood2017ArtAndScience&gt;{{cite journal |title=Fly4Arts: Evolutionary Digital Art with the Fly Algorithm|last1=Abbood|first1=Zainab Ali|last2=Vidal|first2=Franck P.|pages=1–6|date=Oct 2017|doi=10.21494/ISTE.OP.2017.0177|volume=17- 1|issue=1|journal=Art and Science|doi-access=free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Digital art]]&lt;ref name=Abbood2017EvoIASP /&gt;&lt;ref name=Abbood2017ArtAndScience&gt;{{cite journal |title=Fly4Arts: Evolutionary Digital Art with the Fly Algorithm|last1=Abbood|first1=Zainab Ali|last2=Vidal|first2=Franck P.|pages=1–6|date=Oct 2017|doi=10.21494/ISTE.OP.2017.0177|volume=17- 1|issue=1|journal=Art and Science|doi-access=free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1178932718&oldid=prev Jarble: adding Template:Evolutionary computation 2023-10-06T19:34:24Z <p>adding <a href="/wiki/Template:Evolutionary_computation" title="Template:Evolutionary computation">Template:Evolutionary computation</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:34, 6 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 247:</td> <td colspan="2" class="diff-lineno">Line 247:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary computation}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Optimization algorithms and methods]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Optimization algorithms and methods]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Genetic algorithms]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Genetic algorithms]]</div></td> </tr> </table> Jarble https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1177672350&oldid=prev 2A02:2F00:C203:F600:3C71:B2BA:758:2B2B at 20:57, 28 September 2023 2023-09-28T20:57:33Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:57, 28 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 225:</td> <td colspan="2" class="diff-lineno">Line 225:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this example, an input image is to be approximated by a set of tiles (for example as in an ancient [[mosaic]]). A tile has an orientation (angle θ), a three colour components (R, G, B), a size (w, h) and a position (x, y, z). If there are ''N'' tiles, there are 9''N'' unknown floating point numbers to guess. In other words for 5,000 tiles, there are 45,000 numbers to find. Using a classical evolutionary algorithm where the answer of the optimisation problem is the best individual, the genome of an individual would be made up of 45,000 genes. This approach would be extremely costly in term of complexity and computing time. The same applies for any classical optimisation algorithm. Using the Fly Algorithm, every individual mimics a tile and can be individually evaluated using its local fitness to assess its contribution to the population's performance (the global fitness). Here an individual has 9 genes instead of 9''N'', and there are ''N'' individuals. It can be solved as a reconstruction problem as follows:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this example, an input image is to be approximated by a set of tiles (for example as in an ancient [[mosaic]]). A tile has an orientation (angle θ), a three colour components (R, G, B), a size (w, h) and a position (x, y, z). If there are ''N'' tiles, there are 9''N'' unknown floating point numbers to guess. In other words for 5,000 tiles, there are 45,000 numbers to find. Using a classical evolutionary algorithm where the answer of the optimisation problem is the best individual, the genome of an individual would be made up of 45,000 genes. This approach would be extremely costly in term of complexity and computing time. The same applies for any classical optimisation algorithm. Using the Fly Algorithm, every individual mimics a tile and can be individually evaluated using its local fitness to assess its contribution to the population's performance (the global fitness). Here an individual has 9 genes instead of 9''N'', and there are ''N'' individuals. It can be solved as a reconstruction problem as follows:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;reconstruction = \operatorname{arg\,min} \overset{x&lt;W}{\underset{<del style="font-weight: bold; text-decoration: none;">y</del>=0}{\sum}}\overset{<del style="font-weight: bold; text-decoration: none;">j</del>&lt;H}{\underset{<del style="font-weight: bold; text-decoration: none;">j</del>=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;reconstruction = \operatorname{arg\,min} \overset{x&lt;W}{\underset{<ins style="font-weight: bold; text-decoration: none;">x</ins>=0}{\sum}}\overset{<ins style="font-weight: bold; text-decoration: none;">y</ins>&lt;H}{\underset{<ins style="font-weight: bold; text-decoration: none;">y</ins>=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;input&lt;/math&gt; is the input image, &lt;math&gt;x&lt;/math&gt; and &lt;math&gt;y&lt;/math&gt; are the pixel coordinates along the horizontal and vertical axis respectively, &lt;math&gt;W&lt;/math&gt; and &lt;math&gt;H&lt;/math&gt; are the image width and height in number of pixels respectively, &lt;math&gt;F&lt;/math&gt; is the fly population, and &lt;math&gt;P&lt;/math&gt; is a projection operator that creates an image from flies. This projection operator &lt;math&gt;P&lt;/math&gt; can take many forms. In her work, Z. Ali Aboodd &lt;ref name=Abbood2017EvoIASP /&gt; uses [[OpenGL]] to generate different effects (e.g. mosaics, or spray paint). For speeding up the evaluation of the fitness functions, [[OpenCL]] is used too.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;input&lt;/math&gt; is the input image, &lt;math&gt;x&lt;/math&gt; and &lt;math&gt;y&lt;/math&gt; are the pixel coordinates along the horizontal and vertical axis respectively, &lt;math&gt;W&lt;/math&gt; and &lt;math&gt;H&lt;/math&gt; are the image width and height in number of pixels respectively, &lt;math&gt;F&lt;/math&gt; is the fly population, and &lt;math&gt;P&lt;/math&gt; is a projection operator that creates an image from flies. This projection operator &lt;math&gt;P&lt;/math&gt; can take many forms. In her work, Z. Ali Aboodd &lt;ref name=Abbood2017EvoIASP /&gt; uses [[OpenGL]] to generate different effects (e.g. mosaics, or spray paint). For speeding up the evaluation of the fitness functions, [[OpenCL]] is used too.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The algorithm starts with a population &lt;math&gt;F&lt;/math&gt; that is randomly generated (see Line 3 in the algorithm above). &lt;math&gt;F&lt;/math&gt; is then assessed using the global fitness to compute &lt;math&gt;G_{fitness}(F) = \overset{x&lt;W}{\underset{<del style="font-weight: bold; text-decoration: none;">y</del>=0}{\sum}}\overset{<del style="font-weight: bold; text-decoration: none;">j</del>&lt;H}{\underset{<del style="font-weight: bold; text-decoration: none;">j</del>=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt; (see Line 10). &lt;math&gt;G_{fitness}&lt;/math&gt; is <del style="font-weight: bold; text-decoration: none;">an</del> <del style="font-weight: bold; text-decoration: none;">error</del> <del style="font-weight: bold; text-decoration: none;">metrics,</del> <del style="font-weight: bold; text-decoration: none;">it</del> has to be <del style="font-weight: bold; text-decoration: none;">minimised</del>.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The algorithm starts with a population &lt;math&gt;F&lt;/math&gt; that is randomly generated (see Line 3 in the algorithm above). &lt;math&gt;F&lt;/math&gt; is then assessed using the global fitness to compute &lt;math&gt;G_{fitness}(F) = \overset{x&lt;W}{\underset{<ins style="font-weight: bold; text-decoration: none;">x</ins>=0}{\sum}}\overset{<ins style="font-weight: bold; text-decoration: none;">y</ins>&lt;H}{\underset{<ins style="font-weight: bold; text-decoration: none;">y</ins>=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt; (see Line 10). &lt;math&gt;G_{fitness}&lt;/math&gt; is <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">objective</ins> <ins style="font-weight: bold; text-decoration: none;">function</ins> <ins style="font-weight: bold; text-decoration: none;">that</ins> has to be <ins style="font-weight: bold; text-decoration: none;">minimized</ins>.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> 2A02:2F00:C203:F600:3C71:B2BA:758:2B2B https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1177670846&oldid=prev 2A02:2F00:C203:F600:3C71:B2BA:758:2B2B at 20:44, 28 September 2023 2023-09-28T20:44:58Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:44, 28 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 188:</td> <td colspan="2" class="diff-lineno">Line 188:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 45. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 45. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 46. '''If''' the local fitness is lower than or equal to 0, // Thresholded-selection of a good fly that can reproduce</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 46. '''If''' the local fitness is lower than or equal to 0, // Thresholded-selection of a good fly that can reproduce</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> 47. '''else''' go to Step 34. ''// f&lt;sub&gt;<del style="font-weight: bold; text-decoration: none;">kill</del>&lt;/sub&gt; is a bad fly: we should not allow it to reproduce''</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 47. '''else''' go to Step 34. ''// f&lt;sub&gt;<ins style="font-weight: bold; text-decoration: none;">reproduce</ins>&lt;/sub&gt; is a bad fly: we should not allow it to reproduce''</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> 48. '''then''' go to Step 53. ''// f&lt;sub&gt;<del style="font-weight: bold; text-decoration: none;">kill</del>&lt;/sub&gt; is a good fly: we can allow it to reproduce''</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 48. '''then''' go to Step 53. ''// f&lt;sub&gt;<ins style="font-weight: bold; text-decoration: none;">reproduce</ins>&lt;/sub&gt; is a good fly: we can allow it to reproduce''</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 49. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 49. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 50. ''// New blood / Immigration''</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 50. ''// New blood / Immigration''</div></td> </tr> </table> 2A02:2F00:C203:F600:3C71:B2BA:758:2B2B https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1171905644&oldid=prev Dicklyon: case fix (via WP:JWB) 2023-08-23T21:05:10Z <p>case fix (via <a href="/wiki/Wikipedia:JWB" class="mw-redirect" title="Wikipedia:JWB">WP:JWB</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:05, 23 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>.&lt;ref name=Vidal2009MIC&gt;{{cite conference |title=PET reconstruction using a cooperative coevolution strategy in LOR space|last1=Vidal|first1=Franck P.|last2=Louchet|first2=Jean|last3=Lutton|first3=Évelyne|last4=Rocchisani|first4=Jean-Marie|publisher=IEEE|conference=Medical Imaging Conference (MIC)|pages=3363–3366|date=Oct–Nov 2009|doi=10.1109/NSSMIC.2009.5401758|location=Orlando, Florida|book-title=IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2009}}&lt;/ref&gt; Here, each fly is considered a photon emitter and its fitness is based on the conformity of the simulated illumination of the sensors with the actual pattern observed on the sensors. Within this application, the fitness function has been re-defined to use the new concept of 'marginal evaluation'. Here, the fitness of one individual is calculated as its (positive or negative) contribution to the quality of the global population. It is based on the [[Cross-validation (statistics)|leave-one-out cross-validation]] principle. A ''global fitness function'' evaluates the quality of the population as a whole; only then the fitness of an individual (a fly) is calculated as the difference between the global fitness values of the population with and without the particular fly whose ''individual fitness function'' has to be evaluated.&lt;ref name=Vidal2010EvoIASP&gt;{{cite conference |title=New genetic operators in the Fly Algorithm: application to medical PET image reconstruction|last1=Vidal|first1=Franck P.|last2=Louchet|first2=Jean|last4=Lutton|first4=Évelyne|last3=Rocchisani|first3=Jean-Marie|publisher=Springer, Heidelberg|conference=European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP’10)|pages=292–301|date=Apr 2010|doi=10.1007/978-3-642-12239-2_30|isbn=978-3-642-12238-5|location=Istanbul, Turkey|volume=6024|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Vidal2010EvoIASP.pdf}}&lt;/ref&gt;&lt;ref name=Vidal2010PPSN&gt;{{cite conference |title=Threshold selection, mitosis and dual mutation in cooperative coevolution: application to medical 3D tomography|last1=Vidal|first1=Franck P.|last2=Lutton|first2=Évelyne|last3=Louchet|first3=Jean|last4=Rocchisani|first4=Jean-Marie|publisher=Springer, Heidelberg|conference=International Conference on Parallel Problem Solving From Nature (PPSN'10)|pages=414–423|date=Sep 2010|doi=10.1007/978-3-642-15844-5_42|location=Krakow, Poland|volume=6238|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Vidal2010PPSN.pdf}}&lt;/ref&gt; In &lt;ref name=Abbood2017SWEVO&gt;{{cite journal |title=Voxelisation in the 3-D Fly Algorithm for PET|last1=Ali Abbood|first1=Zainab|last2=Lavauzelle|first2=Julien|last3=Lutton|first3=Évelyne|last4=Rocchisani|first4=Jean-Marie|last5=Louchet|first5=Jean|last6=Vidal|first6=Franck P.|date=2017|doi=10.1016/j.swevo.2017.04.001|issn=2210-6502|volume=36|pages=91–105|journal=Swarm and Evolutionary Computation|url=http://fly4pet.fpvidal.net/pdf/Abbood2017SWEVO.pdf}}&lt;/ref&gt; the fitness of each fly is considered as a `level of confidence'. It is used during the voxelisation process to tweak the fly's individual footprint using implicit modelling (such as [[metaballs]]). It produces smooth results that are more accurate.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>.&lt;ref name=Vidal2009MIC&gt;{{cite conference |title=PET reconstruction using a cooperative coevolution strategy in LOR space|last1=Vidal|first1=Franck P.|last2=Louchet|first2=Jean|last3=Lutton|first3=Évelyne|last4=Rocchisani|first4=Jean-Marie|publisher=IEEE|conference=Medical Imaging Conference (MIC)|pages=3363–3366|date=Oct–Nov 2009|doi=10.1109/NSSMIC.2009.5401758|location=Orlando, Florida|book-title=IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2009}}&lt;/ref&gt; Here, each fly is considered a photon emitter and its fitness is based on the conformity of the simulated illumination of the sensors with the actual pattern observed on the sensors. Within this application, the fitness function has been re-defined to use the new concept of 'marginal evaluation'. Here, the fitness of one individual is calculated as its (positive or negative) contribution to the quality of the global population. It is based on the [[Cross-validation (statistics)|leave-one-out cross-validation]] principle. A ''global fitness function'' evaluates the quality of the population as a whole; only then the fitness of an individual (a fly) is calculated as the difference between the global fitness values of the population with and without the particular fly whose ''individual fitness function'' has to be evaluated.&lt;ref name=Vidal2010EvoIASP&gt;{{cite conference |title=New genetic operators in the Fly Algorithm: application to medical PET image reconstruction|last1=Vidal|first1=Franck P.|last2=Louchet|first2=Jean|last4=Lutton|first4=Évelyne|last3=Rocchisani|first3=Jean-Marie|publisher=Springer, Heidelberg|conference=European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP’10)|pages=292–301|date=Apr 2010|doi=10.1007/978-3-642-12239-2_30|isbn=978-3-642-12238-5|location=Istanbul, Turkey|volume=6024|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Vidal2010EvoIASP.pdf}}&lt;/ref&gt;&lt;ref name=Vidal2010PPSN&gt;{{cite conference |title=Threshold selection, mitosis and dual mutation in cooperative coevolution: application to medical 3D tomography|last1=Vidal|first1=Franck P.|last2=Lutton|first2=Évelyne|last3=Louchet|first3=Jean|last4=Rocchisani|first4=Jean-Marie|publisher=Springer, Heidelberg|conference=International Conference on Parallel Problem Solving From Nature (PPSN'10)|pages=414–423|date=Sep 2010|doi=10.1007/978-3-642-15844-5_42|location=Krakow, Poland|volume=6238|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Vidal2010PPSN.pdf}}&lt;/ref&gt; In &lt;ref name=Abbood2017SWEVO&gt;{{cite journal |title=Voxelisation in the 3-D Fly Algorithm for PET|last1=Ali Abbood|first1=Zainab|last2=Lavauzelle|first2=Julien|last3=Lutton|first3=Évelyne|last4=Rocchisani|first4=Jean-Marie|last5=Louchet|first5=Jean|last6=Vidal|first6=Franck P.|date=2017|doi=10.1016/j.swevo.2017.04.001|issn=2210-6502|volume=36|pages=91–105|journal=Swarm and Evolutionary Computation|url=http://fly4pet.fpvidal.net/pdf/Abbood2017SWEVO.pdf}}&lt;/ref&gt; the fitness of each fly is considered as a `level of confidence'. It is used during the voxelisation process to tweak the fly's individual footprint using implicit modelling (such as [[metaballs]]). It produces smooth results that are more accurate.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recently it has been used in digital art to generate mosaic-like images or spray paint.&lt;ref name=Abbood2017EvoIASP&gt;{{cite conference |title=Evolutionary Art Using the Fly Algorithm|last1=Ali Abbood|first1=Zainab|last2=Amlal|first2=Othman|last3=Vidal|first3=Franck P.|publisher=Springer|conference=Applications of Evolutionary Computation (EvoApplications 2017)|pages=455–470|date=Apr 2017|doi=10.1007/978-3-319-55849-3_30|location=Amsterdam, <del style="font-weight: bold; text-decoration: none;">The</del> Netherlands|volume=10199|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Abbood017EvoIASP.pdf}}&lt;/ref&gt; Examples of images can be found on [https://www.youtube.com/playlist?list=PLR_5kWb9r72g-XnYdrdJhRle8aGtqX6CE YouTube]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recently it has been used in digital art to generate mosaic-like images or spray paint.&lt;ref name=Abbood2017EvoIASP&gt;{{cite conference |title=Evolutionary Art Using the Fly Algorithm|last1=Ali Abbood|first1=Zainab|last2=Amlal|first2=Othman|last3=Vidal|first3=Franck P.|publisher=Springer|conference=Applications of Evolutionary Computation (EvoApplications 2017)|pages=455–470|date=Apr 2017|doi=10.1007/978-3-319-55849-3_30|location=Amsterdam, <ins style="font-weight: bold; text-decoration: none;">the</ins> Netherlands|volume=10199|book-title=Lecture Notes in Computer Science|url=http://fly4pet.fpvidal.net/pdf/Abbood017EvoIASP.pdf}}&lt;/ref&gt; Examples of images can be found on [https://www.youtube.com/playlist?list=PLR_5kWb9r72g-XnYdrdJhRle8aGtqX6CE YouTube]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!--ref&gt;{{cite conference }}&lt;/ref--&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!--ref&gt;{{cite conference }}&lt;/ref--&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- </div></td> </tr> </table> Dicklyon https://en.wikipedia.org/w/index.php?title=Fly_algorithm&diff=1046818550&oldid=prev Orenburg1: sp 2021-09-27T15:29:02Z <p>sp</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:29, 27 September 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 223:</td> <td colspan="2" class="diff-lineno">Line 223:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In this example, an input image is to be approximated by a set of tiles (for example as in an ancient [[mosaic]]). A tile has an orientation (angle θ), a three colour components (R, G, B), a size (w, h) and a position (x, y, z). If there are ''N'' tiles, there are 9''N'' unknown floating point numbers to guess. In other words for 5,000 tiles, there are 45,000 numbers to find. Using a classical evolutionary algorithm where the answer of the optimisation problem is the best individual, the genome of an individual would made of 45,000 genes. This approach would be extremely costly in term of complexity and computing time. The same applies for any classical optimisation algorithm. Using the Fly Algorithm, every individual mimics a tile and can be individually evaluated using its local fitness to assess its contribution to the population's performance (the global fitness). Here an individual has 9 genes instead of 9''N'', and there are ''N'' individuals. It can be solved as a reconstruction problem as follows:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In this example, an input image is to be approximated by a set of tiles (for example as in an ancient [[mosaic]]). A tile has an orientation (angle θ), a three colour components (R, G, B), a size (w, h) and a position (x, y, z). If there are ''N'' tiles, there are 9''N'' unknown floating point numbers to guess. In other words for 5,000 tiles, there are 45,000 numbers to find. Using a classical evolutionary algorithm where the answer of the optimisation problem is the best individual, the genome of an individual would<ins style="font-weight: bold; text-decoration: none;"> be</ins> made<ins style="font-weight: bold; text-decoration: none;"> up</ins> of 45,000 genes. This approach would be extremely costly in term of complexity and computing time. The same applies for any classical optimisation algorithm. Using the Fly Algorithm, every individual mimics a tile and can be individually evaluated using its local fitness to assess its contribution to the population's performance (the global fitness). Here an individual has 9 genes instead of 9''N'', and there are ''N'' individuals. It can be solved as a reconstruction problem as follows:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;reconstruction = \operatorname{arg\,min} \overset{x&lt;W}{\underset{y=0}{\sum}}\overset{j&lt;H}{\underset{j=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;reconstruction = \operatorname{arg\,min} \overset{x&lt;W}{\underset{y=0}{\sum}}\overset{j&lt;H}{\underset{j=0}{\sum}}|input(x,y) - P[F](x,y)|&lt;/math&gt;</div></td> </tr> </table> Orenburg1