https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Genetic_algorithm Genetic algorithm - Revision history 2025-05-29T03:50:23Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1292039994&oldid=prev PeterGrant07: /* Chromosome representation */ adding early innovations in variable-length representations 2025-05-24T21:33:33Z <p><span class="autocomment">Chromosome representation: </span> adding early innovations in variable-length representations</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:33, 24 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 100:</td> <td colspan="2" class="diff-lineno">Line 100:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An expansion of the Genetic Algorithm accessible problem domain can be obtained through more complex encoding of the solution pools by concatenating several types of heterogenously encoded genes into one chromosome.&lt;ref name=Patrascu2014&gt;{{cite journal|last1=Patrascu|first1=M.|last2=Stancu|first2=A.F.|last3=Pop|first3=F.|title=HELGA: a heterogeneous encoding lifelike genetic algorithm for population evolution modeling and simulation|journal=Soft Computing|year=2014|volume=18|issue=12|pages=2565–2576|doi=10.1007/s00500-014-1401-y|s2cid=29821873}}&lt;/ref&gt; This particular approach allows for solving optimization problems that require vastly disparate definition domains for the problem parameters. For instance, in problems of cascaded controller tuning, the internal loop controller structure can belong to a conventional regulator of three parameters, whereas the external loop could implement a linguistic controller (such as a fuzzy system) which has an inherently different description. This particular form of encoding requires a specialized crossover mechanism that recombines the chromosome by section, and it is a useful tool for the modelling and simulation of complex adaptive systems, especially evolution processes.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An expansion of the Genetic Algorithm accessible problem domain can be obtained through more complex encoding of the solution pools by concatenating several types of heterogenously encoded genes into one chromosome.&lt;ref name=Patrascu2014&gt;{{cite journal|last1=Patrascu|first1=M.|last2=Stancu|first2=A.F.|last3=Pop|first3=F.|title=HELGA: a heterogeneous encoding lifelike genetic algorithm for population evolution modeling and simulation|journal=Soft Computing|year=2014|volume=18|issue=12|pages=2565–2576|doi=10.1007/s00500-014-1401-y|s2cid=29821873}}&lt;/ref&gt; This particular approach allows for solving optimization problems that require vastly disparate definition domains for the problem parameters. For instance, in problems of cascaded controller tuning, the internal loop controller structure can belong to a conventional regulator of three parameters, whereas the external loop could implement a linguistic controller (such as a fuzzy system) which has an inherently different description. This particular form of encoding requires a specialized crossover mechanism that recombines the chromosome by section, and it is a useful tool for the modelling and simulation of complex adaptive systems, especially evolution processes.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Another important expansion of the Genetic Algorithm (GA) accessible solution space was driven by the need to make representations amenable to variable levels of knowledge about the solution states. Variable-length representations were inspired by the observation that, in nature, evolution tends to progress from simpler organisms to more complex ones—suggesting an underlying rationale for embracing flexible structures.&lt;ref&gt;Goldberg, D.E., Korb, B., &amp; Deb, K. (1989). Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems, 3(5), 493–530. ISSN 0891-2513.&lt;/ref&gt; A second, more pragmatic motivation was that most real-world engineering and knowledge-based problems do not naturally conform to rigid knowledge structures.&lt;ref&gt;Davidor, Y. (1991). Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization. World Scientific Series in Robotics and Intelligent Systems: Volume 1.&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>These early innovations in variable-length representations laid essential groundwork for the development of [[Genetic programming]], which further extended the classical GA paradigm. Such representations required enhancements to the simplistic genetic operators used for fixed-length chromosomes, enabling the emergence of more sophisticated and adaptive GA models.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Elitism ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Elitism ===</div></td> </tr> </table> PeterGrant07 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1290915356&oldid=prev Widefox: /* top */ bold alt article name per MOS, 2025-05-17T22:08:56Z <p><span class="autocomment">top: </span> bold alt article name per MOS,</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:08, 17 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm (GA<del style="font-weight: bold; text-decoration: none;">)</del>''' is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |isbn=978-1-119-13638-5 |url=https://books.google.com/books?id=GlGpDgAAQBAJ&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;pg=PP2}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s via biologically inspired operators such as [[selection (genetic algorithm)|selection]], [[crossover (genetic algorithm)|crossover]], and [[Mutation (genetic algorithm)|mutation]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], and [[causal inference]].&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm<ins style="font-weight: bold; text-decoration: none;">'''</ins> (<ins style="font-weight: bold; text-decoration: none;">'''</ins>GA'''<ins style="font-weight: bold; text-decoration: none;">)</ins> is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |isbn=978-1-119-13638-5 |url=https://books.google.com/books?id=GlGpDgAAQBAJ&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;pg=PP2}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s via biologically inspired operators such as [[selection (genetic algorithm)|selection]], [[crossover (genetic algorithm)|crossover]], and [[Mutation (genetic algorithm)|mutation]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], and [[causal inference]].&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> </tr> </table> Widefox https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1285366597&oldid=prev Dominic3203: /* top */ 2025-04-13T08:53:37Z <p><span class="autocomment">top</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:53, 13 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although crossover and mutation are known as the main genetic operators, it is possible to use other operators such as regrouping, colonization-extinction, or migration in genetic algorithms.{{citation needed|date=November 2019}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although crossover and mutation are known as the main genetic operators, it is possible to use other operators such as regrouping, colonization-extinction, or migration in genetic algorithms.{{citation needed|date=November 2019}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is worth tuning parameters such as the [[Mutation (genetic algorithm)|mutation]] probability, [[Crossover (genetic algorithm)|crossover]] probability and population size to find reasonable settings for the problem class being worked on. A very small mutation rate may lead to [[genetic drift]] (which is non-[[Ergodicity|ergodic]] in nature). A recombination rate that is too high may lead to premature convergence of the genetic algorithm. A mutation rate that is too high may lead to loss of good solutions, unless [[#Elitism|elitist selection]] is employed. An adequate population size ensures sufficient genetic diversity for the problem at hand, but can lead to a waste of computational resources if set to a value larger than required.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is worth tuning parameters such as the [[Mutation (genetic algorithm)|mutation]] probability, [[Crossover (genetic algorithm)|crossover]] probability and population size to find reasonable settings for the problem<ins style="font-weight: bold; text-decoration: none;">'s [[complexity</ins> class<ins style="font-weight: bold; text-decoration: none;">]]</ins> being worked on. A very small mutation rate may lead to [[genetic drift]] (which is non-[[Ergodicity|ergodic]] in nature). A recombination rate that is too high may lead to premature convergence of the genetic algorithm. A mutation rate that is too high may lead to loss of good solutions, unless [[#Elitism|elitist selection]] is employed. An adequate population size ensures sufficient genetic diversity for the problem at hand, but can lead to a waste of computational resources if set to a value larger than required.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Heuristics ====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Heuristics ====</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 75:</td> <td colspan="2" class="diff-lineno">Line 75:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some classes of <del style="font-weight: bold; text-decoration: none;">problems</del>, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some <ins style="font-weight: bold; text-decoration: none;">[[List of complexity classes|</ins>classes of <ins style="font-weight: bold; text-decoration: none;">problem]]s</ins>, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> </tr> </table> Dominic3203 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1285366256&oldid=prev Dominic3203: Undid revision 1285356342 by Dominic3203 (talk) 2025-04-13T08:50:19Z <p>Undid revision <a href="/wiki/Special:Diff/1285356342" title="Special:Diff/1285356342">1285356342</a> by <a href="/wiki/Special:Contributions/Dominic3203" title="Special:Contributions/Dominic3203">Dominic3203</a> (<a href="/wiki/User_talk:Dominic3203" title="User talk:Dominic3203">talk</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:50, 13 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 75:</td> <td colspan="2" class="diff-lineno">Line 75:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some <del style="font-weight: bold; text-decoration: none;">[[Time complexity#</del>classes of problems<del style="font-weight: bold; text-decoration: none;">]]</del>, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some classes of problems, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> </tr> </table> Dominic3203 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1285356342&oldid=prev Dominic3203: /* top */Added links 2025-04-13T07:02:09Z <p><span class="autocomment">top: </span>Added links</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:02, 13 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 75:</td> <td colspan="2" class="diff-lineno">Line 75:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."{{sfn|Goldberg|1989|p=41}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some classes of problems, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many [[estimation of distribution algorithm]]s, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.&lt;ref&gt;{{cite book|last1=Harik|first1=Georges R.|last2=Lobo|first2=Fernando G.|last3=Sastry|first3=Kumara|title=Scalable Optimization via Probabilistic Modeling |chapter=Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) |volume=33|date=1 January 2006|pages=39–61|doi=10.1007/978-3-540-34954-9_3|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-34953-2}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}&lt;/ref&gt; Although good results have been reported for some <ins style="font-weight: bold; text-decoration: none;">[[Time complexity#</ins>classes of problems<ins style="font-weight: bold; text-decoration: none;">]]</ins>, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs' efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.&lt;ref&gt;{{cite book|last1=Coffin|first1=David|last2=Smith|first2=Robert E.|title=Linkage in Evolutionary Computation |chapter=Linkage Learning in Estimation of Distribution Algorithms |volume=157|date=1 January 2008|pages=141–156|doi=10.1007/978-3-540-85068-7_7|language=en|series=Studies in Computational Intelligence|isbn=978-3-540-85067-0}}&lt;/ref&gt;&lt;ref&gt;{{cite journal|last1=Echegoyen|first1=Carlos|last2=Mendiburu|first2=Alexander|last3=Santana|first3=Roberto|last4=Lozano|first4=Jose A.|title=On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms|journal=Evolutionary Computation|date=8 November 2012|volume=21|issue=3|pages=471–495|doi=10.1162/EVCO_a_00095|pmid=23136917|s2cid=26585053|issn=1063-6560}}&lt;/ref&gt;&lt;ref&gt;{{cite book|last1=Sadowski|first1=Krzysztof L.|last2=Bosman|first2=Peter A.N.|last3=Thierens|first3=Dirk|title=Proceedings of the 15th annual conference on Genetic and evolutionary computation |chapter=On the usefulness of linkage processing for solving MAX-SAT |date=1 January 2013|pages=853–860|doi=10.1145/2463372.2463474|isbn=9781450319638|series=Gecco '13|hdl=1874/290291|s2cid=9986768}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Limitations ==</div></td> </tr> </table> Dominic3203 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1265724203&oldid=prev Geysirhead: removed Category:Evolutionary algorithms using HotCat not needed 2024-12-28T09:40:15Z <p>removed <a href="/wiki/Category:Evolutionary_algorithms" title="Category:Evolutionary algorithms">Category:Evolutionary algorithms</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a> not needed</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:40, 28 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 257:</td> <td colspan="2" class="diff-lineno">Line 257:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Genetic Algorithm}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Genetic Algorithm}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Genetic algorithms| ]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Genetic algorithms| ]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Evolutionary algorithms]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Search algorithms]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Search algorithms]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cybernetics]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cybernetics]]</div></td> </tr> </table> Geysirhead https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1265586435&oldid=prev Geysirhead: removed Category:Digital organisms using HotCat A genetic algorithm is not a self-replicating algorithm, contains replicating population parts, but does not contain self-replicating parts 2024-12-27T17:09:28Z <p>removed <a href="/wiki/Category:Digital_organisms" title="Category:Digital organisms">Category:Digital organisms</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a> A genetic algorithm is not a self-replicating algorithm, contains replicating population parts, but does not contain self-replicating parts</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:09, 27 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 260:</td> <td colspan="2" class="diff-lineno">Line 260:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Search algorithms]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Search algorithms]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cybernetics]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Cybernetics]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Digital organisms]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[sv:Genetisk programmering#Genetisk algoritm]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[sv:Genetisk programmering#Genetisk algoritm]]</div></td> </tr> </table> Geysirhead https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1255083030&oldid=prev Citation bot: Altered url. URLs might have been anonymized. Added isbn. | Use this bot. Report bugs. | Suggested by Jay8g | Linked from User:Jay8g/sandbox | #UCB_webform_linked 127/428 2024-11-03T01:32:28Z <p>Altered url. URLs might have been anonymized. Added isbn. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Jay8g | Linked from User:Jay8g/sandbox | #UCB_webform_linked 127/428</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:32, 3 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm (GA)''' is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |url=https://books.google.<del style="font-weight: bold; text-decoration: none;">co.uk</del>/books?<del style="font-weight: bold; text-decoration: none;">hl=en&amp;lr=&amp;</del>id=GlGpDgAAQBAJ<del style="font-weight: bold; text-decoration: none;">&amp;oi=fnd&amp;pg=PP2</del>&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;<del style="font-weight: bold; text-decoration: none;">ots</del>=<del style="font-weight: bold; text-decoration: none;">zk8iTgy5Qc&amp;sig=_7oaR0-lTQLqo-4jJXyCTu88WQ4&amp;redir_esc=y#v=onepage&amp;q=genetic%20algorithm%20evolutionary%20algorithms&amp;f=false</del>}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s via biologically inspired operators such as [[selection (genetic algorithm)|selection]], [[crossover (genetic algorithm)|crossover]], and [[Mutation (genetic algorithm)|mutation]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], and [[causal inference]].&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm (GA)''' is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017<ins style="font-weight: bold; text-decoration: none;"> |isbn=978-1-119-13638-5</ins> |url=https://books.google.<ins style="font-weight: bold; text-decoration: none;">com</ins>/books?id=GlGpDgAAQBAJ&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;<ins style="font-weight: bold; text-decoration: none;">pg</ins>=<ins style="font-weight: bold; text-decoration: none;">PP2</ins>}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s via biologically inspired operators such as [[selection (genetic algorithm)|selection]], [[crossover (genetic algorithm)|crossover]], and [[Mutation (genetic algorithm)|mutation]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], and [[causal inference]].&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> </tr> <!-- diff cache key enwiki:diff:1.41:old-1248419193:rev-1255083030:wikidiff2=table:1.14.1:ff290eae --> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1248419193&oldid=prev Perceptron599: Reorder 'selection', 'crossover', 'mutation' to reflect the actual sequence of steps in the algorithm 2024-09-29T11:58:32Z <p>Reorder &#039;selection&#039;, &#039;crossover&#039;, &#039;mutation&#039; to reflect the actual sequence of steps in the algorithm</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:58, 29 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm<del style="font-weight: bold; text-decoration: none;">'''</del> (<del style="font-weight: bold; text-decoration: none;">'''</del>GA'''<del style="font-weight: bold; text-decoration: none;">)</del> is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |url=https://books.google.co.uk/books?hl=en&amp;lr=&amp;id=GlGpDgAAQBAJ&amp;oi=fnd&amp;pg=PP2&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;ots=zk8iTgy5Qc&amp;sig=_7oaR0-lTQLqo-4jJXyCTu88WQ4&amp;redir_esc=y#v=onepage&amp;q=genetic%20algorithm%20evolutionary%20algorithms&amp;f=false}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s <del style="font-weight: bold; text-decoration: none;">by relying on</del> biologically inspired operators such as [[<del style="font-weight: bold; text-decoration: none;">Mutation</del> (genetic algorithm)|<del style="font-weight: bold; text-decoration: none;">mutation</del>]], [[crossover (genetic algorithm)|crossover]] and [[<del style="font-weight: bold; text-decoration: none;">selection</del> (genetic algorithm)|<del style="font-weight: bold; text-decoration: none;">selection</del>]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], [[causal inference]]<del style="font-weight: bold; text-decoration: none;">,</del>&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;"> etc.</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm (GA<ins style="font-weight: bold; text-decoration: none;">)</ins>''' is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |url=https://books.google.co.uk/books?hl=en&amp;lr=&amp;id=GlGpDgAAQBAJ&amp;oi=fnd&amp;pg=PP2&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;ots=zk8iTgy5Qc&amp;sig=_7oaR0-lTQLqo-4jJXyCTu88WQ4&amp;redir_esc=y#v=onepage&amp;q=genetic%20algorithm%20evolutionary%20algorithms&amp;f=false}}&lt;/ref&gt; Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s <ins style="font-weight: bold; text-decoration: none;">via</ins> biologically inspired operators such as [[<ins style="font-weight: bold; text-decoration: none;">selection</ins> (genetic algorithm)|<ins style="font-weight: bold; text-decoration: none;">selection</ins>]], [[crossover (genetic algorithm)|crossover]]<ins style="font-weight: bold; text-decoration: none;">,</ins> and [[<ins style="font-weight: bold; text-decoration: none;">Mutation</ins> (genetic algorithm)|<ins style="font-weight: bold; text-decoration: none;">mutation</ins>]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]],<ins style="font-weight: bold; text-decoration: none;"> and</ins> [[causal inference]]<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> </tr> </table> Perceptron599 https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&diff=1247617839&oldid=prev Neutral Editor 645: Added source 2024-09-25T03:07:00Z <p>Added source</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:07, 25 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 4:</td> <td colspan="2" class="diff-lineno">Line 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Image:St 5-xband-antenna.jpg|thumb|The 2006 NASA [[Space Technology 5|ST5]] spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an [[evolved antenna]].]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Deleted image removed: [[Image:ESA JAXA HUMIES Trajectory.png|thumb|The ESA/JAXA interplanetary Trajectory recipient of the [http://www.genetic-programming.org/combined.php 2013 gold HUMIES ] award. This complex tour of the Jovian Moons was found with the help of an evolutionary technique based on self-adaptation]] --&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm''' ('''GA''') is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA). Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s by relying on biologically inspired operators such as [[Mutation (genetic algorithm)|mutation]], [[crossover (genetic algorithm)|crossover]] and [[selection (genetic algorithm)|selection]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], [[causal inference]],&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt; etc.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''genetic algorithm''' ('''GA''') is a [[metaheuristic]] inspired by the process of [[natural selection]] that belongs to the larger class of [[evolutionary algorithm]]s (EA).<ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;{{Cite book |last1=Pétrowski |first1=Alain |last2=Ben-Hamida |first2=Sana |title=Evolutionary algorithms |publisher=John Wiley &amp; Sons |page=30 |year=2017 |url=https://books.google.co.uk/books?hl=en&amp;lr=&amp;id=GlGpDgAAQBAJ&amp;oi=fnd&amp;pg=PP2&amp;dq=genetic+algorithm+evolutionary+algorithms&amp;ots=zk8iTgy5Qc&amp;sig=_7oaR0-lTQLqo-4jJXyCTu88WQ4&amp;redir_esc=y#v=onepage&amp;q=genetic%20algorithm%20evolutionary%20algorithms&amp;f=false}}&lt;/ref&gt;</ins> Genetic algorithms are commonly used to generate high-quality solutions to [[Optimization (mathematics)|optimization]] and [[Search algorithm|search problem]]s by relying on biologically inspired operators such as [[Mutation (genetic algorithm)|mutation]], [[crossover (genetic algorithm)|crossover]] and [[selection (genetic algorithm)|selection]].{{sfn|Mitchell|1996|p=2}} Some examples of GA applications include optimizing [[Decision tree learning|decision trees]] for better performance, solving [[Sudoku solving algorithms|sudoku puzzles]],&lt;ref&gt;{{Cite book|last1=Gerges|first1=Firas|last2=Zouein|first2=Germain|last3=Azar|first3=Danielle|title=Proceedings of the 2018 International Conference on Computing and Artificial Intelligence |chapter=Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles |date=2018-03-12|chapter-url=https://doi.org/10.1145/3194452.3194463|series=ICCAI 2018|location=New York, NY, USA|publisher=Association for Computing Machinery|pages=19–22|doi=10.1145/3194452.3194463|isbn=978-1-4503-6419-5|s2cid=44152535 }}&lt;/ref&gt; [[hyperparameter optimization]], [[causal inference]],&lt;ref&gt;{{cite journal |last1=Burkhart |first1=Michael C. |last2=Ruiz |first2=Gabriel |title=Neuroevolutionary representations for learning heterogeneous treatment effects |journal=Journal of Computational Science |date=2023 |volume=71 |page=102054 |doi=10.1016/j.jocs.2023.102054 |s2cid=258752823 |doi-access=free }}&lt;/ref&gt; etc.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Methodology ==</div></td> </tr> </table> Neutral Editor 645