https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Gibbs_algorithm Gibbs algorithm - Revision history 2025-05-31T19:26:41Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=1213449245&oldid=prev Jlwoodwa: tag as one source 2024-03-13T03:50:34Z <p>tag as one source</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:50, 13 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Criterion for choosing a probability distribution in statistical mechanics}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Criterion for choosing a probability distribution in statistical mechanics}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{one source |date=March 2024}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by minimizing the average log probability</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by minimizing the average log probability</div></td> </tr> </table> Jlwoodwa https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=1099183613&oldid=prev Fadesga: /* References */ 2022-07-19T11:59:04Z <p><span class="autocomment">References</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:59, 19 July 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 19:</td> <td colspan="2" class="diff-lineno">Line 19:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Particle statistics]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Particle statistics]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Entropy and information]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Entropy and information]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{statisticalmechanics-stub}}</div></td> </tr> </table> Fadesga https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=1063370376&oldid=prev MaxwellMolecule: Undid revision 1063293845 by 49.206.1.168 (talk) 2022-01-02T18:31:10Z <p>Undid revision 1063293845 by <a href="/wiki/Special:Contributions/49.206.1.168" title="Special:Contributions/49.206.1.168">49.206.1.168</a> (<a href="/wiki/User_talk:49.206.1.168" title="User talk:49.206.1.168">talk</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:31, 2 January 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <del style="font-weight: bold; text-decoration: none;">min,mjnbhjbimizing</del> the average log probability</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <ins style="font-weight: bold; text-decoration: none;">minimizing</ins> the average log probability</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> </table> MaxwellMolecule https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=1063293845&oldid=prev 49.206.1.168: hj 2022-01-02T06:17:57Z <p>hj</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:17, 2 January 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <del style="font-weight: bold; text-decoration: none;">minimizing</del> the average log probability</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <ins style="font-weight: bold; text-decoration: none;">min,mjnbhjbimizing</ins> the average log probability</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> </table> 49.206.1.168 https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=991213411&oldid=prev Footlessmouse: Importing Wikidata short description: "Criterion for choosing a probability distribution in statistical mechanics" (Shortdesc helper) 2020-11-28T22:07:56Z <p>Importing Wikidata <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: &quot;Criterion for choosing a probability distribution in statistical mechanics&quot; (<a href="/wiki/Wikipedia:Shortdesc_helper" title="Wikipedia:Shortdesc helper">Shortdesc helper</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:07, 28 November 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Criterion for choosing a probability distribution in statistical mechanics}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> </tr> </table> Footlessmouse https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=983766431&oldid=prev Citation bot: Alter: pages. Add: series. Formatted dashes. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:Statistical mechanics | via #UCB_Category 221/273 2020-10-16T03:37:07Z <p>Alter: pages. Add: series. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | Suggested by Abductive | <a href="/wiki/Category:Statistical_mechanics" title="Category:Statistical mechanics">Category:Statistical mechanics</a> | via #UCB_Category 221/273</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:37, 16 October 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution {{math|''p&lt;sub&gt;i&lt;/sub&gt;''}} satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities.&lt;ref name=Dewar&gt;{{cite book|first=Roderick C. |last=Dewar|chapter=4. Maximum Entropy Production and Non-equilibrium Statistical Mechanics|editor-last1=Kleidon|editor-first1=A.|title=Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond|url=https://archive.org/details/nonequilibriumth00klei |url-access=limited |date=2005|publisher=Springer|location=Berlin|isbn=9783540224952|pages=<del style="font-weight: bold; text-decoration: none;">[https://archive.org/details/nonequilibriumth00klei/page/n57 41]&amp;ndash;55</del>|doi=10.1007/11672906_4}}&lt;/ref&gt; in 1948, [[Claude E. Shannon|Claude Shannon]] interpreted the negative of this quantity, which he called [[entropy_(Information_theory)|information entropy]], as a measure of the uncertainty in a probability distribution.&lt;ref name=Dewar/&gt; In 1957, [[E.T. Jaynes]] realized that this quantity could be interpreted as missing information about anything, and generalized the Gibbs algorithm to non-equilibrium systems with the [[principle of maximum entropy]] and [[maximum entropy thermodynamics]].&lt;ref name=Dewar/&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution {{math|''p&lt;sub&gt;i&lt;/sub&gt;''}} satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities.&lt;ref name=Dewar&gt;{{cite book|first=Roderick C. |last=Dewar|chapter=4. Maximum Entropy Production and Non-equilibrium Statistical Mechanics|editor-last1=Kleidon|editor-first1=A.|title=Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond<ins style="font-weight: bold; text-decoration: none;">|series=Understanding Complex Systems</ins>|url=https://archive.org/details/nonequilibriumth00klei |url-access=limited |date=2005|publisher=Springer|location=Berlin|isbn=9783540224952|pages=<ins style="font-weight: bold; text-decoration: none;">41–55</ins>|doi=10.1007/11672906_4}}&lt;/ref&gt; in 1948, [[Claude E. Shannon|Claude Shannon]] interpreted the negative of this quantity, which he called [[entropy_(Information_theory)|information entropy]], as a measure of the uncertainty in a probability distribution.&lt;ref name=Dewar/&gt; In 1957, [[E.T. Jaynes]] realized that this quantity could be interpreted as missing information about anything, and generalized the Gibbs algorithm to non-equilibrium systems with the [[principle of maximum entropy]] and [[maximum entropy thermodynamics]].&lt;ref name=Dewar/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=959943788&oldid=prev InternetArchiveBot: Bluelink 1 book for verifiability (prndis)) #IABot (v2.0.1) (GreenC bot 2020-05-31T10:30:54Z <p>Bluelink 1 book for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifiability</a> (prndis)) #IABot (v2.0.1) (<a href="/wiki/User:GreenC_bot" title="User:GreenC bot">GreenC bot</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:30, 31 May 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; \langle\ln p_i\rangle = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution {{math|''p&lt;sub&gt;i&lt;/sub&gt;''}} satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities.&lt;ref name=Dewar&gt;{{cite book|first=Roderick C. |last=Dewar|chapter=4. Maximum Entropy Production and Non-equilibrium Statistical Mechanics|editor-last1=Kleidon|editor-first1=A.|title=Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond|date=2005|publisher=Springer|location=Berlin|isbn=9783540224952|pages=41&amp;ndash;55|doi=10.1007/11672906_4}}&lt;/ref&gt; in 1948, [[Claude E. Shannon|Claude Shannon]] interpreted the negative of this quantity, which he called [[entropy_(Information_theory)|information entropy]], as a measure of the uncertainty in a probability distribution.&lt;ref name=Dewar/&gt; In 1957, [[E.T. Jaynes]] realized that this quantity could be interpreted as missing information about anything, and generalized the Gibbs algorithm to non-equilibrium systems with the [[principle of maximum entropy]] and [[maximum entropy thermodynamics]].&lt;ref name=Dewar/&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution {{math|''p&lt;sub&gt;i&lt;/sub&gt;''}} satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities.&lt;ref name=Dewar&gt;{{cite book|first=Roderick C. |last=Dewar|chapter=4. Maximum Entropy Production and Non-equilibrium Statistical Mechanics|editor-last1=Kleidon|editor-first1=A.|title=Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond<ins style="font-weight: bold; text-decoration: none;">|url=https://archive.org/details/nonequilibriumth00klei |url-access=limited </ins>|date=2005|publisher=Springer|location=Berlin|isbn=9783540224952|pages=<ins style="font-weight: bold; text-decoration: none;">[https://archive.org/details/nonequilibriumth00klei/page/n57 </ins>41<ins style="font-weight: bold; text-decoration: none;">]</ins>&amp;ndash;55|doi=10.1007/11672906_4}}&lt;/ref&gt; in 1948, [[Claude E. Shannon|Claude Shannon]] interpreted the negative of this quantity, which he called [[entropy_(Information_theory)|information entropy]], as a measure of the uncertainty in a probability distribution.&lt;ref name=Dewar/&gt; In 1957, [[E.T. Jaynes]] realized that this quantity could be interpreted as missing information about anything, and generalized the Gibbs algorithm to non-equilibrium systems with the [[principle of maximum entropy]] and [[maximum entropy thermodynamics]].&lt;ref name=Dewar/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=717862799&oldid=prev 老陳 at 05:15, 30 April 2016 2016-04-30T05:15:10Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:15, 30 April 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[FILE:Josiah Willard Gibbs -from MMS-.jpg|thumb|200px|Josiah Willard Gibbs]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by minimizing the average log probability</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1902, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by minimizing the average log probability</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> 老陳 https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=680799324&oldid=prev RockMagnetist: Added citations, removed tags, added Distinguish hatnote 2015-09-13T06:53:00Z <p>Added citations, removed tags, added Distinguish hatnote</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:53, 13 September 2015</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish |Gibbs sampler}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Unreferenced|date=December 2009}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Disputed|date=March 2008}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in <del style="font-weight: bold; text-decoration: none;">1878</del>, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <del style="font-weight: bold; text-decoration: none;">maximising</del> the average<del style="font-weight: bold; text-decoration: none;"> negative</del> log probability<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in <ins style="font-weight: bold; text-decoration: none;">1902</ins>, is a criterion for choosing a [[probability distribution]] for the [[statistical ensemble]] of [[microstate (statistical mechanics)|microstate]]s of a [[thermodynamic system]] by <ins style="font-weight: bold; text-decoration: none;">minimizing</ins> the average log probability</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(or [[entropy_(Information_theory)|information-theoretic entropy]])</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; <del style="font-weight: bold; text-decoration: none;">H</del> = \sum_i <del style="font-weight: bold; text-decoration: none;">-</del>p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; <ins style="font-weight: bold; text-decoration: none;">\langle\ln p_i\rangle</ins> = \sum_i p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution ''<del style="font-weight: bold; text-decoration: none;">p_i</del>'' satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities. <del style="font-weight: bold; text-decoration: none;">Physicists</del> <del style="font-weight: bold; text-decoration: none;">call</del> the <del style="font-weight: bold; text-decoration: none;">result</del> of <del style="font-weight: bold; text-decoration: none;">applying</del> <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">Gibbs</del> <del style="font-weight: bold; text-decoration: none;">algorithm</del> <del style="font-weight: bold; text-decoration: none;">the</del> [[<del style="font-weight: bold; text-decoration: none;">Gibbs</del> <del style="font-weight: bold; text-decoration: none;">distribution</del>]] <del style="font-weight: bold; text-decoration: none;">for</del> the <del style="font-weight: bold; text-decoration: none;">given</del> <del style="font-weight: bold; text-decoration: none;">constraints</del>, <del style="font-weight: bold; text-decoration: none;">most</del> <del style="font-weight: bold; text-decoration: none;">notably</del> <del style="font-weight: bold; text-decoration: none;">Gibbs's</del> [[<del style="font-weight: bold; text-decoration: none;">grand canonical</del> <del style="font-weight: bold; text-decoration: none;">ensemble</del>]] <del style="font-weight: bold; text-decoration: none;">for</del> <del style="font-weight: bold; text-decoration: none;">open</del> <del style="font-weight: bold; text-decoration: none;">systems</del> <del style="font-weight: bold; text-decoration: none;">when</del> the <del style="font-weight: bold; text-decoration: none;">average</del> <del style="font-weight: bold; text-decoration: none;">energy</del> and the <del style="font-weight: bold; text-decoration: none;">average</del> <del style="font-weight: bold; text-decoration: none;">number</del> <del style="font-weight: bold; text-decoration: none;">of</del> <del style="font-weight: bold; text-decoration: none;">particles</del> <del style="font-weight: bold; text-decoration: none;">are</del> <del style="font-weight: bold; text-decoration: none;">given.</del> <del style="font-weight: bold; text-decoration: none;">(See</del> <del style="font-weight: bold; text-decoration: none;">also ''</del>[[<del style="font-weight: bold; text-decoration: none;">Partition</del> <del style="font-weight: bold; text-decoration: none;">function</del> <del style="font-weight: bold; text-decoration: none;">(mathematics)|partition</del> <del style="font-weight: bold; text-decoration: none;">function</del>]]<del style="font-weight: bold; text-decoration: none;">'')</del>.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution <ins style="font-weight: bold; text-decoration: none;">{{math|</ins>''<ins style="font-weight: bold; text-decoration: none;">p&lt;sub&gt;i&lt;/sub&gt;</ins>''<ins style="font-weight: bold; text-decoration: none;">}}</ins> satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities.<ins style="font-weight: bold; text-decoration: none;">&lt;ref</ins> <ins style="font-weight: bold; text-decoration: none;">name=Dewar&gt;{{cite</ins> <ins style="font-weight: bold; text-decoration: none;">book|first=Roderick</ins> <ins style="font-weight: bold; text-decoration: none;">C. |last=Dewar|chapter=4. Maximum Entropy Production and Non-equilibrium Statistical Mechanics|editor-last1=Kleidon|editor-first1=A.|title=Non-equilibrium thermodynamics and</ins> the <ins style="font-weight: bold; text-decoration: none;">production</ins> of <ins style="font-weight: bold; text-decoration: none;">entropy</ins> <ins style="font-weight: bold; text-decoration: none;">:</ins> <ins style="font-weight: bold; text-decoration: none;">life,</ins> <ins style="font-weight: bold; text-decoration: none;">earth,</ins> <ins style="font-weight: bold; text-decoration: none;">and beyond|date=2005|publisher=Springer|location=Berlin|isbn=9783540224952|pages=41&amp;ndash;55|doi=10.1007/11672906_4}}&lt;/ref&gt; in 1948,</ins> [[<ins style="font-weight: bold; text-decoration: none;">Claude</ins> <ins style="font-weight: bold; text-decoration: none;">E. Shannon|Claude Shannon</ins>]] <ins style="font-weight: bold; text-decoration: none;">interpreted</ins> the <ins style="font-weight: bold; text-decoration: none;">negative</ins> <ins style="font-weight: bold; text-decoration: none;">of this quantity</ins>, <ins style="font-weight: bold; text-decoration: none;">which</ins> <ins style="font-weight: bold; text-decoration: none;">he</ins> <ins style="font-weight: bold; text-decoration: none;">called</ins> [[<ins style="font-weight: bold; text-decoration: none;">entropy_(Information_theory)|information</ins> <ins style="font-weight: bold; text-decoration: none;">entropy</ins>]]<ins style="font-weight: bold; text-decoration: none;">,</ins> <ins style="font-weight: bold; text-decoration: none;">as</ins> <ins style="font-weight: bold; text-decoration: none;">a</ins> <ins style="font-weight: bold; text-decoration: none;">measure</ins> <ins style="font-weight: bold; text-decoration: none;">of</ins> the <ins style="font-weight: bold; text-decoration: none;">uncertainty</ins> <ins style="font-weight: bold; text-decoration: none;">in a probability distribution.&lt;ref name=Dewar/&gt; In 1957, [[E.T. Jaynes]] realized that this quantity could be interpreted as missing information about anything,</ins> and<ins style="font-weight: bold; text-decoration: none;"> generalized</ins> the <ins style="font-weight: bold; text-decoration: none;">Gibbs</ins> <ins style="font-weight: bold; text-decoration: none;">algorithm</ins> <ins style="font-weight: bold; text-decoration: none;">to</ins> <ins style="font-weight: bold; text-decoration: none;">non-equilibrium</ins> <ins style="font-weight: bold; text-decoration: none;">systems</ins> <ins style="font-weight: bold; text-decoration: none;">with</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> [[<ins style="font-weight: bold; text-decoration: none;">principle</ins> <ins style="font-weight: bold; text-decoration: none;">of</ins> <ins style="font-weight: bold; text-decoration: none;">maximum</ins> <ins style="font-weight: bold; text-decoration: none;">entropy]] and [[maximum entropy thermodynamics</ins>]].<ins style="font-weight: bold; text-decoration: none;">&lt;ref name=Dewar/&gt;</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the light of [[Claude E. Shannon|Claude Shannon]]'s [[information theory]], in 1957 [[E.T. Jaynes]] re-interpreted the Gibbs algorithm as a much more general, more widely applicable inference technique, leading to the [[principle of maximum entropy]], and the [[Maximum entropy thermodynamics|MaxEnt view of thermodynamics]]. </div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This general result of the Gibbs algorithm is then a [[maximum entropy probability distribution]]. Statisticians identify such distributions as belonging to [[exponential family|exponential families]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This general result of the Gibbs algorithm is then a [[maximum entropy probability distribution]]. Statisticians identify such distributions as belonging to [[exponential family|exponential families]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Not to be confused with==</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Gibbs sampler]], an update algorithm used in [[Markov chain Monte Carlo]] iterations, a special case of the [[Metropolis-Hastings algorithm]].</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Gibbs Algorithm}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Gibbs Algorithm}}</div></td> </tr> </table> RockMagnetist https://en.wikipedia.org/w/index.php?title=Gibbs_algorithm&diff=645515612&oldid=prev 89.217.13.75: Rewrote lede to be slightly clearer 2015-02-03T22:34:25Z <p>Rewrote lede to be slightly clearer</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:34, 3 February 2015</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Disputed|date=March 2008}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Disputed|date=March 2008}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''',<del style="font-weight: bold; text-decoration: none;"> first</del> introduced by [[J. Willard Gibbs]] in 1878, is <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">injunction</del> <del style="font-weight: bold; text-decoration: none;">to</del> <del style="font-weight: bold; text-decoration: none;">choose</del> a [[<del style="font-weight: bold; text-decoration: none;">statistical</del> <del style="font-weight: bold; text-decoration: none;">ensemble</del>]]<del style="font-weight: bold; text-decoration: none;"> (probability distribution)</del> for the <del style="font-weight: bold; text-decoration: none;">unknown</del> [[microstate (statistical mechanics)|<del style="font-weight: bold; text-decoration: none;">microscopic state</del>]] of a [[thermodynamic system]] by <del style="font-weight: bold; text-decoration: none;">minimising</del> the average log probability</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[statistical mechanics]], the '''Gibbs algorithm''', introduced by [[J. Willard Gibbs]] in 1878, is <ins style="font-weight: bold; text-decoration: none;">a</ins> <ins style="font-weight: bold; text-decoration: none;">criterion</ins> <ins style="font-weight: bold; text-decoration: none;">for</ins> <ins style="font-weight: bold; text-decoration: none;">choosing</ins> a [[<ins style="font-weight: bold; text-decoration: none;">probability</ins> <ins style="font-weight: bold; text-decoration: none;">distribution</ins>]] for the <ins style="font-weight: bold; text-decoration: none;">[[statistical ensemble]] of</ins> [[microstate (statistical mechanics)|<ins style="font-weight: bold; text-decoration: none;">microstate</ins>]]<ins style="font-weight: bold; text-decoration: none;">s</ins> of a [[thermodynamic system]] by <ins style="font-weight: bold; text-decoration: none;">maximising</ins> the average<ins style="font-weight: bold; text-decoration: none;"> negative</ins> log probability<ins style="font-weight: bold; text-decoration: none;"> </ins></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(or [[entropy_(Information_theory)|information-theoretic entropy]])</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; H = \sum_i -p_i \ln p_i \, &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt; H = \sum_i -p_i \ln p_i \, &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities. Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>subject to the probability distribution<ins style="font-weight: bold; text-decoration: none;"> ''p_i''</ins> satisfying a set of constraints (usually expectation values) corresponding to the known [[macroscopic]] quantities. Physicists call the result of applying the Gibbs algorithm the [[Gibbs distribution]] for the given constraints, most notably Gibbs's [[grand canonical ensemble]] for open systems when the average energy and the average number of particles are given. (See also ''[[Partition function (mathematics)|partition function]]'').</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the light of [[Claude E. Shannon|Claude Shannon]]'s [[information theory]], in 1957 [[E.T. Jaynes]] re-interpreted the Gibbs algorithm as a much more general, more widely applicable inference technique, leading to the [[principle of maximum entropy]], and the [[Maximum entropy thermodynamics|MaxEnt view of thermodynamics]]. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the light of [[Claude E. Shannon|Claude Shannon]]'s [[information theory]], in 1957 [[E.T. Jaynes]] re-interpreted the Gibbs algorithm as a much more general, more widely applicable inference technique, leading to the [[principle of maximum entropy]], and the [[Maximum entropy thermodynamics|MaxEnt view of thermodynamics]]. </div></td> </tr> </table> 89.217.13.75