https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Humanoid_ant_algorithm
Humanoid ant algorithm - Revision history
2025-06-03T08:26:16Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1233625940&oldid=prev
Nyq: Nyq moved page Humanoid Ant algorithm to Humanoid ant algorithm: lc per MOS:TITLECAPS
2024-07-10T02:36:08Z
<p>Nyq moved page <a href="/wiki/Humanoid_Ant_algorithm" class="mw-redirect" title="Humanoid Ant algorithm">Humanoid Ant algorithm</a> to <a href="/wiki/Humanoid_ant_algorithm" title="Humanoid ant algorithm">Humanoid ant algorithm</a>: lc per <a href="/wiki/MOS:TITLECAPS" class="mw-redirect" title="MOS:TITLECAPS">MOS:TITLECAPS</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<tr class="diff-title" lang="en">
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:36, 10 July 2024</td>
</tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div>
</td></tr></table>
Nyq
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1233625814&oldid=prev
Nyq: lc per MOS:EXPABBR and other common nouns
2024-07-10T02:35:09Z
<p>lc per <a href="/wiki/MOS:EXPABBR" class="mw-redirect" title="MOS:EXPABBR">MOS:EXPABBR</a> and other common nouns</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:35, 10 July 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Technical|date=January 2023}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Technical|date=January 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''<del style="font-weight: bold; text-decoration: none;">Humanoid</del> <del style="font-weight: bold; text-decoration: none;">Ant</del> algorithm''' ('''HUMANT''') <ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> is an [[ant colony optimization algorithm]].<del style="font-weight: bold; text-decoration: none;"> </del> The algorithm is based on ''a priori'' approach to [[multi-objective optimization]] (MOO), which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first <del style="font-weight: bold; text-decoration: none;">Multi</del>-<del style="font-weight: bold; text-decoration: none;">Objective</del> <del style="font-weight: bold; text-decoration: none;">Ant</del> <del style="font-weight: bold; text-decoration: none;">Colony</del> <del style="font-weight: bold; text-decoration: none;">Optimization</del> (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''<ins style="font-weight: bold; text-decoration: none;">humanoid</ins> <ins style="font-weight: bold; text-decoration: none;">ant</ins> algorithm''' ('''HUMANT''') <ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> is an [[ant colony optimization algorithm]]. The algorithm is based on ''a priori'' approach to [[multi-objective optimization]] (MOO), which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first <ins style="font-weight: bold; text-decoration: none;">multi</ins>-<ins style="font-weight: bold; text-decoration: none;">objective</ins> <ins style="font-weight: bold; text-decoration: none;">ant</ins> <ins style="font-weight: bold; text-decoration: none;">colony</ins> <ins style="font-weight: bold; text-decoration: none;">optimization</ins> (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea of using the [[preference ranking organization method for enrichment evaluation]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea of using the [[preference ranking organization method for enrichment evaluation]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
</tr>
</table>
Nyq
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1183302954&oldid=prev
0i burabo noi 5 at 13:32, 3 November 2023
2023-11-03T13:32:09Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:32, 3 November 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea of using the [[preference ranking organization method for enrichment evaluation]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea of using the [[preference ranking organization method for enrichment evaluation]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">So far{{As of?|date=January 2023}}, </del>HUMANT <del style="font-weight: bold; text-decoration: none;">algorithm</del> <del style="font-weight: bold; text-decoration: none;">is</del> only known fully operational optimization algorithm that successfully <del style="font-weight: bold; text-decoration: none;">integrated</del> PROMETHEE method into ACO.{{Citation <del style="font-weight: bold; text-decoration: none;">needed</del>|date=<del style="font-weight: bold; text-decoration: none;">January</del> 2023}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>HUMANT <ins style="font-weight: bold; text-decoration: none;">is</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> only known fully operational optimization algorithm that successfully <ins style="font-weight: bold; text-decoration: none;">integrates</ins> PROMETHEE method into ACO.<ins style="font-weight: bold; text-decoration: none;"><ref></ins>{{Citation <ins style="font-weight: bold; text-decoration: none;">|last=Al-Janabi |first=Rana JumaaSarih |title=Multi-key Encryption Based on RSA and Block Segmentation </ins>|date=<ins style="font-weight: bold; text-decoration: none;">2022</ins> <ins style="font-weight: bold; text-decoration: none;">|url=http://dx.doi.org/10.1007/978-981-16-8739-6_61 |work=Biologically Inspired Techniques in Many Criteria Decision Making |pages=687–695 |access-date=</ins>2023<ins style="font-weight: bold; text-decoration: none;">-11-03 |place=Singapore |publisher=Springer Nature Singapore |isbn=978-981-16-8738-9 |last2=Al-Jubouri |first2=Ali Najam Mahawash</ins>}}<ins style="font-weight: bold; text-decoration: none;"></ref></ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The HUMANT algorithm has been experimentally tested on the [[traveling salesman problem]] and applied to the partner selection problem with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=2017|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The HUMANT algorithm has been experimentally tested on the [[traveling salesman problem]] and applied to the partner selection problem with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=2017|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
</tr>
</table>
0i burabo noi 5
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1162899834&oldid=prev
Jarble: adding Template:Optimization algorithms
2023-07-01T19:35:43Z
<p>adding <a href="/wiki/Template:Optimization_algorithms" title="Template:Optimization algorithms">Template:Optimization algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:35, 1 July 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Improve categories|date=January 2023}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Improve categories|date=January 2023}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Optimization algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Nature-inspired metaheuristics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Nature-inspired metaheuristics]]</div></td>
</tr>
</table>
Jarble
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1133861510&oldid=prev
Pppery: Cleanup, trim tech detail
2023-01-15T21:49:40Z
<p>Cleanup, trim tech detail</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:49, 15 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Technical|date=January 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_5_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">The '''Humanoid Ant algorithm''' ('''HUMANT''') <ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> is an [[ant colony optimization algorithm]]. </ins>The algorithm is based on ''a priori'' approach to <ins style="font-weight: bold; text-decoration: none;">[[multi</ins>-<ins style="font-weight: bold; text-decoration: none;">objective</ins> <ins style="font-weight: bold; text-decoration: none;">optimization]] (MOO)</ins>, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_9_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_0_rhs"></a>The idea of using<ins style="font-weight: bold; text-decoration: none;"> the</ins> [[<ins style="font-weight: bold; text-decoration: none;">preference</ins> ranking organization method for enrichment evaluation]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_2_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_5_0_lhs"></a>The algorithm is based on ''a priori'' approach to <del style="font-weight: bold; text-decoration: none;">Multi</del>-<del style="font-weight: bold; text-decoration: none;">Objective</del> <del style="font-weight: bold; text-decoration: none;">Optimization</del>, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_10_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_6_0_rhs"></a>So far<ins style="font-weight: bold; text-decoration: none;">{{As of?|date=January 2023}}</ins>, HUMANT algorithm is only known fully operational optimization algorithm that successfully integrated PROMETHEE method into ACO.<ins style="font-weight: bold; text-decoration: none;">{{Citation needed|date=January 2023}}</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_10_2_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_8_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">The </ins>HUMANT algorithm has been experimentally tested on the [[<ins style="font-weight: bold; text-decoration: none;">traveling</ins> salesman problem]] and applied to the <ins style="font-weight: bold; text-decoration: none;">partner</ins> selection problem with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=2017|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_4_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_9_0_lhs"></a>The idea of using [[<del style="font-weight: bold; text-decoration: none;">Preference</del> ranking organization method for enrichment evaluation<del style="font-weight: bold; text-decoration: none;">|PROMETHEE method</del>]] to integrate decision-makers preferences into MOACO algorithm was born in 2009.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Integrating the decision maker's preferences into Multi Objective Ant Colony Optimization|journal=Proceedings of the 2nd Doctoral Symposium on|date=2009}}</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_6_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_10_0_lhs"></a>So far, HUMANT algorithm is only known fully operational optimization algorithm that successfully integrated PROMETHEE method into ACO.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_8_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_10_2_lhs"></a>HUMANT algorithm has been experimentally tested on the [[<del style="font-weight: bold; text-decoration: none;">Traveling</del> salesman problem]] and applied to the <del style="font-weight: bold; text-decoration: none;">Partner</del> selection problem<del style="font-weight: bold; text-decoration: none;"> (PSP)</del> with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=2017|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Improve categories|date=January 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Nature-inspired metaheuristics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Nature-inspired metaheuristics]]</div></td>
</tr>
</table>
Pppery
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1131398067&oldid=prev
RMCD bot: Removing notice of move discussion
2023-01-04T00:05:16Z
<p>Removing notice of move discussion</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:05, 4 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_0_0_rhs"></a>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><noinclude>{{User:RMCD bot/subject notice|1=Humanoid Ant algorithm|2=Talk:AEC (Alashki Engineering Constructions)#Requested move 27 December 2022}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_0_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_0_lhs"></a><del style="font-weight: bold; text-decoration: none;"></noinclude></del>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
</tr>
</table>
RMCD bot
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1131397490&oldid=prev
Fathoms Below: The Night Watch moved page HUMANT (HUManoid ANT) algorithm to Humanoid Ant algorithm: Per RM
2023-01-04T00:02:59Z
<p>The Night Watch moved page <a href="/wiki/HUMANT_(HUManoid_ANT)_algorithm" class="mw-redirect" title="HUMANT (HUManoid ANT) algorithm">HUMANT (HUManoid ANT) algorithm</a> to <a href="/wiki/Humanoid_Ant_algorithm" class="mw-redirect" title="Humanoid Ant algorithm">Humanoid Ant algorithm</a>: Per RM</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<tr class="diff-title" lang="en">
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:02, 4 January 2023</td>
</tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div>
</td></tr></table>
Fathoms Below
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1129959773&oldid=prev
RMCD bot: Notifying subject page of move discussion on Talk:AEC (Alashki Engineering Constructions)
2022-12-27T23:19:11Z
<p>Notifying subject page of move discussion on <a href="/w/index.php?title=Talk:AEC_(Alashki_Engineering_Constructions)&action=edit&redlink=1" class="new" title="Talk:AEC (Alashki Engineering Constructions) (page does not exist)">Talk:AEC (Alashki Engineering Constructions)</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:19, 27 December 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><noinclude>{{User:RMCD bot/subject notice|1=Humanoid Ant algorithm|2=Talk:AEC (Alashki Engineering Constructions)#Requested move 27 December 2022}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></noinclude></ins>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035|doi-access=free}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
</tr>
</table>
RMCD bot
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=1021183373&oldid=prev
161.53.169.191 at 10:41, 3 May 2021
2021-05-03T10:41:10Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:41, 3 May 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 6:</td>
<td colspan="2" class="diff-lineno">Line 6:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So far, HUMANT algorithm is only known fully operational optimization algorithm that successfully integrated PROMETHEE method into ACO.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So far, HUMANT algorithm is only known fully operational optimization algorithm that successfully integrated PROMETHEE method into ACO.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>HUMANT algorithm has been experimentally tested on the [[Traveling salesman problem]] and applied to the Partner selection problem (PSP) with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=<del style="font-weight: bold; text-decoration: none;">2016</del>|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>HUMANT algorithm has been experimentally tested on the [[Traveling salesman problem]] and applied to the Partner selection problem (PSP) with up to four objectives (criteria).<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm|journal=International Journal of Production Research|volume=55|issue=9|date=<ins style="font-weight: bold; text-decoration: none;">2017</ins>|pages=2506–2521|doi=10.1080/00207543.2016.1234084}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
161.53.169.191
https://en.wikipedia.org/w/index.php?title=Humanoid_ant_algorithm&diff=951575491&oldid=prev
OAbot: Open access bot: doi added to citation with #oabot.
2020-04-17T20:32:51Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:32, 17 April 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>HUMANT (HUManoid ANT) algorithm<ref>{{cite journal|last1=Mladineo|first1=Marko|last2=Veza|first2=Ivica|last3=Gjeldum|first3=Nikola|title=Single-Objective and Multi-Objective Optimization using the HUMANT algorithm|journal= Croatian Operational Research Review|date=2015|volume=6|issue=2|pages=459–473|doi=10.17535/crorr.2015.0035<ins style="font-weight: bold; text-decoration: none;">|doi-access=free</ins>}}</ref> belongs to [[Ant colony optimization algorithms]]. It is a Multi-Objective Ant Colony Optimization (MOACO) with ''a priori'' approach to [[Multi-objective optimization|Multi-Objective Optimization]] (MOO), based on Max-Min Ant System (MMAS) and [[Multi-Criteria Decision Analysis|multi-criteria decision-making]] [[Preference ranking organization method for enrichment evaluation|PROMETHEE method]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm is based on ''a priori'' approach to Multi-Objective Optimization, which means that it integrates decision-makers preferences into optimization process.<ref>{{cite book|last1=Talbi|first1=El-Ghazali|title=Metaheuristics – From Design to Implementation|date=2009|publisher=John Wiley & Sons}}</ref> Using decision-makers preferences, it actually turns multi-objective problem into single-objective. It is a process called scalarization of a multi-objective problem.<ref>{{cite journal|last1=Eppe|first1=Stefan|title=Application of the Ant Colony Optimization Metaheuristic to multi-objective optimization problems|journal=Technical Report – ULB, Bruxelles|date=2009}}</ref> The first Multi-Objective Ant Colony Optimization (MOACO) algorithm was published in 2001,<ref>{{cite journal|last1=Iredi|first1=Steffen|last2=Merkle|first2=Daniel|last3=Middendorf|first3=Martin|title=Bi-Criterion Optimization with Multi Colony Ant Algorithms|journal=Evolutionary Multi-Criterion Optimization|date=2001|volume=1993|pages=359–372|doi=10.1007/3-540-44719-9_25|series=Lecture Notes in Computer Science|isbn=978-3-540-41745-3}}</ref> but it was based on ''a posteriori'' approach to MOO.</div></td>
</tr>
</table>
OAbot