https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Hybrid_input-output_algorithmHybrid input-output algorithm - Revision history2025-05-25T12:55:04ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.2https://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1251045948&oldid=prevMtPenguinMonster: /* top */ ce2024-10-14T02:26:36Z<p><span class="autocomment">top: </span> ce</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:26, 14 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''<del style="font-weight: bold; text-decoration: none;">Hybrid</del> input-output (HIO) algorithm for phase retrieval''' is a modification of the [[Phase_retrieval#Error_reduction_algorithm|error reduction algorithm]] for retrieving the phases in [[coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly invert transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)|support constraint]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The </ins>'''<ins style="font-weight: bold; text-decoration: none;">hybrid</ins> input-output (HIO) algorithm for phase retrieval''' is a modification of the [[Phase_retrieval#Error_reduction_algorithm|error reduction algorithm]] for retrieving the phases in [[coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly invert transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)|support constraint]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B|citeseerx=10.1.1.75.1070}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B|citeseerx=10.1.1.75.1070}}</ref> </div></td>
</tr>
</table>MtPenguinMonsterhttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1251037368&oldid=prevMtPenguinMonster: /* top */ Added see also2024-10-14T01:11:03Z<p><span class="autocomment">top: </span> Added see also</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:11, 14 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 8:</td>
<td colspan="2" class="diff-lineno">Line 8:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315| https://scripts.iucr.org/cgi-bin/paper?S0907444900008970</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315| https://scripts.iucr.org/cgi-bin/paper?S0907444900008970</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== See Also ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Phase retrieval]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Gerchberg-Saxton algorithm]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>MtPenguinMonsterhttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1250382862&oldid=prevMtPenguinMonster: Adding short description: "Algorithm for phase retrieval"2024-10-10T03:00:01Z<p>Adding <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Algorithm for phase retrieval"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:00, 10 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for phase retrieval}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>MtPenguinMonsterhttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1208621559&oldid=prevMayukhPahari at 07:33, 18 February 20242024-02-18T07:33:58Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:33, 18 February 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B|citeseerx=10.1.1.75.1070}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B|citeseerx=10.1.1.75.1070}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27–29|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27–29|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315<ins style="font-weight: bold; text-decoration: none;">| https://scripts.iucr.org/cgi-bin/paper?S0907444900008970</ins></ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>MayukhPaharihttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1194882460&oldid=prevSir Ibee: Open access status updates in citations with OAbot #oabot2024-01-11T06:29:59Z<p>Open access status updates in citations with <a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">OAbot</a> #oabot</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:29, 11 January 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the [[Phase_retrieval#Error_reduction_algorithm|error reduction algorithm]] for retrieving the phases in [[coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly invert transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)|support constraint]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the [[Phase_retrieval#Error_reduction_algorithm|error reduction algorithm]] for retrieving the phases in [[coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly invert transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)|support constraint]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B<ins style="font-weight: bold; text-decoration: none;">|citeseerx=10.1.1.75.1070</ins>}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27–29|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27–29|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
</tr>
</table>Sir Ibeehttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1024561235&oldid=prevCitation bot: Alter: pages. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform2021-05-22T21:50:06Z<p>Alter: pages. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by SemperIocundus | #UCB_webform</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:50, 22 May 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=<del style="font-weight: bold; text-decoration: none;">27</del>|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=<ins style="font-weight: bold; text-decoration: none;">27–29</ins>|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minimum instead of the global solution. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the [[mean square error]] in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In [[crystallography]], the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. A downside is that HIO has a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1001442980&oldid=prevBrycehughes: Brycehughes moved page Hybrid input output (HIO) algorithm for phase retrieval to Hybrid input-output algorithm: common name2021-01-19T18:16:54Z<p>Brycehughes moved page <a href="/wiki/Hybrid_input_output_(HIO)_algorithm_for_phase_retrieval" class="mw-redirect" title="Hybrid input output (HIO) algorithm for phase retrieval">Hybrid input output (HIO) algorithm for phase retrieval</a> to <a href="/wiki/Hybrid_input-output_algorithm" title="Hybrid input-output algorithm">Hybrid input-output algorithm</a>: common name</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<tr class="diff-title" lang="en">
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:16, 19 January 2021</td>
</tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div>
</td></tr></table>Brycehugheshttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=1001389389&oldid=prevChisago: language, links2021-01-19T13:33:24Z<p>language, links</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:33, 19 January 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed|date=April 2010}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the error reduction algorithm for retrieving the phases in [[<del style="font-weight: bold; text-decoration: none;">Coherent</del> diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly <del style="font-weight: bold; text-decoration: none;">inverse</del> transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the <ins style="font-weight: bold; text-decoration: none;">[[Phase_retrieval#Error_reduction_algorithm|</ins>error reduction algorithm<ins style="font-weight: bold; text-decoration: none;">]]</ins> for retrieving the phases in [[<ins style="font-weight: bold; text-decoration: none;">coherent</ins> diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly <ins style="font-weight: bold; text-decoration: none;">invert</ins> transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)<ins style="font-weight: bold; text-decoration: none;">|support constraint</ins>]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local <del style="font-weight: bold; text-decoration: none;">minima</del> instead of the global. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the mean square error in<del style="font-weight: bold; text-decoration: none;"> the</del> Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local <ins style="font-weight: bold; text-decoration: none;">minimum</ins> instead of the global<ins style="font-weight: bold; text-decoration: none;"> solution</ins>. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the <ins style="font-weight: bold; text-decoration: none;">[[</ins>mean square error<ins style="font-weight: bold; text-decoration: none;">]]</ins> in Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing method”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In crystallography, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. <del style="font-weight: bold; text-decoration: none;">On the</del> downside<del style="font-weight: bold; text-decoration: none;">,</del> HIO <del style="font-weight: bold; text-decoration: none;">does have</del> a tendency<del style="font-weight: bold; text-decoration: none;"> to be able</del> to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In <ins style="font-weight: bold; text-decoration: none;">[[</ins>crystallography<ins style="font-weight: bold; text-decoration: none;">]]</ins>, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. <ins style="font-weight: bold; text-decoration: none;">A</ins> downside<ins style="font-weight: bold; text-decoration: none;"> is that</ins> HIO <ins style="font-weight: bold; text-decoration: none;">has</ins> a tendency to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Chisagohttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=993252425&oldid=prevJohn of Reading: /* top */Typo/general fixes, replaced: metod → method (surely?)2020-12-09T16:45:23Z<p><span class="autocomment">top: </span>Typo/<a href="/wiki/Wikipedia:AWB/GF" class="mw-redirect" title="Wikipedia:AWB/GF">general</a> fixes, replaced: metod → method (surely?)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:45, 9 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">Refimprove</del>|date=April 2010}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">More citations needed</ins>|date=April 2010}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the error reduction algorithm for retrieving the phases in [[Coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly inverse transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the error reduction algorithm for retrieving the phases in [[Coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly inverse transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=1334–45|doi=10.1364/JOSAA.19.001334|pmid=12095200|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027|pmid=19684685|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minima instead of the global. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the mean square error in the Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing <del style="font-weight: bold; text-decoration: none;">metod”</del>, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minima instead of the global. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the mean square error in the Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing <ins style="font-weight: bold; text-decoration: none;">method”</ins>, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In crystallography, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. On the downside, HIO does have a tendency to be able to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In crystallography, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. On the downside, HIO does have a tendency to be able to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>John of Readinghttps://en.wikipedia.org/w/index.php?title=Hybrid_input-output_algorithm&diff=930673117&oldid=prevCitation bot: Alter: pages. Add: pmid. Formatted dashes. | You can use this bot yourself. Report bugs here.| Activated by User:Nemo bis | via #UCB_webform2019-12-14T03:11:36Z<p>Alter: pages. Add: pmid. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>.| Activated by <a href="/wiki/User:Nemo_bis" title="User:Nemo bis">User:Nemo bis</a> | via #UCB_webform</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:11, 14 December 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the error reduction algorithm for retrieving the phases in [[Coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly inverse transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Hybrid input-output (HIO) algorithm for phase retrieval''' is a modification of the error reduction algorithm for retrieving the phases in [[Coherent diffraction imaging]]. Determining the phases of a diffraction pattern is crucial since the diffraction pattern of an object is its [[Fourier transform]] and in order to properly inverse transform the diffraction pattern the phases must be known. Only the amplitude however, can be measured from the intensity of the diffraction pattern and can thus be known experimentally. This fact together with some kind of [[support (mathematics)]] can be used in order to iteratively calculate the phases. The HIO algorithm uses negative feedback in Fourier space in order to progressively force the solution to conform to the Fourier domain constraints (support). Unlike the error reduction algorithm which alternately applies Fourier and object constraints the HIO "skips" the object domain step and replaces it with negative feedback acting upon the previous solution.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=<del style="font-weight: bold; text-decoration: none;">1334</del>|doi=10.1364/JOSAA.19.001334|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Although it has been shown that the method of error reduction converges to a limit (but usually not to the correct or optimal solution) <ref>{{cite journal|last=Bauschke|first=Heinz H.|author2=Combettes, Patrick L. |author3=Luke, D. Russell |title=Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization|journal=Journal of the Optical Society of America A|date=2002|volume=19|issue=7|pages=<ins style="font-weight: bold; text-decoration: none;">1334–45</ins>|doi=10.1364/JOSAA.19.001334<ins style="font-weight: bold; text-decoration: none;">|pmid=12095200</ins>|bibcode=2002JOSAA..19.1334B}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027|bibcode=1978OptL....3...27F}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ref>{{cite journal|last=Fienup|first=J. R.|title=Reconstruction of an object from the modulus of its Fourier transform|journal=Optics Letters|date=1 July 1978|volume=3|issue=1|pages=27|doi=10.1364/OL.3.000027<ins style="font-weight: bold; text-decoration: none;">|pmid=19684685</ins>|bibcode=1978OptL....3...27F}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minima instead of the global. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the mean square error in the Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing metod”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is no limit to how long this process can take. Moreover, the error reduction algorithm will almost certainly find a local minima instead of the global. The HIO differs from error reduction only in one step but this is enough to reduce this problem significantly. Whereas the error reduction approach iteratively improves solutions over time the HIO remodels the previous solution in Fourier space applying negative feedback. By minimizing the mean square error in the Fourier space from the previous solution, the HIO provides a better candidate solution for inverse transforming. Although it is both faster and more powerful than error reduction, the HIO algorithm does have a uniqueness problem.<ref>Miao J, Kirz J, Sayre D, “The oversampling phasing metod”, Acta Chryst. (2000), D56, 1312-1315</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In crystallography, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. On the downside, HIO does have a tendency to be able to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Depending on how strong the negative feedback is there can often be more than one solution for any set of diffraction data. Although a problem, it has been shown that many of these possible solutions stem from the fact that HIO allows for mirror images taken in any plane to arise as solutions. In crystallography, the scientist is seldom interested in the atomic coordinates relative to any other reference than the molecule itself and is therefore more than happy with a solution that is upside-down of flipped from the actual image. On the downside, HIO does have a tendency to be able to escape both global and local maxima. This problem also depends on the strength of the feedback parameter, and a good solution to this problem is to switch algorithm when the error reaches its minimum. Other methods of phasing a coherent diffraction pattern include [[difference map algorithm]] and "relaxed averaged alternating reflections" or RAAR.<ref>1.Luke Russel D, “Relaxed averaged alternating reflections for diffraction imaging” Inverse problems, (2005) 21, 37-50</ref></div></td>
</tr>
</table>Citation bot