https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Integer_relation_algorithmInteger relation algorithm - Revision history2025-05-24T23:46:08ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.2https://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1285523551&oldid=prevAltenmann: Reverted 1 edit by Harajaru345tyu (talk): Rv stupid ai spellchecker2025-04-14T06:13:47Z<p>Reverted 1 edit by <a href="/wiki/Special:Contributions/Harajaru345tyu" title="Special:Contributions/Harajaru345tyu">Harajaru345tyu</a> (<a href="/wiki/User_talk:Harajaru345tyu" title="User talk:Harajaru345tyu">talk</a>): Rv stupid ai spellchecker</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:13, 14 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation algorithm''' is an [[algorithm]] for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain [[upper bound]].<ref>Since the set of real numbers can only be specified up to a finite precision, an algorithm that did not place limits on the size of its coefficients would always find an integer relation for sufficiently large coefficients. Results of interest occur when the size of the coefficients in an integer relation is small compared to the precision with which the real numbers are specified.</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation algorithm''' is an [[algorithm]] for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them<ins style="font-weight: bold; text-decoration: none;">,</ins> or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain [[upper bound]].<ref>Since the set of real numbers can only be specified up to a finite precision, an algorithm that did not place limits on the size of its coefficients would always find an integer relation for sufficiently large coefficients. Results of interest occur when the size of the coefficients in an integer relation is small compared to the precision with which the real numbers are specified.</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The Ferguson–Forcade algorithm was published in 1979 by [[Helaman Ferguson]] and [[R.W. Forcade]].<ref>{{MathWorld|urlname=IntegerRelation|title=Integer Relation}}</ref> Although the paper treats general ''n'', it is not clear if the paper fully solves the problem because it lacks the detailed steps, proofs, and a precision bound that are crucial for a reliable implementation.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The Ferguson–Forcade algorithm was published in 1979 by [[Helaman Ferguson]] and [[R.W. Forcade]].<ref>{{MathWorld|urlname=IntegerRelation|title=Integer Relation}}</ref> Although the paper treats general ''n'', it is not clear if the paper fully solves the problem because it lacks the detailed steps, proofs, and a precision bound that are crucial for a reliable implementation.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The first algorithm with complete proofs was the '''[[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL algorithm]]''', developed by [[Arjen Lenstra]], [[Hendrik Lenstra]]<del style="font-weight: bold; text-decoration: none;">,</del> and [[László Lovász]] in 1982.<ref>{{MathWorld|urlname=LLLAlgorithm|title=LLL Algorithm}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The first algorithm with complete proofs was the '''[[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL algorithm]]''', developed by [[Arjen Lenstra]], [[Hendrik Lenstra]] and [[László Lovász]] in 1982.<ref>{{MathWorld|urlname=LLLAlgorithm|title=LLL Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref><ref>[https://www.davidhbailey.com/dhbpapers/pslq-comp-alg.pdf David H. Bailey and J.M. Borwein: "PSLQ: An Algorithm to Discover Integer Relations" (May 14, 2020)]</ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000<del style="font-weight: bold; text-decoration: none;">,</del> the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref><ref>[https://www.davidhbailey.com/dhbpapers/pslq-comp-alg.pdf David H. Bailey and J.M. Borwein: "PSLQ: An Algorithm to Discover Integer Relations" (May 14, 2020)]</ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==<del style="font-weight: bold; text-decoration: none;"> </del>Applications<del style="font-weight: bold; text-decoration: none;"> </del>==</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be<del style="font-weight: bold; text-decoration: none;"> an</del> [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', {{pi}} and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', {{pi}} and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical <del style="font-weight: bold; text-decoration: none;">methods</del>]] and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product<del style="font-weight: bold; text-decoration: none;">,</del> or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical <ins style="font-weight: bold; text-decoration: none;">method</ins>]]<ins style="font-weight: bold; text-decoration: none;">s</ins> and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A notable success of this approach was the use of the PSLQ algorithm to find the integer relation that led to the [[Bailey–Borwein–Plouffe formula]] for the value of [[pi|{{pi}}]]. PSLQ has also helped find new identities involving [[multiple zeta <del style="font-weight: bold; text-decoration: none;">functions</del>]] and their appearance in [[quantum field theory]]; and in identifying bifurcation points of the [[logistic map]]. For example, where B<sub>4</sub> is the logistic map's fourth bifurcation point, the constant &alpha;&nbsp;=&nbsp;−''B''<sub>4</sub>(''B''<sub>4</sub>&nbsp;−&nbsp;2) is a root of a 120th-degree polynomial whose largest coefficient is 257<sup>30</sup>.<ref>David H. Bailey and David J. Broadhurst, [http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf "Parallel Integer Relation Detection: Techniques and Applications,"] {{Webarchive|url=https://web.archive.org/web/20110720013234/http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf |date=2011-07-20 }} Mathematics of Computation, vol. 70, no. 236 (October 2000), pp. 1719–1736; LBNL-44481.</ref><ref>I. S. Kotsireas, and K. Karamanos, "Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey–Broadhurst Conjectures", I. J. Bifurcation and Chaos 14(7):2417–2423 (2004)</ref> Integer relation algorithms are combined with tables of high precision mathematical constants and heuristic search methods in applications such as the [[Inverse Symbolic Calculator]] or [[Plouffe's Inverter]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A notable success of this approach was the use of the PSLQ algorithm to find the integer relation that led to the [[Bailey–Borwein–Plouffe formula]] for the value of [[pi|{{pi}}]].<ins style="font-weight: bold; text-decoration: none;"> </ins> PSLQ has also helped find new identities involving [[multiple zeta <ins style="font-weight: bold; text-decoration: none;">function</ins>]]<ins style="font-weight: bold; text-decoration: none;">s</ins> and their appearance in [[quantum field theory]]; and in identifying bifurcation points of the [[logistic map]].<ins style="font-weight: bold; text-decoration: none;"> </ins> For example, where B<sub>4</sub> is the logistic map's fourth bifurcation point, the constant &alpha;&nbsp;=&nbsp;−''B''<sub>4</sub>(''B''<sub>4</sub>&nbsp;−&nbsp;2) is a root of a 120th-degree polynomial whose largest coefficient is 257<sup>30</sup>.<ref>David H. Bailey and David J. Broadhurst, [http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf "Parallel Integer Relation Detection: Techniques and Applications,"] {{Webarchive|url=https://web.archive.org/web/20110720013234/http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf |date=2011-07-20 }} Mathematics of Computation, vol. 70, no. 236 (October 2000), pp. 1719–1736; LBNL-44481.</ref><ref>I. S. Kotsireas, and K. Karamanos, "Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey–Broadhurst Conjectures", I. J. Bifurcation and Chaos 14(7):2417–2423 (2004)</ref> Integer relation algorithms are combined with tables of high precision mathematical constants and heuristic search methods in applications such as the [[Inverse Symbolic Calculator]] or [[Plouffe's Inverter]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Integer relation finding can be used to [[Factorization of polynomials|factor polynomials]] of high degree.<ref>M. van Hoeij: ''Factoring polynomials and the knapsack problem.'' J. of Number Theory, 95, 167–189, (2002).</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Integer relation finding can be used to [[Factorization of polynomials|factor polynomials]] of high degree.<ref>M. van Hoeij: ''Factoring polynomials and the knapsack problem.'' J. of Number Theory, 95, 167–189, (2002).</ref></div></td>
</tr>
</table>Altenmannhttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1285522528&oldid=prevHarajaru345tyu at 06:04, 14 April 20252025-04-14T06:04:02Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:04, 14 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation algorithm''' is an [[algorithm]] for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them<del style="font-weight: bold; text-decoration: none;">,</del> or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain [[upper bound]].<ref>Since the set of real numbers can only be specified up to a finite precision, an algorithm that did not place limits on the size of its coefficients would always find an integer relation for sufficiently large coefficients. Results of interest occur when the size of the coefficients in an integer relation is small compared to the precision with which the real numbers are specified.</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation algorithm''' is an [[algorithm]] for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain [[upper bound]].<ref>Since the set of real numbers can only be specified up to a finite precision, an algorithm that did not place limits on the size of its coefficients would always find an integer relation for sufficiently large coefficients. Results of interest occur when the size of the coefficients in an integer relation is small compared to the precision with which the real numbers are specified.</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The Ferguson–Forcade algorithm was published in 1979 by [[Helaman Ferguson]] and [[R.W. Forcade]].<ref>{{MathWorld|urlname=IntegerRelation|title=Integer Relation}}</ref> Although the paper treats general ''n'', it is not clear if the paper fully solves the problem because it lacks the detailed steps, proofs, and a precision bound that are crucial for a reliable implementation.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The Ferguson–Forcade algorithm was published in 1979 by [[Helaman Ferguson]] and [[R.W. Forcade]].<ref>{{MathWorld|urlname=IntegerRelation|title=Integer Relation}}</ref> Although the paper treats general ''n'', it is not clear if the paper fully solves the problem because it lacks the detailed steps, proofs, and a precision bound that are crucial for a reliable implementation.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The first algorithm with complete proofs was the '''[[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL algorithm]]''', developed by [[Arjen Lenstra]], [[Hendrik Lenstra]] and [[László Lovász]] in 1982.<ref>{{MathWorld|urlname=LLLAlgorithm|title=LLL Algorithm}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The first algorithm with complete proofs was the '''[[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL algorithm]]''', developed by [[Arjen Lenstra]], [[Hendrik Lenstra]]<ins style="font-weight: bold; text-decoration: none;">,</ins> and [[László Lovász]] in 1982.<ref>{{MathWorld|urlname=LLLAlgorithm|title=LLL Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref><ref>[https://www.davidhbailey.com/dhbpapers/pslq-comp-alg.pdf David H. Bailey and J.M. Borwein: "PSLQ: An Algorithm to Discover Integer Relations" (May 14, 2020)]</ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref><ref>[https://www.davidhbailey.com/dhbpapers/pslq-comp-alg.pdf David H. Bailey and J.M. Borwein: "PSLQ: An Algorithm to Discover Integer Relations" (May 14, 2020)]</ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000<ins style="font-weight: bold; text-decoration: none;">,</ins> the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==<ins style="font-weight: bold; text-decoration: none;"> </ins>Applications<ins style="font-weight: bold; text-decoration: none;"> </ins>==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', {{pi}} and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be<ins style="font-weight: bold; text-decoration: none;"> an</ins> [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', {{pi}} and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical <del style="font-weight: bold; text-decoration: none;">method</del>]]<del style="font-weight: bold; text-decoration: none;">s</del> and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical <ins style="font-weight: bold; text-decoration: none;">methods</ins>]] and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product<ins style="font-weight: bold; text-decoration: none;">,</ins> or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A notable success of this approach was the use of the PSLQ algorithm to find the integer relation that led to the [[Bailey–Borwein–Plouffe formula]] for the value of [[pi|{{pi}}]].<del style="font-weight: bold; text-decoration: none;"> </del> PSLQ has also helped find new identities involving [[multiple zeta <del style="font-weight: bold; text-decoration: none;">function</del>]]<del style="font-weight: bold; text-decoration: none;">s</del> and their appearance in [[quantum field theory]]; and in identifying bifurcation points of the [[logistic map]].<del style="font-weight: bold; text-decoration: none;"> </del> For example, where B<sub>4</sub> is the logistic map's fourth bifurcation point, the constant &alpha;&nbsp;=&nbsp;−''B''<sub>4</sub>(''B''<sub>4</sub>&nbsp;−&nbsp;2) is a root of a 120th-degree polynomial whose largest coefficient is 257<sup>30</sup>.<ref>David H. Bailey and David J. Broadhurst, [http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf "Parallel Integer Relation Detection: Techniques and Applications,"] {{Webarchive|url=https://web.archive.org/web/20110720013234/http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf |date=2011-07-20 }} Mathematics of Computation, vol. 70, no. 236 (October 2000), pp. 1719–1736; LBNL-44481.</ref><ref>I. S. Kotsireas, and K. Karamanos, "Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey–Broadhurst Conjectures", I. J. Bifurcation and Chaos 14(7):2417–2423 (2004)</ref> Integer relation algorithms are combined with tables of high precision mathematical constants and heuristic search methods in applications such as the [[Inverse Symbolic Calculator]] or [[Plouffe's Inverter]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A notable success of this approach was the use of the PSLQ algorithm to find the integer relation that led to the [[Bailey–Borwein–Plouffe formula]] for the value of [[pi|{{pi}}]]. PSLQ has also helped find new identities involving [[multiple zeta <ins style="font-weight: bold; text-decoration: none;">functions</ins>]] and their appearance in [[quantum field theory]]; and in identifying bifurcation points of the [[logistic map]]. For example, where B<sub>4</sub> is the logistic map's fourth bifurcation point, the constant &alpha;&nbsp;=&nbsp;−''B''<sub>4</sub>(''B''<sub>4</sub>&nbsp;−&nbsp;2) is a root of a 120th-degree polynomial whose largest coefficient is 257<sup>30</sup>.<ref>David H. Bailey and David J. Broadhurst, [http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf "Parallel Integer Relation Detection: Techniques and Applications,"] {{Webarchive|url=https://web.archive.org/web/20110720013234/http://crd.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf |date=2011-07-20 }} Mathematics of Computation, vol. 70, no. 236 (October 2000), pp. 1719–1736; LBNL-44481.</ref><ref>I. S. Kotsireas, and K. Karamanos, "Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey–Broadhurst Conjectures", I. J. Bifurcation and Chaos 14(7):2417–2423 (2004)</ref> Integer relation algorithms are combined with tables of high precision mathematical constants and heuristic search methods in applications such as the [[Inverse Symbolic Calculator]] or [[Plouffe's Inverter]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Integer relation finding can be used to [[Factorization of polynomials|factor polynomials]] of high degree.<ref>M. van Hoeij: ''Factoring polynomials and the knapsack problem.'' J. of Number Theory, 95, 167–189, (2002).</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Integer relation finding can be used to [[Factorization of polynomials|factor polynomials]] of high degree.<ref>M. van Hoeij: ''Factoring polynomials and the knapsack problem.'' J. of Number Theory, 95, 167–189, (2002).</ref></div></td>
</tr>
</table>Harajaru345tyuhttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1282074390&oldid=prev2601:447:CD80:E200:D12E:8E36:D8F3:D30F at 04:10, 24 March 20252025-03-24T04:10:36Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:10, 24 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 17:</td>
<td colspan="2" class="diff-lineno">Line 17:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', <del style="font-weight: bold; text-decoration: none;">π</del> and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Integer relation algorithms have numerous applications. The first application is to determine whether a given real number ''x'' is likely to be [[algebraic number|algebraic]], by searching for an integer relation between a set of powers of ''x'' {1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''</sup>}. The second application is to search for an integer relation between a real number ''x'' and a set of mathematical constants such as ''e'', <ins style="font-weight: bold; text-decoration: none;">{{pi}}</ins> and ln(2), which will lead to an expression for ''x'' as a linear combination of these constants.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical method]]s and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A typical approach in [[experimental mathematics]] is to use [[numerical method]]s and [[arbitrary precision arithmetic]] to find an approximate value for an [[series (mathematics)|infinite series]], [[infinite product]] or an [[integral]] to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible [[closed-form expression]] for the original series, product or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a [[Almost integer|numerical artifact]].</div></td>
</tr>
</table>2601:447:CD80:E200:D12E:8E36:D8F3:D30Fhttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1271710323&oldid=prev133.86.227.82: /* History */2025-01-25T09:00:48Z<p><span class="autocomment">History</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:00, 25 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.<ins style="font-weight: bold; text-decoration: none;"></ref><ref>[https://www.davidhbailey.com/dhbpapers/pslq-comp-alg.pdf David H. Bailey and J.M. Borwein: "PSLQ: An Algorithm to Discover Integer Relations" (May 14, 2020)]</ins></ref><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>133.86.227.82https://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1271709153&oldid=prev133.86.227.82: /* History */2025-01-25T08:49:29Z<p><span class="autocomment">History</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:49, 25 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''HJLS algorithm''', developed by [[Johan Håstad]], Bettina Just, [[Jeffrey Lagarias]], and [[Claus P. Schnorr|Claus-Peter Schnorr]] in 1986.<ref>{{MathWorld|urlname=HJLSAlgorithm|title=HJLS Algorithm}}</ref><ref>Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: ''Polynomial time algorithms for finding integer relations among real numbers.'' Preliminary version: STACS 1986 (''Symposium Theoret. Aspects Computer Science'') Lecture Notes Computer Science 210 (1986), p. 105–118. ''SIAM J. Comput.'', Vol. 18 (1989), pp. 859–881</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSOS algorithm''', developed by Ferguson in 1988.<ref>{{MathWorld|urlname=PSOSAlgorithm|title=PSOS Algorithm}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The '''PSLQ algorithm''', developed by Ferguson and [[David H. Bailey (mathematician)|Bailey]] in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.<ins style="font-weight: bold; text-decoration: none;"><ref>Helaman R. P. Ferguson, David H. Bailey, and Steve Arno: "Analysis of PSLQ, an integer relation finding algorithm", Math. Comp., vol.68, no.225 (Jan. 1999), pp.351-369.</ref></ins><ref>{{MathWorld|urlname=PSLQAlgorithm|title=PSLQ Algorithm}}</ref><ref>[http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf ''A Polynomial Time, Numerically Stable Integer Relation Algorithm''] {{Webarchive|url=https://web.archive.org/web/20070717073907/http://crd.lbl.gov/~dhbailey/dhbpapers/pslq.pdf |date=2007-07-17 }} by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992</ref> In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by [[Jack Dongarra]] and Francis Sullivan<ref>{{cite journal |author-first=Barry Arthur |author-last=Cipra |author-link=Barry Arthur Cipra |url=http://www.uta.edu/faculty/rcli/TopTen/topten.pdf |title=The Best of the 20th Century: Editors Name Top 10 Algorithms |journal=SIAM News |volume=33 |issue=4 |access-date=2012-08-17 |archive-date=2021-04-24 |archive-url=https://web.archive.org/web/20210424004030/https://www.uta.edu/faculty/rcli/TopTen/topten.pdf |url-status=dead }}</ref> even though it is considered essentially equivalent to HJLS.<ref>Jingwei Chen, Damien Stehlé, Gilles Villard: [http://perso.ens-lyon.fr/damien.stehle/downloads/PSLQHJLS.pdf ''A New View on HJLS and PSLQ: Sums and Projections of Lattices.''], [http://www.issac-conference.org/2013/ ISSAC'13]</ref><ref>Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/cpslq.pdf]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with ''n'' above 500.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>133.86.227.82https://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1253065787&oldid=prevKarldray: correct grammar & meaning of first sentence. an integer relation *is* ...2024-10-24T05:33:54Z<p>correct grammar & meaning of first sentence. an integer relation *is* ...</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:33, 24 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Mathematical procedure}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Mathematical procedure}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> <del style="font-weight: bold; text-decoration: none;">and</del> a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> <ins style="font-weight: bold; text-decoration: none;">is</ins> a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
</tr>
</table>Karldrayhttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1227777209&oldid=prevLucasBrown at 18:54, 7 June 20242024-06-07T18:54:27Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:54, 7 June 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Mathematical procedure}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> and a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> and a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>LucasBrownhttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1186883276&oldid=prevTamfang: /* top */2023-11-26T02:32:00Z<p><span class="autocomment">top</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:32, 26 November 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> <del style="font-weight: bold; text-decoration: none;">is</del> a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An '''integer relation''' between a set of real numbers ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> <ins style="font-weight: bold; text-decoration: none;">and</ins> a set of integers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>, not all 0, such that</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.\,</math></div></td>
</tr>
</table>Tamfanghttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1180842893&oldid=prevTamfang: Reverted edit by 175.110.56.44 (talk) to last version by Bruce1ee2023-10-19T05:28:52Z<p>Reverted edit by <a href="/wiki/Special:Contributions/175.110.56.44" title="Special:Contributions/175.110.56.44">175.110.56.44</a> (<a href="/w/index.php?title=User_talk:175.110.56.44&action=edit&redlink=1" class="new" title="User talk:175.110.56.44 (page does not exist)">talk</a>) to last version by Bruce1ee</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:28, 19 October 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 28:</td>
<td colspan="2" class="diff-lineno">Line 28:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* <del style="font-weight: bold; text-decoration: none;">§</del>[https://web.archive.org/web/20080422084455/http://oldweb.cecm.sfu.ca/organics/papers/bailey/paper/html/paper.html ''Recognizing Numerical Constants''] by [[David H. Bailey (mathematician)|David H. Bailey]] and [[Simon Plouffe]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20080422084455/http://oldweb.cecm.sfu.ca/organics/papers/bailey/paper/html/paper.html ''Recognizing Numerical Constants''] by [[David H. Bailey (mathematician)|David H. Bailey]] and [[Simon Plouffe]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf ''Ten Problems in Experimental Mathematics''] {{Webarchive|url=https://web.archive.org/web/20110610051846/http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf |date=2011-06-10 }} by David H. Bailey, [[Jonathan Borwein|Jonathan M. Borwein]], Vishaal Kapoor, and [[Eric W. Weisstein]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf ''Ten Problems in Experimental Mathematics''] {{Webarchive|url=https://web.archive.org/web/20110610051846/http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf |date=2011-06-10 }} by David H. Bailey, [[Jonathan Borwein|Jonathan M. Borwein]], Vishaal Kapoor, and [[Eric W. Weisstein]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>Tamfanghttps://en.wikipedia.org/w/index.php?title=Integer_relation_algorithm&diff=1178902751&oldid=prev175.110.56.44: /* External links */ 2132023-10-06T16:25:28Z<p><span class="autocomment">External links: </span> 213</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:25, 6 October 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 28:</td>
<td colspan="2" class="diff-lineno">Line 28:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* [https://web.archive.org/web/20080422084455/http://oldweb.cecm.sfu.ca/organics/papers/bailey/paper/html/paper.html ''Recognizing Numerical Constants''] by [[David H. Bailey (mathematician)|David H. Bailey]] and [[Simon Plouffe]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <ins style="font-weight: bold; text-decoration: none;">§</ins>[https://web.archive.org/web/20080422084455/http://oldweb.cecm.sfu.ca/organics/papers/bailey/paper/html/paper.html ''Recognizing Numerical Constants''] by [[David H. Bailey (mathematician)|David H. Bailey]] and [[Simon Plouffe]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf ''Ten Problems in Experimental Mathematics''] {{Webarchive|url=https://web.archive.org/web/20110610051846/http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf |date=2011-06-10 }} by David H. Bailey, [[Jonathan Borwein|Jonathan M. Borwein]], Vishaal Kapoor, and [[Eric W. Weisstein]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf ''Ten Problems in Experimental Mathematics''] {{Webarchive|url=https://web.archive.org/web/20110610051846/http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf |date=2011-06-10 }} by David H. Bailey, [[Jonathan Borwein|Jonathan M. Borwein]], Vishaal Kapoor, and [[Eric W. Weisstein]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>175.110.56.44