https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Interchangeability_algorithm Interchangeability algorithm - Revision history 2025-05-25T06:31:32Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1249687242&oldid=prev Maxeto0910: /* Example */ no sentence 2024-10-06T08:42:32Z <p><span class="autocomment">Example: </span> no sentence</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:42, 6 October 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 52:</td> <td colspan="2" class="diff-lineno">Line 52:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Interchangeability.png|thumb|Example for <del style="font-weight: bold; text-decoration: none;">Interchangeability</del> <del style="font-weight: bold; text-decoration: none;">Algorithm.</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Interchangeability.png|thumb|Example for <ins style="font-weight: bold; text-decoration: none;">an</ins> <ins style="font-weight: bold; text-decoration: none;">interchangeability algorithm</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The figure shows a simple graph coloring example with colors as vertices, such that no two vertices which are joined by an edge have the same color. The available colors at each vertex are shown. The colors yellow, green, brown, red, blue, pink represent vertex {{var|Y}} and are fully interchangeable by definition. For example, substituting maroon for green in the solution orange|X (orange for X), green|Y will yield another solution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The figure shows a simple graph coloring example with colors as vertices, such that no two vertices which are joined by an edge have the same color. The available colors at each vertex are shown. The colors yellow, green, brown, red, blue, pink represent vertex {{var|Y}} and are fully interchangeable by definition. For example, substituting maroon for green in the solution orange|X (orange for X), green|Y will yield another solution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Maxeto0910 https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1226945769&oldid=prev David Eppstein: Undid revision 1226891997 by 2603:8000:D300:3650:54E:99BD:2917:FE0 (talk) this is a French name, not English; we should use the French spelling 2024-06-02T18:40:14Z <p>Undid revision <a href="/wiki/Special:Diff/1226891997" title="Special:Diff/1226891997">1226891997</a> by <a href="/wiki/Special:Contributions/2603:8000:D300:3650:54E:99BD:2917:FE0" title="Special:Contributions/2603:8000:D300:3650:54E:99BD:2917:FE0">2603:8000:D300:3650:54E:99BD:2917:FE0</a> (<a href="/wiki/User_talk:2603:8000:D300:3650:54E:99BD:2917:FE0" title="User talk:2603:8000:D300:3650:54E:99BD:2917:FE0">talk</a>) this is a French name, not English; we should use the French spelling</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:40, 2 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des <del style="font-weight: bold; text-decoration: none;">Systems</del> (LSIS), Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des <ins style="font-weight: bold; text-decoration: none;">Systèmes</ins> (LSIS), Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1226891997&oldid=prev 2603:8000:D300:3650:54E:99BD:2917:FE0: sp 2024-06-02T12:24:46Z <p>sp</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:24, 2 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des <del style="font-weight: bold; text-decoration: none;">Systmes</del> (LSIS), Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des <ins style="font-weight: bold; text-decoration: none;">Systems</ins> (LSIS), Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> 2603:8000:D300:3650:54E:99BD:2917:FE0 https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1198382079&oldid=prev BD2412: /* top */clean up spacing around commas and other punctuation fixes, replaced: ,C → , C 2024-01-24T00:10:03Z <p><span class="autocomment">top: </span>clean up spacing around commas and other punctuation fixes, replaced: ,C → , C</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:10, 24 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),<ins style="font-weight: bold; text-decoration: none;"> </ins>Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-completeness|NP-complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> BD2412 https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1167853360&oldid=prev JL-Bot: removing orphan template as not a valid orphan 2023-07-30T07:17:15Z <p>removing orphan template as not a valid orphan</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:17, 30 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Technique to solve constraint satisfaction problems}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Technique to solve constraint satisfaction problems}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=August 2014}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> JL-Bot https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=1161364721&oldid=prev Aithus: Adding short description: "Technique to solve constraint satisfaction problems" 2023-06-22T06:56:23Z <p>Adding <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: &quot;Technique to solve constraint satisfaction problems&quot;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:56, 22 June 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Technique to solve constraint satisfaction problems}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=August 2014}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=August 2014}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> </table> Aithus https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=941933674&oldid=prev Frap at 15:10, 21 February 2020 2020-02-21T15:10:37Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:10, 21 February 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=August 2014}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=August 2014}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;s&gt;&lt;/s&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-<del style="font-weight: bold; text-decoration: none;">Complete</del>]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),Centre de Mathématiques et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-<ins style="font-weight: bold; text-decoration: none;">completeness|NP-complete</ins>]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 34:</td> <td colspan="2" class="diff-lineno">Line 31:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::::Move to if present, construct if not, a node of the discrimination tree corresponding to w|W&lt;ref name="main" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::::Move to if present, construct if not, a node of the discrimination tree corresponding to w|W&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== K-<del style="font-weight: bold; text-decoration: none;">Interchangeability</del> <del style="font-weight: bold; text-decoration: none;">Algorithm</del> ===</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== <ins style="font-weight: bold; text-decoration: none;">''</ins>K<ins style="font-weight: bold; text-decoration: none;">''</ins>-<ins style="font-weight: bold; text-decoration: none;">interchangeability</ins> <ins style="font-weight: bold; text-decoration: none;">algorithm</ins> ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm can be used to explicitly find solutions to a constraint satisfaction problem. The algorithm can also be run for {{var|k}} steps as a preprocessor to simplify the subsequent backtrack search.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm can be used to explicitly find solutions to a constraint satisfaction problem. The algorithm can also be run for {{var|k}} steps as a preprocessor to simplify the subsequent backtrack search.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 56:</td> <td colspan="2" class="diff-lineno">Line 53:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Interchangeability.png|thumb|Example for Interchangeability Algorithm.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Interchangeability.png|thumb|Example for Interchangeability Algorithm.]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The figure shows a simple graph coloring example with colors as vertices, such that no two vertices which are joined by an edge have the same color. The available colors at each vertex are shown. The colors yellow, green, brown, red, blue, pink represent vertex Y and are fully interchangeable by definition. For example, substituting maroon for green in the solution orange|X (orange for X), green|Y will yield another solution.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The figure shows a simple graph coloring example with colors as vertices, such that no two vertices which are joined by an edge have the same color. The available colors at each vertex are shown. The colors yellow, green, brown, red, blue, pink represent vertex <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>Y<ins style="font-weight: bold; text-decoration: none;">}}</ins> and are fully interchangeable by definition. For example, substituting maroon for green in the solution orange|X (orange for X), green|Y will yield another solution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> </tr> </table> Frap https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=932415758&oldid=prev Frap: MOS:HEAD 2019-12-25T19:24:29Z <p>MOS:HEAD</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:24, 25 December 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 11:</td> <td colspan="2" class="diff-lineno">Line 11:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Fully Interchangeable</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Fully Interchangeable</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable v is fully interchangeable with value b if and only if every solution in which v = a remains a solution when b is substituted for a and vice versa.&lt;ref name="main" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins> is fully interchangeable with value <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>b<ins style="font-weight: bold; text-decoration: none;">}}</ins> if and only if every solution in which v = a remains a solution when <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>b<ins style="font-weight: bold; text-decoration: none;">}}</ins> is substituted for <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>a<ins style="font-weight: bold; text-decoration: none;">}}</ins> and vice versa.&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Neighbourhood Interchangeable</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Neighbourhood Interchangeable</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable v is neighbourhood interchangeable with value b if and only if for every constraint on v, the values compatible with v = a are exactly those compatible with v = b.&lt;ref name="main" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins> is neighbourhood interchangeable with value b if and only if for every constraint on <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins>, the values compatible with v = a are exactly those compatible with v = b.&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Fully Substitutable</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Fully Substitutable</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable v is fully substitutable with value b if and only if every solution in which v = a remains a solution when b is substituted for a (but not necessarily vice versa).&lt;ref name="main" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins> is fully substitutable with value <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>b<ins style="font-weight: bold; text-decoration: none;">}}</ins> if and only if every solution in which v = a remains a solution when <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>b<ins style="font-weight: bold; text-decoration: none;">}}</ins> is substituted for a (but not necessarily vice versa).&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Dynamically Interchangeable</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>;Dynamically Interchangeable</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable v is dynamically interchangeable for b with respect to a set A of variable assignments if and only if they are fully interchangeable in the subproblem induced by A.&lt;ref name="main" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:A value a for variable <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins> is dynamically interchangeable for <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>b<ins style="font-weight: bold; text-decoration: none;">}}</ins> with respect to a set A of variable assignments if and only if they are fully interchangeable in the subproblem induced by A.&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Pseudocode==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Pseudocode==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Neighborhood Interchangeability Algorithm ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Neighborhood Interchangeability Algorithm ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finds neighborhood interchangeable values in a CSP. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finds neighborhood interchangeable values in a CSP. </div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 37:</td> <td colspan="2" class="diff-lineno">Line 36:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== K-Interchangeability Algorithm ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== K-Interchangeability Algorithm ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The algorithm can be used to explicitly find solutions to a constraint satisfaction problem. The algorithm can also be run for k steps as a preprocessor to simplify the subsequent backtrack search.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The algorithm can be used to explicitly find solutions to a constraint satisfaction problem. The algorithm can also be run for <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>k<ins style="font-weight: bold; text-decoration: none;">}}</ins> steps as a preprocessor to simplify the subsequent backtrack search.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finds k-interchangeable values in a CSP. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finds k-interchangeable values in a CSP. </div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 43:</td> <td colspan="2" class="diff-lineno">Line 42:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:Build a discrimination tree by: </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:Build a discrimination tree by: </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:Repeat for each value, v: </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:Repeat for each value, v: </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::Repeat for each (k<del style="font-weight: bold; text-decoration: none;">-</del>1)-tuple of variables </div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::Repeat for each (<ins style="font-weight: bold; text-decoration: none;">''</ins>k<ins style="font-weight: bold; text-decoration: none;">'' − </ins>1)-tuple of variables </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:::Repeat for each (k<del style="font-weight: bold; text-decoration: none;">-</del>1)-tuple of values w, which together with v constitute a solution to the subproblem induced by W: </div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:::Repeat for each (<ins style="font-weight: bold; text-decoration: none;">''</ins>k<ins style="font-weight: bold; text-decoration: none;">'' − </ins>1)-tuple of values <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>w<ins style="font-weight: bold; text-decoration: none;">}}</ins>, which together with <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>v<ins style="font-weight: bold; text-decoration: none;">}}</ins> constitute a solution to the subproblem induced by <ins style="font-weight: bold; text-decoration: none;">{{var|</ins>W<ins style="font-weight: bold; text-decoration: none;">}}</ins>: </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::::Move to if present, construct if not, a node of the discrimination tree corresponding to w|W&lt;ref name="main" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::::Move to if present, construct if not, a node of the discrimination tree corresponding to w|W&lt;ref name="main" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Complexity <del style="font-weight: bold; text-decoration: none;">Analysis</del>==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Complexity <ins style="font-weight: bold; text-decoration: none;">analysis</ins>==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the case of neighborhood interchangeable algorithm, if we assign the worst case bound to each loop. Then for ''n'' variables, which have at most ''d'' values for a variable, then we have a bound of :</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the case of neighborhood interchangeable algorithm, if we assign the worst case bound to each loop. Then for ''n'' variables, which have at most ''d'' values for a variable, then we have a bound of :</div></td> </tr> </table> Frap https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=811594387&oldid=prev Tom.Reding: /* Applications */Rep typographic ligatures like "fi" with plain text; possible ref cleanup; WP:GenFixes on, replaced: fi → fi (2) using AWB 2017-11-22T17:16:05Z <p><span class="autocomment">Applications: </span>Rep <a href="/wiki/Typographic_ligature" class="mw-redirect" title="Typographic ligature">typographic ligatures</a> like &quot;fi&quot; with plain text; possible ref cleanup; <a href="/wiki/Wikipedia:GenFixes" class="mw-redirect" title="Wikipedia:GenFixes">WP:GenFixes</a> on, replaced: fi → fi (2) using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:16, 22 November 2017</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 60:</td> <td colspan="2" class="diff-lineno">Line 60:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In Computer Science, the interchangeability algorithm has been extensively used in the fields of [[artificial intelligence]], [[graph coloring problem]]s, abstraction frame-works and solution adaptation.&lt;ref name="main" /&gt;&lt;ref&gt;Haselbock, A.: Exploiting Interchangeabilities in Constraint Satisfaction Problems. In Proc. of the 13 th IJCAI (1993) 282–287&lt;/ref&gt;&lt;ref&gt;Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. <del style="font-weight: bold; text-decoration: none;">Artificial</del> Intelligence 115 (1999) 257–289&lt;/ref&gt;&lt;ref&gt;Choueiry, B.Y.: Abstraction Methods for Resource Allocation. PhD thesis, EPFL PhD Thesis no 1292 (1994)&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In Computer Science, the interchangeability algorithm has been extensively used in the fields of [[artificial intelligence]], [[graph coloring problem]]s, abstraction frame-works and solution adaptation.&lt;ref name="main" /&gt;&lt;ref&gt;Haselbock, A.: Exploiting Interchangeabilities in Constraint Satisfaction Problems. In Proc. of the 13 th IJCAI (1993) 282–287&lt;/ref&gt;&lt;ref&gt;Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. <ins style="font-weight: bold; text-decoration: none;">Artificial</ins> Intelligence 115 (1999) 257–289&lt;/ref&gt;&lt;ref&gt;Choueiry, B.Y.: Abstraction Methods for Resource Allocation. PhD thesis, EPFL PhD Thesis no 1292 (1994)&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref&gt;Weigel, R., Faltings, B.: Interchangeability for Case Adaptation in <del style="font-weight: bold; text-decoration: none;">Configura</del>-</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref&gt;Weigel, R., Faltings, B.: Interchangeability for Case Adaptation in <ins style="font-weight: bold; text-decoration: none;">Configura</ins>-</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>tion Problems. In Proceedings of the AAAI98 Spring Symposium on Multimodal Reasoning, Stanford, CA, TR SS-98-04. (1998)&lt;/ref&gt;&lt;ref&gt;Neagu, N., Faltings, B.: Exploiting Interchangeabilities for Case Adaptation. In Proc. of the 4th ICCBR01 (2001)&lt;/ref&gt;&lt;ref&gt;Full Dynamic Substitutability by SAT Encoding by Steven Prestwich, Cork Constraint Computation Centre, Department of Computer Science, University College, Cork, Ireland&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>tion Problems. In Proceedings of the AAAI98 Spring Symposium on Multimodal Reasoning, Stanford, CA, TR SS-98-04. (1998)&lt;/ref&gt;&lt;ref&gt;Neagu, N., Faltings, B.: Exploiting Interchangeabilities for Case Adaptation. In Proc. of the 4th ICCBR01 (2001)&lt;/ref&gt;&lt;ref&gt;Full Dynamic Substitutability by SAT Encoding by Steven Prestwich, Cork Constraint Computation Centre, Department of Computer Science, University College, Cork, Ireland&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Tom.Reding https://en.wikipedia.org/w/index.php?title=Interchangeability_algorithm&diff=751524367&oldid=prev Eumolpo: orthographic 2016-11-26T07:16:29Z <p>orthographic</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:16, 26 November 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]], an '''interchangeability algorithm''' is a technique used to more efficiently solve [[constraint satisfaction problem]]s (CSP). A CSP is a mathematical problem in which objects, represented by variables, are subject to constraints on the values of those variables; the goal in a CSP is to assign values to the variables that are consistent with the constraints. If two variables ''A'' and ''B'' in a CSP may be swapped for each other (that is, ''A'' is replaced by ''B'' and ''B'' is replaced by ''A'') without changing the nature of the problem or its solutions, then ''A'' and ''B'' are ''interchangeable'' variables. Interchangeable variables represent a symmetry of the CSP and by exploiting that symmetry, the [[Feasible region|search space]] for solutions to a CSP problem may be reduced. For example, if solutions with ''A''=1 and ''B''=2 have been tried, then by interchange symmetry, solutions with ''B''=1 and ''A''=2 need not be investigated.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),Centre de <del style="font-weight: bold; text-decoration: none;">Mathmatiques</del> et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-Complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The concept of interchangeability and the interchangeability algorithm in constraint satisfaction problems was first introduced by Eugene Freuder in 1991.&lt;ref&gt;Belaid Benhamou and Mohamed Reda Saidi [http://www.scm.tees.ac.uk/users/p.gregory/symcon06/BenhamouSaidi.pdf "Reasoning by dominance in Not-Equals binary constraint networks"], Laboratoire des Sciences de l'Information et des Systmes (LSIS),Centre de <ins style="font-weight: bold; text-decoration: none;">Mathématiques</ins> et d'Informatique, France.&lt;/ref&gt;&lt;ref name="main"&gt;Freuder, E.C.: [http://www.aaai.org/Papers/AAAI/1991/AAAI91-036.pdf Eliminating Interchangeable Values in Constraint Satisfaction Problems]. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233&lt;/ref&gt; The interchangeability algorithm reduces the search space of [[backtracking search]] algorithms, thereby improving the efficiency of [[NP-Complete]] CSP problems.&lt;ref&gt;Assef Chmeiss and Lakhdar Sais [http://www.it.uu.se/research/group/astra/SymCon/SymCon03/Papers/Chmeiss.pdf "About Neighborhood Substitutability in CSP's"], University of Artrois, Franc</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the meantime, you ce.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Eumolpo