https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Junction_tree_algorithm
Junction tree algorithm - Revision history
2025-06-07T21:01:47Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.4
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1253348862&oldid=prev
Citation bot: Add: isbn, pages. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Graph algorithms | #UCB_Category 17/132
2024-10-25T14:22:38Z
<p>Add: isbn, pages. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> | #UCB_Category 17/132</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:22, 25 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 53:</td>
<td colspan="2" class="diff-lineno">Line 53:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | doi = 10.1109/cerma.2009.28</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | doi = 10.1109/cerma.2009.28</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | publisher = IEEE</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | publisher = IEEE</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> | title = 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA)}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> | title = 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA)<ins style="font-weight: bold; text-decoration: none;">| pages = 301–306</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> | isbn = 978-0-7695-3799-3</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> </ins>}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1250833704&oldid=prev
JJMC89 bot III: Moving :Category:Algorithms in graph theory to :Category:Graph algorithms per Wikipedia:Categories for discussion/Log/2024 October 4
2024-10-12T19:56:41Z
<p>Moving <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> to <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:56, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 106:</td>
<td colspan="2" class="diff-lineno">Line 106:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Junction Tree Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Junction Tree Algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian networks]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian networks]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Algorithms</del> <del style="font-weight: bold; text-decoration: none;">in graph theory</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Graph</ins> <ins style="font-weight: bold; text-decoration: none;">algorithms</ins>]]</div></td>
</tr>
</table>
JJMC89 bot III
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1250714180&oldid=prev
JJMC89 bot III: Moving :Category:Graph algorithms to :Category:Algorithms in graph theory per Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms
2024-10-12T02:23:54Z
<p>Moving <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> to <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4#Category:Graph_algorithms" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:23, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 106:</td>
<td colspan="2" class="diff-lineno">Line 106:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Junction Tree Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Junction Tree Algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian networks]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Bayesian networks]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Graph</del> <del style="font-weight: bold; text-decoration: none;">algorithms</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Algorithms</ins> <ins style="font-weight: bold; text-decoration: none;">in graph theory</ins>]]</div></td>
</tr>
</table>
JJMC89 bot III
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1217849672&oldid=prev
David Eppstein: /* Underlying theory */ cite conference not cite journal
2024-04-08T07:02:39Z
<p><span class="autocomment">Underlying theory: </span> cite conference not cite journal</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:02, 8 April 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 45:</td>
<td colspan="2" class="diff-lineno">Line 45:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The last step is to apply [[belief propagation]] to the obtained junction tree.<ref>{{cite web |url=https://www.cs.helsinki.fi/u/bmmalone/probabilistic-models-spring-2014/JunctionTreeBarber.pdf |title= Probabilistic Modelling and Reasoning, The Junction Tree Algorithm |last= Barber|first=David |date= 28 January 2014|website= University of Helsinki |access-date=16 November 2016}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The last step is to apply [[belief propagation]] to the obtained junction tree.<ref>{{cite web |url=https://www.cs.helsinki.fi/u/bmmalone/probabilistic-models-spring-2014/JunctionTreeBarber.pdf |title= Probabilistic Modelling and Reasoning, The Junction Tree Algorithm |last= Barber|first=David |date= 28 January 2014|website= University of Helsinki |access-date=16 November 2016}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Usage:''' A junction tree graph is used to visualize the probabilities of the problem. The tree can become a binary tree to form the actual building of the tree.<ref>{{<del style="font-weight: bold; text-decoration: none;">Cite</del> <del style="font-weight: bold; text-decoration: none;">journal</del>|<del style="font-weight: bold; text-decoration: none;">title</del>=Fault Diagnosis in an Industrial Process Using Bayesian Networks: Application of the Junction Tree Algorithm <del style="font-weight: bold; text-decoration: none;">-</del> <del style="font-weight: bold; text-decoration: none;">IEEE</del> <del style="font-weight: bold; text-decoration: none;">Conference</del> <del style="font-weight: bold; text-decoration: none;">Publication|language=en-US</del>|doi=10.1109/<del style="font-weight: bold; text-decoration: none;">CERMA</del>.2009.28|<del style="font-weight: bold; text-decoration: none;">s2cid</del>=<del style="font-weight: bold; text-decoration: none;">6068245</del>}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Usage:''' A junction tree graph is used to visualize the probabilities of the problem. The tree can become a binary tree to form the actual building of the tree.<ref>{{<ins style="font-weight: bold; text-decoration: none;">cite</ins> <ins style="font-weight: bold; text-decoration: none;">conference</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;"> last1 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Ramirez | first1 = Julio C.</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> | last2 = Munoz | first2 = Guillermina</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> | last3 = Gutierrez | first3 = Ludivina</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> | contribution = </ins>Fault Diagnosis in an Industrial Process Using Bayesian Networks: Application of the Junction Tree Algorithm</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> |</ins> <ins style="font-weight: bold; text-decoration: none;">date</ins> <ins style="font-weight: bold; text-decoration: none;">=</ins> <ins style="font-weight: bold; text-decoration: none;">September</ins> <ins style="font-weight: bold; text-decoration: none;">2009</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;"> </ins>doi<ins style="font-weight: bold; text-decoration: none;"> </ins>=<ins style="font-weight: bold; text-decoration: none;"> </ins>10.1109/<ins style="font-weight: bold; text-decoration: none;">cerma</ins>.2009.28</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;"> publisher </ins>=<ins style="font-weight: bold; text-decoration: none;"> IEEE</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> | title = 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA)</ins>}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
</tr>
</table>
David Eppstein
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1217849579&oldid=prev
David Eppstein: /* References */ split off further reading and rm dup
2024-04-08T07:01:26Z
<p><span class="autocomment">References: </span> split off further reading and rm dup</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:01, 8 April 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 55:</td>
<td colspan="2" class="diff-lineno">Line 55:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | last = Lauritzen</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | last = Lauritzen</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 92:</td>
<td colspan="2" class="diff-lineno">Line 94:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | doi = 10.1016/S0888-613X(96)00069-2| citeseerx = 10.1.1.47.3279</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | doi = 10.1016/S0888-613X(96)00069-2| citeseerx = 10.1.1.47.3279</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> }}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal|last=Paskin |first=Mark A. |title=A Short Course on Graphical Models : 3. The Junction Tree Algorithms |url=https://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf |url-status=unfit |archive-url=https://web.archive.org/web/20150319085443/https://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf |archive-date=March 19, 2015 }}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Lepar, V., Shenoy, P. (1998). "A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions." https://arxiv.org/ftp/arxiv/papers/1301/1301.7394.pdf</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Lepar, V., Shenoy, P. (1998). "A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions." https://arxiv.org/ftp/arxiv/papers/1301/1301.7394.pdf</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
David Eppstein
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1184418553&oldid=prev
Cadduk: Wrong wikilink
2023-11-10T07:56:14Z
<p>Wrong wikilink</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:56, 10 November 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multiple recursions of the Shafer-Shenoy algorithm results in Hugin algorithm<ref name=":3">{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec14.pdf|title=Algorithms|date=2014|website=Massachusetts Institute of Technology}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multiple recursions of the Shafer-Shenoy algorithm results in Hugin algorithm<ref name=":3">{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec14.pdf|title=Algorithms|date=2014|website=Massachusetts Institute of Technology}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Found by the [[Message passing in computer clusters|message passing]] equation<ref name=":3" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Found by the [[Message passing in computer clusters|message passing]] equation<ref name=":3" /></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[[<del style="font-weight: bold; text-decoration: none;">Separatrix</del> <del style="font-weight: bold; text-decoration: none;">(mathematics)</del>|Separator]] potentials are not stored<ref>{{Cite web|url=https://cs.nyu.edu/~roweis/csc412-2004/notes/lec20x.pdf|title=Hugin Inference Algorithm|last=Roweis|first=Sam|date=2004|website=NYU}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[<ins style="font-weight: bold; text-decoration: none;">Vertex</ins> <ins style="font-weight: bold; text-decoration: none;">separator</ins>|Separator]] potentials are not stored<ref>{{Cite web|url=https://cs.nyu.edu/~roweis/csc412-2004/notes/lec20x.pdf|title=Hugin Inference Algorithm|last=Roweis|first=Sam|date=2004|website=NYU}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Shafer-Shenoy [[algorithm]] is the [[Sum-product algorithm|sum product]] of a junction tree.<ref>{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/recitations/MIT6_438F14_rec8.pdf|title=Algorithms for Inference|date=2014|website=Massachusetts Institute of Technology}}</ref> It is used because it runs programs and queries more efficiently than the Hugin algorithm. The algorithm makes calculations for conditionals for [[belief functions]] possible.<ref name=":02">{{cite arXiv|last=Kłopotek|first=Mieczysław A.|date=2018-06-06|title=Dempsterian-Shaferian Belief Network From Data|eprint=1806.02373|class=cs.AI}}</ref> [[Joint distributions]] are needed to make local computations happen.<ref name=":02" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The Shafer-Shenoy [[algorithm]] is the [[Sum-product algorithm|sum product]] of a junction tree.<ref>{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/recitations/MIT6_438F14_rec8.pdf|title=Algorithms for Inference|date=2014|website=Massachusetts Institute of Technology}}</ref> It is used because it runs programs and queries more efficiently than the Hugin algorithm. The algorithm makes calculations for conditionals for [[belief functions]] possible.<ref name=":02">{{cite arXiv|last=Kłopotek|first=Mieczysław A.|date=2018-06-06|title=Dempsterian-Shaferian Belief Network From Data|eprint=1806.02373|class=cs.AI}}</ref> [[Joint distributions]] are needed to make local computations happen.<ref name=":02" /></div></td>
</tr>
</table>
Cadduk
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1068870476&oldid=prev
Citation bot: Alter: template type. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 1537/1776
2022-01-30T15:31:59Z
<p>Alter: template type. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by AManWithNoPlan | #UCB_webform 1537/1776</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:31, 30 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 21:</td>
<td colspan="2" class="diff-lineno">Line 21:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Separatrix (mathematics)|Separator]] potentials are not stored<ref>{{Cite web|url=https://cs.nyu.edu/~roweis/csc412-2004/notes/lec20x.pdf|title=Hugin Inference Algorithm|last=Roweis|first=Sam|date=2004|website=NYU}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Separatrix (mathematics)|Separator]] potentials are not stored<ref>{{Cite web|url=https://cs.nyu.edu/~roweis/csc412-2004/notes/lec20x.pdf|title=Hugin Inference Algorithm|last=Roweis|first=Sam|date=2004|website=NYU}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The Shafer-Shenoy [[algorithm]] is the [[Sum-product algorithm|sum product]] of a junction tree.<ref>{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/recitations/MIT6_438F14_rec8.pdf|title=Algorithms for Inference|date=2014|website=Massachusetts Institute of Technology}}</ref> It is used because it runs programs and queries more efficiently than the Hugin algorithm. The algorithm makes calculations for conditionals for [[belief functions]] possible.<ref name=":02">{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del>|last=Kłopotek|first=Mieczysław A.|date=2018-06-06|title=Dempsterian-Shaferian Belief Network From Data|eprint=1806.02373|class=cs.AI}}</ref> [[Joint distributions]] are needed to make local computations happen.<ref name=":02" /></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The Shafer-Shenoy [[algorithm]] is the [[Sum-product algorithm|sum product]] of a junction tree.<ref>{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/recitations/MIT6_438F14_rec8.pdf|title=Algorithms for Inference|date=2014|website=Massachusetts Institute of Technology}}</ref> It is used because it runs programs and queries more efficiently than the Hugin algorithm. The algorithm makes calculations for conditionals for [[belief functions]] possible.<ref name=":02">{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|last=Kłopotek|first=Mieczysław A.|date=2018-06-06|title=Dempsterian-Shaferian Belief Network From Data|eprint=1806.02373|class=cs.AI}}</ref> [[Joint distributions]] are needed to make local computations happen.<ref name=":02" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Underlying theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Underlying theory===</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1067030147&oldid=prev
Citation bot: Alter: template type. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_toolbar
2022-01-21T10:06:57Z
<p>Alter: template type. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | #UCB_toolbar</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:06, 21 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 45:</td>
<td colspan="2" class="diff-lineno">Line 45:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The last step is to apply [[belief propagation]] to the obtained junction tree.<ref>{{cite web |url=https://www.cs.helsinki.fi/u/bmmalone/probabilistic-models-spring-2014/JunctionTreeBarber.pdf |title= Probabilistic Modelling and Reasoning, The Junction Tree Algorithm |last= Barber|first=David |date= 28 January 2014|website= University of Helsinki |access-date=16 November 2016}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The last step is to apply [[belief propagation]] to the obtained junction tree.<ref>{{cite web |url=https://www.cs.helsinki.fi/u/bmmalone/probabilistic-models-spring-2014/JunctionTreeBarber.pdf |title= Probabilistic Modelling and Reasoning, The Junction Tree Algorithm |last= Barber|first=David |date= 28 January 2014|website= University of Helsinki |access-date=16 November 2016}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Usage:''' A junction tree graph is used to visualize the probabilities of the problem. The tree can become a binary tree to form the actual building of the tree.<ref>{{Cite <del style="font-weight: bold; text-decoration: none;">document</del>|title=Fault Diagnosis in an Industrial Process Using Bayesian Networks: Application of the Junction Tree Algorithm - IEEE Conference Publication|language=en-US|doi=10.1109/CERMA.2009.28|s2cid=6068245}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Usage:''' A junction tree graph is used to visualize the probabilities of the problem. The tree can become a binary tree to form the actual building of the tree.<ref>{{Cite <ins style="font-weight: bold; text-decoration: none;">journal</ins>|title=Fault Diagnosis in an Industrial Process Using Bayesian Networks: Application of the Junction Tree Algorithm - IEEE Conference Publication|language=en-US|doi=10.1109/CERMA.2009.28|s2cid=6068245}}</ref> A specific use could be found in [[Autoencoder|auto encoders]], which combine the graph and a passing network on a large scale automatically.<ref>{{Cite journal|last=Jin|first=Wengong|date=Feb 2018|title=Junction Tree Variational Autoencoder for Molecular Graph Generation|journal=Cornell University|arxiv=1802.04364|bibcode=2018arXiv180204364J}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Inference Algorithms ===</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1040856445&oldid=prev
GoodDay at 02:48, 27 August 2021
2021-08-27T02:48:45Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:48, 27 August 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Junction-tree-example.gif|thumb|Example of a junction tree]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Junction-tree-example.gif<ins style="font-weight: bold; text-decoration: none;">|300px</ins>|thumb|Example of a junction tree]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''junction tree algorithm''' (also known as 'Clique Tree') is a method used in [[machine learning]] to extract [[marginal distribution|marginalization]] in general [[Graph (discrete mathematics)|graph]]s. In essence, it entails performing [[belief propagation]] on a modified graph called a [[junction tree]]. The graph is called a tree because it branches into different sections of data; [[Vertex (graph theory)|nodes]] of variables are the branches.<ref name=":1">{{Cite web|url=https://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf|title=A Short Course on Graphical Models|last=Paskin|first=Mark|website=Stanford}}</ref> The basic premise is to eliminate [[cycle (graph theory)|cycle]]s by clustering them into single nodes. Multiple extensive classes of queries can be compiled at the same time into larger structures of data.<ref name=":1" /> There are different [[algorithm]]s to meet specific needs and for what needs to be calculated. [[Inference network|Inference algorithms]] gather new developments in the data and calculate it based on the new information provided.<ref>{{Cite web|url=http://www.dfki.de/~neumann/publications/diss/node58.html|title=The Inference Algorithm|website=www.dfki.de|access-date=2018-10-25}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''junction tree algorithm''' (also known as 'Clique Tree') is a method used in [[machine learning]] to extract [[marginal distribution|marginalization]] in general [[Graph (discrete mathematics)|graph]]s. In essence, it entails performing [[belief propagation]] on a modified graph called a [[junction tree]]. The graph is called a tree because it branches into different sections of data; [[Vertex (graph theory)|nodes]] of variables are the branches.<ref name=":1">{{Cite web|url=https://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf|title=A Short Course on Graphical Models|last=Paskin|first=Mark|website=Stanford}}</ref> The basic premise is to eliminate [[cycle (graph theory)|cycle]]s by clustering them into single nodes. Multiple extensive classes of queries can be compiled at the same time into larger structures of data.<ref name=":1" /> There are different [[algorithm]]s to meet specific needs and for what needs to be calculated. [[Inference network|Inference algorithms]] gather new developments in the data and calculate it based on the new information provided.<ref>{{Cite web|url=http://www.dfki.de/~neumann/publications/diss/node58.html|title=The Inference Algorithm|website=www.dfki.de|access-date=2018-10-25}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
GoodDay
https://en.wikipedia.org/w/index.php?title=Junction_tree_algorithm&diff=1038165637&oldid=prev
135.180.198.136: /* Hugin algorithm */
2021-08-10T22:19:23Z
<p><span class="autocomment">Hugin algorithm</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:19, 10 August 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 12:</td>
<td colspan="2" class="diff-lineno">Line 12:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Propagate the probabilities along the junction tree (via [[belief propagation]])</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Propagate the probabilities along the junction tree (via [[belief propagation]])</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Note that this last step is inefficient for graphs of large [[treewidth]]. Computing the messages to pass between supernodes involves doing exact marginalization over the variables in both supernodes. Performing this algorithm for a graph with treewidth k will thus have at least one computation which takes time exponential in k. It is a [[<del style="font-weight: bold; text-decoration: none;">Message</del> <del style="font-weight: bold; text-decoration: none;">passing in computer clusters</del>|message passing]] algorithm.<ref name=":2">{{Cite web|url=http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2007/lect5-handout.pdf|title=Recap on Graphical Models}}</ref> The Hugin algorithm takes fewer [[computation]]s to find a solution compared to Shafer-Shenoy.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Note that this last step is inefficient for graphs of large [[treewidth]]. Computing the messages to pass between supernodes involves doing exact marginalization over the variables in both supernodes. Performing this algorithm for a graph with treewidth k will thus have at least one computation which takes time exponential in k. It is a [[<ins style="font-weight: bold; text-decoration: none;">belief</ins> <ins style="font-weight: bold; text-decoration: none;">propagation</ins>|message passing]] algorithm.<ref name=":2">{{Cite web|url=http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2007/lect5-handout.pdf|title=Recap on Graphical Models}}</ref> The Hugin algorithm takes fewer [[computation]]s to find a solution compared to Shafer-Shenoy.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Shafer-Shenoy algorithm===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Shafer-Shenoy algorithm===</div></td>
</tr>
</table>
135.180.198.136