https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=KBD_algorithmKBD algorithm - Revision history2025-06-04T05:22:57ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1292409029&oldid=prevOAbot: Open access bot: url-access updated in citation with #oabot.2025-05-26T20:00:53Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: url-access updated in citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:00, 26 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941|pmid=10043065|bibcode=1990PhRvL..65..941K}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last1=Hamze|first1=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|pmid=29758754|arxiv=1711.04083|bibcode=2018PhRvE..97d3303H|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref name=coddington>{{Cite journal|last1=Coddington|first1=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|pmid=9976551|arxiv=cond-mat/9402030|bibcode=1994PhRvB..50.3058C|s2cid=939709}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941|pmid=10043065|bibcode=1990PhRvL..65..941K<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription</ins>}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last1=Hamze|first1=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|pmid=29758754|arxiv=1711.04083|bibcode=2018PhRvE..97d3303H|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref name=coddington>{{Cite journal|last1=Coddington|first1=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|pmid=9976551|arxiv=cond-mat/9402030|bibcode=1994PhRvB..50.3058C|s2cid=939709}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last1=Swendsen|first1=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86|pmid=10034599|bibcode=1987PhRvL..58...86S}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://dx.doi.org/10.1016/0378-4371%2892%2990145-G|journal=Physica A: Statistical Mechanics and Its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|bibcode=1992PhyA..183..249C|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref name=coddington/> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last1=Swendsen|first1=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86|pmid=10034599|bibcode=1987PhRvL..58...86S<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription</ins>}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://dx.doi.org/10.1016/0378-4371%2892%2990145-G|journal=Physica A: Statistical Mechanics and Its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|bibcode=1992PhyA..183..249C|issn=0378-4371<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription</ins>}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref name=coddington/> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 15:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At zero temperature, or the <math>\beta \to \infty</math> limit, all the plaquettes will contain exactly one negative edge. In this case, on each checkered plaquette, the KBD algorithm will always [[Percolation theory|open]] two parallel bonds perpendicular to the negative edge, meaning that the bond will be closed on the negative edge along with the edge opposite to it. If we were to track the closed bonds in the [[dual lattice]], by drawing a straight/bent line inside each plaquette such that it intersects with the closed bonds, then it can be shown that a path following the lines must form a [[Cycle (graph theory)|cycle]]. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At zero temperature, or the <math>\beta \to \infty</math> limit, all the plaquettes will contain exactly one negative edge. In this case, on each checkered plaquette, the KBD algorithm will always [[Percolation theory|open]] two parallel bonds perpendicular to the negative edge, meaning that the bond will be closed on the negative edge along with the edge opposite to it. If we were to track the closed bonds in the [[dual lattice]], by drawing a straight/bent line inside each plaquette such that it intersects with the closed bonds, then it can be shown that a path following the lines must form a [[Cycle (graph theory)|cycle]]. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700|pmid=10002105|bibcode=1992PhRvB..45.4700K}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700|pmid=10002105|bibcode=1992PhRvB..45.4700K<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription</ins>}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>OAbothttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1065072939&oldid=prevPol098 at 17:40, 11 January 20222022-01-11T17:40:36Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:40, 11 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941|pmid=10043065|bibcode=1990PhRvL..65..941K}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last1=Hamze|first1=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|pmid=29758754|arxiv=1711.04083|bibcode=2018PhRvE..97d3303H|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last1=Coddington|first1=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|pmid=9976551|arxiv=cond-mat/9402030|bibcode=1994PhRvB..50.3058C|s2cid=939709}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|last1=Kandel|first1=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941|pmid=10043065|bibcode=1990PhRvL..65..941K}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last1=Hamze|first1=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|pmid=29758754|arxiv=1711.04083|bibcode=2018PhRvE..97d3303H|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref<ins style="font-weight: bold; text-decoration: none;"> name=coddington</ins>>{{Cite journal|last1=Coddington|first1=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|pmid=9976551|arxiv=cond-mat/9402030|bibcode=1994PhRvB..50.3058C|s2cid=939709}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last1=Swendsen|first1=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86|pmid=10034599|bibcode=1987PhRvL..58...86S}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://dx.doi.org/10.1016/0378-4371%2892%2990145-G|journal=Physica A: Statistical Mechanics and Its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|bibcode=1992PhyA..183..249C|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref<del style="font-weight: bold; text-decoration: none;">>{{Cite</del> <del style="font-weight: bold; text-decoration: none;">journal|last1</del>=<del style="font-weight: bold; text-decoration: none;">Coddington|first1=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|pmid=9976551|arxiv=cond-mat/9402030|bibcode=1994PhRvB..50.3058C|s2cid=939709}}<</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last1=Swendsen|first1=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86|pmid=10034599|bibcode=1987PhRvL..58...86S}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://dx.doi.org/10.1016/0378-4371%2892%2990145-G|journal=Physica A: Statistical Mechanics and Its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|bibcode=1992PhyA..183..249C|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref <ins style="font-weight: bold; text-decoration: none;">name</ins>=<ins style="font-weight: bold; text-decoration: none;">coddington</ins>/> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
</table>Pol098https://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1051093385&oldid=prevCitation bot: Alter: url, journal. URLs might have been anonymized. Add: s2cid, arxiv, bibcode, pmid, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Statistical mechanics | #UCB_Category 24/2782021-10-21T15:05:27Z<p>Alter: url, journal. URLs might have been anonymized. Add: s2cid, arxiv, bibcode, pmid, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | <a href="/wiki/Category:Statistical_mechanics" title="Category:Statistical mechanics">Category:Statistical mechanics</a> | #UCB_Category 24/278</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:05, 21 October 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Kandel|<del style="font-weight: bold; text-decoration: none;">first</del>=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Hamze|<del style="font-weight: bold; text-decoration: none;">first</del>=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems<del style="font-weight: bold; text-decoration: none;">|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303</del>|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Coddington|<del style="font-weight: bold; text-decoration: none;">first</del>=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref name=":0">{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Kandel|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941<ins style="font-weight: bold; text-decoration: none;">|pmid=10043065|bibcode=1990PhRvL..65..941K</ins>}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Hamze|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303<ins style="font-weight: bold; text-decoration: none;">|pmid=29758754|arxiv=1711.04083|bibcode=2018PhRvE..97d3303H</ins>|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Coddington|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058<ins style="font-weight: bold; text-decoration: none;">|pmid=9976551</ins>|arxiv=cond-mat/9402030<ins style="font-weight: bold; text-decoration: none;">|bibcode=1994PhRvB..50.3058C|s2cid=939709</ins>}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Swendsen|<del style="font-weight: bold; text-decoration: none;">first</del>=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://<del style="font-weight: bold; text-decoration: none;">www</del>.<del style="font-weight: bold; text-decoration: none;">sciencedirect</del>.<del style="font-weight: bold; text-decoration: none;">com</del>/<del style="font-weight: bold; text-decoration: none;">science</del>/<del style="font-weight: bold; text-decoration: none;">article/pii/037843719290145G</del>|journal=Physica A: Statistical Mechanics and <del style="font-weight: bold; text-decoration: none;">its</del> Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Coddington|<del style="font-weight: bold; text-decoration: none;">first</del>=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Swendsen|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86<ins style="font-weight: bold; text-decoration: none;">|pmid=10034599|bibcode=1987PhRvL..58...86S</ins>}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://<ins style="font-weight: bold; text-decoration: none;">dx</ins>.<ins style="font-weight: bold; text-decoration: none;">doi</ins>.<ins style="font-weight: bold; text-decoration: none;">org</ins>/<ins style="font-weight: bold; text-decoration: none;">10.1016</ins>/<ins style="font-weight: bold; text-decoration: none;">0378-4371%2892%2990145-G</ins>|journal=Physica A: Statistical Mechanics and <ins style="font-weight: bold; text-decoration: none;">Its</ins> Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G<ins style="font-weight: bold; text-decoration: none;">|bibcode=1992PhyA..183..249C</ins>|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Coddington|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058<ins style="font-weight: bold; text-decoration: none;">|pmid=9976551</ins>|arxiv=cond-mat/9402030<ins style="font-weight: bold; text-decoration: none;">|bibcode=1994PhRvB..50.3058C|s2cid=939709</ins>}}</ref> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 15:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At zero temperature, or the <math>\beta \to \infty</math> limit, all the plaquettes will contain exactly one negative edge. In this case, on each checkered plaquette, the KBD algorithm will always [[Percolation theory|open]] two parallel bonds perpendicular to the negative edge, meaning that the bond will be closed on the negative edge along with the edge opposite to it. If we were to track the closed bonds in the [[dual lattice]], by drawing a straight/bent line inside each plaquette such that it intersects with the closed bonds, then it can be shown that a path following the lines must form a [[Cycle (graph theory)|cycle]]. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At zero temperature, or the <math>\beta \to \infty</math> limit, all the plaquettes will contain exactly one negative edge. In this case, on each checkered plaquette, the KBD algorithm will always [[Percolation theory|open]] two parallel bonds perpendicular to the negative edge, meaning that the bond will be closed on the negative edge along with the edge opposite to it. If we were to track the closed bonds in the [[dual lattice]], by drawing a straight/bent line inside each plaquette such that it intersects with the closed bonds, then it can be shown that a path following the lines must form a [[Cycle (graph theory)|cycle]]. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Kandel|<del style="font-weight: bold; text-decoration: none;">first</del>=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Kandel|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700<ins style="font-weight: bold; text-decoration: none;">|pmid=10002105|bibcode=1992PhRvB..45.4700K</ins>}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1048083268&oldid=prevOAbot: Open access bot: arxiv added to citation with #oabot.2021-10-04T04:41:14Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: arxiv added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:41, 4 October 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last=Swendsen|first=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://www.sciencedirect.com/science/article/pii/037843719290145G|journal=Physica A: Statistical Mechanics and its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058}}</ref> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]].<ref>{{Cite journal|last=Swendsen|first=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system.<ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://www.sciencedirect.com/science/article/pii/037843719290145G|journal=Physica A: Statistical Mechanics and its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones,<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058<ins style="font-weight: bold; text-decoration: none;">|arxiv=cond-mat/9402030</ins>}}</ref> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
</table>OAbothttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047147175&oldid=prevYanru pei: fixed reference formatting2021-09-29T08:12:14Z<p>fixed reference formatting</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:12, 29 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]]<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{Cite journal|last=Swendsen|first=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://www.sciencedirect.com/science/article/pii/037843719290145G|journal=Physica A: Statistical Mechanics and its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058}}</ref><del style="font-weight: bold; text-decoration: none;">,</del> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]]<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{Cite journal|last=Swendsen|first=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref> However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://www.sciencedirect.com/science/article/pii/037843719290145G|journal=Physica A: Statistical Mechanics and its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref> The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones<ins style="font-weight: bold; text-decoration: none;">,</ins><ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058}}</ref> thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>We begin by decomposing the square lattice down into plaquettes arranged in a checkered pattern (such that the plaquettes only overlap vertex-wise but not edge-wise). Since the spin model is fully-frustrated, each plaquette must contain exactly one or three negative interactions<del style="font-weight: bold; text-decoration: none;"> </del><ref name=":0" /><del style="font-weight: bold; text-decoration: none;">.</del> If the plaquette contains three negative interactions, then no bonds can be formed. However, if the plaquette contains one negative interaction, then two parallel bonds can be formed (perpendicular to the negative edge) with probability <math>p = 1-e^{-4\beta}</math>, where <math>\beta</math> is the [[Boltzmann distribution|inverse temperature]] of the spin model. </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>We begin by decomposing the square lattice down into plaquettes arranged in a checkered pattern (such that the plaquettes only overlap vertex-wise but not edge-wise). Since the spin model is fully-frustrated, each plaquette must contain exactly one or three negative interactions<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name=":0" /> If the plaquette contains three negative interactions, then no bonds can be formed. However, if the plaquette contains one negative interaction, then two parallel bonds can be formed (perpendicular to the negative edge) with probability <math>p = 1-e^{-4\beta}</math>, where <math>\beta</math> is the [[Boltzmann distribution|inverse temperature]] of the spin model. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The bonds will then form [[Random cluster model|clusters]] on the lattice, on which the spins can be collectively flipped (either with the [[Swendsen–Wang algorithm|SW]] rule or the [[Wolff algorithm|Wolff]] rule ). It can be shown that the update satisfies [[detailed balance]], meaning that correctness is guaranteed if the algorithm is used in conjunction with [[Ergodicity|ergodic]] algorithms like [[Glauber dynamics|single spin-flip updates]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The bonds will then form [[Random cluster model|clusters]] on the lattice, on which the spins can be collectively flipped (either with the [[Swendsen–Wang algorithm|SW]] rule or the [[Wolff algorithm|Wolff]] rule ). It can be shown that the update satisfies [[detailed balance]], meaning that correctness is guaranteed if the algorithm is used in conjunction with [[Ergodicity|ergodic]] algorithms like [[Glauber dynamics|single spin-flip updates]].</div></td>
</tr>
</table>Yanru peihttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047146870&oldid=prevYanru pei: added references to previous removed sections2021-09-29T08:09:29Z<p>added references to previous removed sections</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:09, 29 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove|date=May 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref<ins style="font-weight: bold; text-decoration: none;"> name=":0"</ins>>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]]. However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system. The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones, thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]]<ins style="font-weight: bold; text-decoration: none;"> <ref>{{Cite journal|last=Swendsen|first=Robert H.|last2=Wang|first2=Jian-Sheng|date=1987-01-12|title=Nonuniversal critical dynamics in Monte Carlo simulations|url=https://link.aps.org/doi/10.1103/PhysRevLett.58.86|journal=Physical Review Letters|volume=58|issue=2|pages=86–88|doi=10.1103/PhysRevLett.58.86}}</ref></ins>. However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system<ins style="font-weight: bold; text-decoration: none;"> <ref>{{Cite journal|last=Cataudella|first=V.|date=1992-05-01|title=Percolation transition in systems with frustation|url=https://www.sciencedirect.com/science/article/pii/037843719290145G|journal=Physica A: Statistical Mechanics and its Applications|language=en|volume=183|issue=3|pages=249–254|doi=10.1016/0378-4371(92)90145-G|issn=0378-4371}}</ref></ins>. The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones<ins style="font-weight: bold; text-decoration: none;"> <ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058}}</ref></ins>, thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>We begin by decomposing the square lattice down into plaquettes arranged in a checkered pattern (such that the plaquettes only overlap vertex-wise but not edge-wise). Since the spin model is fully-frustrated, each plaquette must contain exactly one or three negative interactions. If the plaquette contains three negative interactions, then no bonds can be formed. However, if the plaquette contains one negative interaction, then two parallel bonds can be formed (perpendicular to the negative edge) with probability <math>p = 1-e^{-4\beta}</math>, where <math>\beta</math> is the [[Boltzmann distribution|inverse temperature]] of the spin model. </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>We begin by decomposing the square lattice down into plaquettes arranged in a checkered pattern (such that the plaquettes only overlap vertex-wise but not edge-wise). Since the spin model is fully-frustrated, each plaquette must contain exactly one or three negative interactions<ins style="font-weight: bold; text-decoration: none;"> <ref name=":0" /></ins>. If the plaquette contains three negative interactions, then no bonds can be formed. However, if the plaquette contains one negative interaction, then two parallel bonds can be formed (perpendicular to the negative edge) with probability <math>p = 1-e^{-4\beta}</math>, where <math>\beta</math> is the [[Boltzmann distribution|inverse temperature]] of the spin model. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The bonds will then form [[Random cluster model|clusters]] on the lattice, on which the spins can be collectively flipped (either with the SW rule or the [[Wolff algorithm|Wolff]] rule). It can be shown that the update satisfies [[detailed balance]], meaning that correctness is guaranteed if the algorithm is used in conjunction with [[Ergodicity|ergodic]] algorithms like [[Glauber dynamics|single spin-flip updates]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The bonds will then form [[Random cluster model|clusters]] on the lattice, on which the spins can be collectively flipped (either with the <ins style="font-weight: bold; text-decoration: none;">[[Swendsen–Wang algorithm|</ins>SW<ins style="font-weight: bold; text-decoration: none;">]]</ins> rule or the [[Wolff algorithm|Wolff]] rule<ins style="font-weight: bold; text-decoration: none;"> </ins>). It can be shown that the update satisfies [[detailed balance]], meaning that correctness is guaranteed if the algorithm is used in conjunction with [[Ergodicity|ergodic]] algorithms like [[Glauber dynamics|single spin-flip updates]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Topological features ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Topological features ==</div></td>
</tr>
</table>Yanru peihttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047141143&oldid=prevUanfala: rv: the section is *not* unsourced (its sources are all listed in the lede), the article is not too technical (it's written precisely at the level of the sort of readers who would look up that very niche topic); no need for general category as the article is already included in the most relevant subcat2021-09-29T07:14:06Z<p>rv: the section is *not* unsourced (its sources are all listed in the lede), the article is not too technical (it's written precisely at the level of the sort of readers who would look up that very niche topic); no need for general category as the article is already included in the most relevant subcat</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:14, 29 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cluster update algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cluster update algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">Technical</del>|date=<del style="font-weight: bold; text-decoration: none;">September</del> 2021}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">refimprove</ins>|date=<ins style="font-weight: bold; text-decoration: none;">May</ins> 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Motivation ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Swendsen–Wang algorithm|SW algorithm]] is the first non-local algorithm designed for efficient simulation of [[Ising model|ferromagnetic spin models]]. However, it is soon realized that the efficiency of the algorithm cannot be extended to [[Geometrical frustration|frustrated systems]], due to an overly large [[Percolation critical exponents|correlation length of the generated clusters]] with respect to the underlying spin system. The KBD algorithm is an attempt to extend the bond-formation rule to the plaquettes of the lattice, such that the generated clusters are informed by the frustration profile, resulting in them being smaller than the SW ones, thereby making the algorithm more efficient in comparison. However, at the current stage, it is not known whether this algorithm can be generalized for arbitrary [[spin glass]] models.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Algorithm ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>We begin by decomposing the square lattice down into plaquettes arranged in a checkered pattern (such that the plaquettes only overlap vertex-wise but not edge-wise). Since the spin model is fully-frustrated, each plaquette must contain exactly one or three negative interactions. If the plaquette contains three negative interactions, then no bonds can be formed. However, if the plaquette contains one negative interaction, then two parallel bonds can be formed (perpendicular to the negative edge) with probability <math>p = 1-e^{-4\beta}</math>, where <math>\beta</math> is the [[Boltzmann distribution|inverse temperature]] of the spin model. </div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The bonds will then form [[Random cluster model|clusters]] on the lattice, on which the spins can be collectively flipped (either with the SW rule or the [[Wolff algorithm|Wolff]] rule). It can be shown that the update satisfies [[detailed balance]], meaning that correctness is guaranteed if the algorithm is used in conjunction with [[Ergodicity|ergodic]] algorithms like [[Glauber dynamics|single spin-flip updates]].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Topological features ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>At zero temperature, or the <math>\beta \to \infty</math> limit, all the plaquettes will contain exactly one negative edge. In this case, on each checkered plaquette, the KBD algorithm will always [[Percolation theory|open]] two parallel bonds perpendicular to the negative edge, meaning that the bond will be closed on the negative edge along with the edge opposite to it. If we were to track the closed bonds in the [[dual lattice]], by drawing a straight/bent line inside each plaquette such that it intersects with the closed bonds, then it can be shown that a path following the lines must form a [[Cycle (graph theory)|cycle]]. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Furthermore, it can be shown that there must be at least two such cycles, and that the cycles cannot intersect. Most importantly, each cycle cannot be [[Homotopy|contracted]] to a point in the [[Euler characteristic|underlying surface]] that the lattice is [[Graph embedding|embedded]] in.<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1992-03-01|title=Cluster Monte Carlo dynamics for the fully frustrated Ising model|url=https://link.aps.org/doi/10.1103/PhysRevB.45.4700|journal=Physical Review B|volume=45|issue=9|pages=4700–4709|doi=10.1103/PhysRevB.45.4700}}</ref> On a periodic lattice (or a [[torus]]), this means that the cycles of closed bonds must wind around the torus in the same direction, from which one can show that the [[Giant component|largest cluster]] (which must be "squeezed" between these cycles) at zero temperature cannot span a finite fraction of the lattice size in the [[thermodynamic limit]].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 24:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical mechanics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical mechanics]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{algorithm-stub}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
</table>Uanfalahttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047082576&oldid=prevJBchrch: Added {{algorithm-stub}} using a tool2021-09-28T22:34:58Z<p>Added {{algorithm-stub}} using <a href="/wiki/User:Danski454/stubsearch" title="User:Danski454/stubsearch">a tool</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:34, 28 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{algorithm-stub}}</div></td>
</tr>
</table>JBchrchhttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047082467&oldid=prevJBchrch: added Category:Algorithms using HotCat2021-09-28T22:33:55Z<p>added <a href="/wiki/Category:Algorithms" title="Category:Algorithms">Category:Algorithms</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:33, 28 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical mechanics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical mechanics]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
</tr>
</table>JBchrchhttps://en.wikipedia.org/w/index.php?title=KBD_algorithm&diff=1047082329&oldid=prevJBchrch: Added {{Technical}}; and removed {{More citations needed}} tags2021-09-28T22:32:35Z<p>Added {{<a href="/wiki/Template:Technical" title="Template:Technical">Technical</a>}}; and removed {{<a href="/wiki/Template:More_citations_needed" title="Template:More citations needed">More citations needed</a>}} tags</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:32, 28 September 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cluster update algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Cluster update algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">refimprove</del>|date=<del style="font-weight: bold; text-decoration: none;">May</del> 2021}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">Technical</ins>|date=<ins style="font-weight: bold; text-decoration: none;">September</ins> 2021}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''KBD algorithm''' is a [[Swendsen–Wang algorithm|cluster update algorithm]] designed for the [[Domino tiling|fully frustrated Ising model]] in two dimensions,<ref>{{Cite journal|last=Kandel|first=Daniel|last2=Ben-Av|first2=Radel|last3=Domany|first3=Eytan|date=1990-08-20|title=Cluster dynamics for fully frustrated systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.65.941|journal=Physical Review Letters|volume=65|issue=8|pages=941–944|doi=10.1103/PhysRevLett.65.941}}</ref> or more generally any two dimensional spin glass with frustrated plaquettes arranged in a [[Check (pattern)|checkered pattern]].<ref>{{Cite journal|last=Hamze|first=Firas|last2=Jacob|first2=Darryl C.|last3=Ochoa|first3=Andrew J.|last4=Perera|first4=Dilina|last5=Wang|first5=Wenlong|last6=Katzgraber|first6=Helmut G.|date=2018-04-13|title=From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems|url=https://link.aps.org/doi/10.1103/PhysRevE.97.043303|journal=Physical Review E|volume=97|issue=4|pages=043303|doi=10.1103/PhysRevE.97.043303|doi-access=free}}</ref> It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994.<ref>{{Cite journal|last=Coddington|first=P. D.|last2=Han|first2=L.|date=1994-08-01|title=Generalized cluster algorithms for frustrated spin models|url=https://link.aps.org/doi/10.1103/PhysRevB.50.3058|journal=Physical Review B|volume=50|issue=5|pages=3058–3067|doi=10.1103/PhysRevB.50.3058|arxiv=cond-mat/9402030}}</ref> It is the inspiration for cluster algorithms used in [[Quantum Monte Carlo|quantum monte carlo]] simulations.</div></td>
</tr>
</table>JBchrch