https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=KHOPCA_clustering_algorithm
KHOPCA clustering algorithm - Revision history
2025-05-29T03:52:30Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.2
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=1250833727&oldid=prev
JJMC89 bot III: Moving :Category:Algorithms in graph theory to :Category:Graph algorithms per Wikipedia:Categories for discussion/Log/2024 October 4
2024-10-12T19:56:47Z
<p>Moving <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> to <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:56, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 74:</td>
<td colspan="2" class="diff-lineno">Line 74:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Algorithms</del> <del style="font-weight: bold; text-decoration: none;">in graph theory</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Graph</ins> <ins style="font-weight: bold; text-decoration: none;">algorithms</ins>]]</div></td>
</tr>
</table>
JJMC89 bot III
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=1250714190&oldid=prev
JJMC89 bot III: Moving :Category:Graph algorithms to :Category:Algorithms in graph theory per Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms
2024-10-12T02:24:00Z
<p>Moving <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> to <a href="/w/index.php?title=Category:Algorithms_in_graph_theory&action=edit&redlink=1" class="new" title="Category:Algorithms in graph theory (page does not exist)">Category:Algorithms in graph theory</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Log/2024_October_4#Category:Graph_algorithms" title="Wikipedia:Categories for discussion/Log/2024 October 4">Wikipedia:Categories for discussion/Log/2024 October 4#Category:Graph algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:24, 12 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 74:</td>
<td colspan="2" class="diff-lineno">Line 74:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Graph</del> <del style="font-weight: bold; text-decoration: none;">algorithms</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Algorithms</ins> <ins style="font-weight: bold; text-decoration: none;">in graph theory</ins>]]</div></td>
</tr>
</table>
JJMC89 bot III
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=1213673630&oldid=prev
Frap: /* Examples */
2024-03-14T13:08:21Z
<p><span class="autocomment">Examples</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:08, 14 March 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 52:</td>
<td colspan="2" class="diff-lineno">Line 52:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== <del style="font-weight: bold; text-decoration: none;">1-D</del> ===</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== <ins style="font-weight: bold; text-decoration: none;">1D</ins> ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An exemplary sequence of state transitions applying the described four rules is illustrated below.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>An exemplary sequence of state transitions applying the described four rules is illustrated below.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 1D example 1.png|frameless]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 1D example 1.png|frameless]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== <del style="font-weight: bold; text-decoration: none;">2-D</del> ===</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== <ins style="font-weight: bold; text-decoration: none;">2D</ins> ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA acting in a dynamic <del style="font-weight: bold; text-decoration: none;">2-D</del> simulation. The geometry is based on a geometric random graph; all existing links are drawn in this network.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA acting in a dynamic <ins style="font-weight: bold; text-decoration: none;">2D</ins> simulation. The geometry is based on a geometric random graph; all existing links are drawn in this network.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 2D k3a.jpg|frameless]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 2D k3a.jpg|frameless]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== <del style="font-weight: bold; text-decoration: none;">3-D</del> ===</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== <ins style="font-weight: bold; text-decoration: none;">3D</ins> ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA also works in a dynamic <del style="font-weight: bold; text-decoration: none;">3-D</del> environment. The cluster connections are illustrated with bold lines.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA also works in a dynamic <ins style="font-weight: bold; text-decoration: none;">3D</ins> environment. The cluster connections are illustrated with bold lines.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 2.png|frameless]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 2.png|frameless]]</div></td>
</tr>
</table>
Frap
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=1169213846&oldid=prev
Citation bot: Alter: title, template type. Add: s2cid, chapter, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 1059/2306
2023-08-07T19:39:36Z
<p>Alter: title, template type. Add: s2cid, chapter, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 1059/2306</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:39, 7 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Brust|<del style="font-weight: bold; text-decoration: none;">first</del>=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen<del style="font-weight: bold; text-decoration: none;">|date=2007-01-01</del>|title<del style="font-weight: bold; text-decoration: none;">=Adaptive Multi-hop Clustering in Mobile Networks|journal</del>=Proceedings of the 4th <del style="font-weight: bold; text-decoration: none;">International</del> <del style="font-weight: bold; text-decoration: none;">Conference</del> on <del style="font-weight: bold; text-decoration: none;">Mobile</del> <del style="font-weight: bold; text-decoration: none;">Technology</del>, <del style="font-weight: bold; text-decoration: none;">Applications</del>, and <del style="font-weight: bold; text-decoration: none;">Systems</del> and the 1st <del style="font-weight: bold; text-decoration: none;">International</del> <del style="font-weight: bold; text-decoration: none;">Symposium</del> on Computer <del style="font-weight: bold; text-decoration: none;">Human</del> <del style="font-weight: bold; text-decoration: none;">Interaction</del> in <del style="font-weight: bold; text-decoration: none;">Mobile</del> <del style="font-weight: bold; text-decoration: none;">Technology</del>|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|<del style="font-weight: bold; text-decoration: none;">last</del>=Brust|<del style="font-weight: bold; text-decoration: none;">first</del>=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen<del style="font-weight: bold; text-decoration: none;">|date=2008-01-01</del>|title<del style="font-weight: bold; text-decoration: none;">=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|journal</del>=Proceedings of the 2nd <del style="font-weight: bold; text-decoration: none;">International</del> <del style="font-weight: bold; text-decoration: none;">Conference</del> on Ubiquitous <del style="font-weight: bold; text-decoration: none;">Information</del> <del style="font-weight: bold; text-decoration: none;">Management</del> and <del style="font-weight: bold; text-decoration: none;">Communication</del>|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Brust|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|title=Proceedings of the 4th <ins style="font-weight: bold; text-decoration: none;">international</ins> <ins style="font-weight: bold; text-decoration: none;">conference</ins> on <ins style="font-weight: bold; text-decoration: none;">mobile</ins> <ins style="font-weight: bold; text-decoration: none;">technology</ins>, <ins style="font-weight: bold; text-decoration: none;">applications</ins>, and <ins style="font-weight: bold; text-decoration: none;">systems</ins> and the 1st <ins style="font-weight: bold; text-decoration: none;">international</ins> <ins style="font-weight: bold; text-decoration: none;">symposium</ins> on Computer <ins style="font-weight: bold; text-decoration: none;">human</ins> <ins style="font-weight: bold; text-decoration: none;">interaction</ins> in <ins style="font-weight: bold; text-decoration: none;">mobile</ins> <ins style="font-weight: bold; text-decoration: none;">technology |chapter=Adaptive multi-hop clustering in mobile networks |date=2007-01-01</ins>|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190<ins style="font-weight: bold; text-decoration: none;">|s2cid=33469900 </ins>}}</ref><ref name=":0">{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Brust|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|title=Proceedings of the 2nd <ins style="font-weight: bold; text-decoration: none;">international</ins> <ins style="font-weight: bold; text-decoration: none;">conference</ins> on Ubiquitous <ins style="font-weight: bold; text-decoration: none;">information</ins> <ins style="font-weight: bold; text-decoration: none;">management</ins> and <ins style="font-weight: bold; text-decoration: none;">communication |chapter=Dynamic multi-hop clustering for mobile hybrid wireless networks |date=2008-01-01</ins>|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937<ins style="font-weight: bold; text-decoration: none;">|s2cid=15200455 </ins>}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=1106328528&oldid=prev
JCW-CleanerBot: /* top */task, replaced: 2Nd → 2nd
2022-08-24T03:22:00Z
<p><span class="autocomment">top: </span><a href="/wiki/User:JCW-CleanerBot#Logic" title="User:JCW-CleanerBot">task</a>, replaced: 2Nd → 2nd</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:22, 24 August 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|journal=Proceedings of the <del style="font-weight: bold; text-decoration: none;">2Nd</del> International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|journal=Proceedings of the <ins style="font-weight: bold; text-decoration: none;">2nd</ins> International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
</tr>
</table>
JCW-CleanerBot
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=974908900&oldid=prev
John of Reading: Typo/general fixes, replaced: coincidently → coincidentally
2020-08-25T19:00:35Z
<p>Typo/<a href="/wiki/Wikipedia:AWB/GF" class="mw-redirect" title="Wikipedia:AWB/GF">general</a> fixes, replaced: coincidently → coincidentally</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:00, 25 August 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 30:</td>
<td colspan="2" class="diff-lineno">Line 30:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Rule 2 ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Rule 2 ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA rule 2 a.png|thumb|KHOPCA rule 2]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA rule 2 a.png|thumb|KHOPCA rule 2]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The second rule deals with the situation where nodes in a neighborhood are on the minimum weight level. This situation can happen if, for instance, the initial configuration assigns the minimum weight to all nodes. If there is a neighborhood with all nodes having the minimum weight level, the node <math display="inline">n</math> declares itself as cluster center. Even if <del style="font-weight: bold; text-decoration: none;">coincidently</del> all nodes declare themselves as cluster centers, the conflict situation will be resolved by one of the other rules.<syntaxhighlight lang="java" line="1"></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The second rule deals with the situation where nodes in a neighborhood are on the minimum weight level. This situation can happen if, for instance, the initial configuration assigns the minimum weight to all nodes. If there is a neighborhood with all nodes having the minimum weight level, the node <math display="inline">n</math> declares itself as cluster center. Even if <ins style="font-weight: bold; text-decoration: none;">coincidentally</ins> all nodes declare themselves as cluster centers, the conflict situation will be resolved by one of the other rules.<syntaxhighlight lang="java" line="1"></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>if max(W(N(n)) == MIN & w_n == MIN</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>if max(W(N(n)) == MIN & w_n == MIN</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> w_n = MAX;</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> w_n = MAX;</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 72:</td>
<td colspan="2" class="diff-lineno">Line 72:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
</tr>
</table>
John of Reading
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=954417907&oldid=prev
Geysirhead: removed Category:Algorithms; added Category:Graph algorithms using HotCat
2020-05-02T08:46:06Z
<p>removed <a href="/wiki/Category:Algorithms" title="Category:Algorithms">Category:Algorithms</a>; added <a href="/wiki/Category:Graph_algorithms" title="Category:Graph algorithms">Category:Graph algorithms</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:46, 2 May 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 76:</td>
<td colspan="2" class="diff-lineno">Line 76:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Algorithms</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Graph algorithms</ins>]]</div></td>
</tr>
</table>
Geysirhead
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=906165232&oldid=prev
Citation bot: Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here.| Activated by User:Marianne Zimmerman
2019-07-14T02:45:22Z
<p>Removed URL that duplicated unique identifier. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>.| Activated by <a href="/wiki/User:Marianne_Zimmerman" title="User:Marianne Zimmerman">User:Marianne Zimmerman</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:45, 14 July 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks<del style="font-weight: bold; text-decoration: none;">|url=http://doi.acm.org/10.1145/1378063.1378086</del>|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks<del style="font-weight: bold; text-decoration: none;">|url=http://doi.acm.org/10.1145/1352793.1352820</del>|journal=Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is an adaptive [[clustering algorithm]] originally developed for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|journal=Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=807003042&oldid=prev
Speng dahl at 09:57, 25 October 2017
2017-10-25T09:57:18Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:57, 25 October 2017</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:KHOPCA 3D example 1.png|thumb|KHOPCA running in a 3-D environment.]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is <del style="font-weight: bold; text-decoration: none;">a</del> [[clustering algorithm]] <del style="font-weight: bold; text-decoration: none;">designed</del> for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks|url=http://doi.acm.org/10.1145/1378063.1378086|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|url=http://doi.acm.org/10.1145/1352793.1352820|journal=Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''KHOPCA''' is <ins style="font-weight: bold; text-decoration: none;">an adaptive</ins> [[clustering algorithm]] <ins style="font-weight: bold; text-decoration: none;">originally developed</ins> for dynamic networks. KHOPCA (<math display="inline">k</math>-hop clustering algorithm) provides a fully [[Distributed computing|distributed]] and localized approach to group elements such as nodes in a network according to their distance from each other.<ref>{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2007-01-01|title=Adaptive Multi-hop Clustering in Mobile Networks|url=http://doi.acm.org/10.1145/1378063.1378086|journal=Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology|series=Mobility '07|location=New York, NY, USA|publisher=ACM|pages=132–138|doi=10.1145/1378063.1378086|isbn=9781595938190}}</ref><ref name=":0">{{Cite journal|last=Brust|first=Matthias R.|last2=Frey|first2=Hannes|last3=Rothkugel|first3=Steffen|date=2008-01-01|title=Dynamic Multi-hop Clustering for Mobile Hybrid Wireless Networks|url=http://doi.acm.org/10.1145/1352793.1352820|journal=Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication|series=ICUIMC '08|location=New York, NY, USA|publisher=ACM|pages=130–135|doi=10.1145/1352793.1352820|isbn=9781595939937}}</ref> KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>KHOPCA's clustering process explicitly supports joining and leaving of nodes, which makes KHOPCA suitable for highly dynamic networks. However, it has been demonstrated that KHOPCA also performs in static networks.<ref name=":0" /></div></td>
</tr>
</table>
Speng dahl
https://en.wikipedia.org/w/index.php?title=KHOPCA_clustering_algorithm&diff=743467166&oldid=prev
Rathfelder: removed Category:Clustering algorithms using HotCat
2016-10-09T20:02:24Z
<p>removed <a href="/w/index.php?title=Category:Clustering_algorithms&action=edit&redlink=1" class="new" title="Category:Clustering algorithms (page does not exist)">Category:Clustering algorithms</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:02, 9 October 2016</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 76:</td>
<td colspan="2" class="diff-lineno">Line 76:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:KHOPCA clustering algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Clustering algorithms]]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
</tr>
</table>
Rathfelder