https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Learning_augmented_algorithm
Learning augmented algorithm - Revision history
2025-05-31T04:53:01Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1282384813&oldid=prev
Citation bot: Altered isbn. Add: url, isbn. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Theoretical computer science | #UCB_Category 4/137
2025-03-26T02:25:58Z
<p>Altered isbn. Add: url, isbn. Upgrade ISBN10 to 13. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Theoretical_computer_science" title="Category:Theoretical computer science">Category:Theoretical computer science</a> | #UCB_Category 4/137</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:25, 26 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance.<ref name="MitzenmacherVassilvitskii2020">{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance.<ref name="MitzenmacherVassilvitskii2020">{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123<ins style="font-weight: bold; text-decoration: none;"> | isbn = 978-1-108-63743-5</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 30:</td>
<td colspan="2" class="diff-lineno">Line 30:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]<ref name="WangLiWang2020">{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-71382-954-<del style="font-weight: bold; text-decoration: none;">1</del> | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]<ref name="WangLiWang2020">{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=<ins style="font-weight: bold; text-decoration: none;">978-</ins>1-71382-954-<ins style="font-weight: bold; text-decoration: none;">6</ins> | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 52:</td>
<td colspan="2" class="diff-lineno">Line 52:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| date = 2021</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| date = 2021</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]<ref name="BansalCoesterKumar2022">{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv = }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]<ref name="BansalCoesterKumar2022">{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv =<ins style="font-weight: bold; text-decoration: none;"> | isbn = 978-1-61197-707-3 | url = https://ora.ox.ac.uk/objects/uuid:f8f430f4-23fd-49b9-9cf4-1c24230151cf</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1276185509&oldid=prev
82.69.116.10: /* Binary search */
2025-02-17T11:03:32Z
<p><span class="autocomment">Binary search</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:03, 17 February 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list <math>x_1,\ldots,x_n</math>. It needs <math>O(\log(n))</math> steps to find an element with some known value <math><del style="font-weight: bold; text-decoration: none;">x</del></math> in a list of length <math>n</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list <math>x_1,\ldots,x_n</math>. It needs <math>O(\log(n))</math> steps to find an element with some known value <math><ins style="font-weight: bold; text-decoration: none;">y</ins></math> in a list of length <math>n</math>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>With a prediction <math>i</math> for the position of <math><del style="font-weight: bold; text-decoration: none;">x</del></math>, the following learning augmented algorithm can be used.<ref name="MitzenmacherVassilvitskii2020" /></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>With a prediction <math>i</math> for the position of <math><ins style="font-weight: bold; text-decoration: none;">y</ins></math>, the following learning augmented algorithm can be used.<ref name="MitzenmacherVassilvitskii2020" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position <math>i</math> in the list. If <math>x_i=y</math>, the element has been found.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position <math>i</math> in the list. If <math>x_i=y</math>, the element has been found.</div></td>
</tr>
</table>
82.69.116.10
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1275840013&oldid=prev
GünniX: ref name
2025-02-15T10:48:06Z
<p>ref name</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:48, 15 February 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 35:</td>
<td colspan="2" class="diff-lineno">Line 35:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first3 = Shiqiang</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first3 = Shiqiang</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last3 = Wang}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last3 = Wang}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[maximum weight matching]] problem<ref name="">{{cite book</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[maximum weight matching]] problem<ref name="<ins style="font-weight: bold; text-decoration: none;">neurips_5616060fb8ae85d93f334e7267307664</ins>">{{cite book</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first1 = Michael</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first1 = Michael</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last1 = Dinitz</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last1 = Dinitz</div></td>
</tr>
</table>
GünniX
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1094733328&oldid=prev
Paloappie: Fixed: Multiple categories on one line
2022-06-24T06:44:20Z
<p>Fixed: Multiple categories on one line</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:44, 24 June 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 30:</td>
<td colspan="2" class="diff-lineno">Line 30:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]<ref name="WangLiWang2020">{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-<del style="font-weight: bold; text-decoration: none;">7138</del>-<del style="font-weight: bold; text-decoration: none;">2954</del>-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]<ref name="WangLiWang2020">{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-<ins style="font-weight: bold; text-decoration: none;">71382</ins>-<ins style="font-weight: bold; text-decoration: none;">954</ins>-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 63:</td>
<td colspan="2" class="diff-lineno">Line 63:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]<del style="font-weight: bold; text-decoration: none;"> </del>[[Category:Theoretical computer science]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theoretical computer science]]</div></td>
</tr>
</table>
Paloappie
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089943237&oldid=prev
Plusminusone: Add link to list of publications on topic
2022-05-26T13:25:42Z
<p>Add link to list of publications on topic</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:25, 26 May 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 60:</td>
<td colspan="2" class="diff-lineno">Line 60:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]] [[Category:Theoretical computer science]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]] [[Category:Theoretical computer science]]</div></td>
</tr>
</table>
Plusminusone
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089447715&oldid=prev
AnomieBOT: Dating maintenance tags: {{Fact}}
2022-05-23T21:08:08Z
<p>Dating maintenance tags: {{Fact}}</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:08, 23 May 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate.<ref name="MitzenmacherVassilvitskii2020" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate.<ref name="MitzenmacherVassilvitskii2020" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.{{fact}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.{{fact<ins style="font-weight: bold; text-decoration: none;">|date=May 2022</ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
</tr>
</table>
AnomieBOT
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089442686&oldid=prev
Dl2000: /* Binary search */ fix refpunct
2022-05-23T20:34:09Z
<p><span class="autocomment">Binary search: </span> fix refpunct</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:34, 23 May 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 15:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list <math>x_1,\ldots,x_n</math>. It needs <math>O(\log(n))</math> steps to find an element with some known value <math>x</math> in a list of length <math>n</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list <math>x_1,\ldots,x_n</math>. It needs <math>O(\log(n))</math> steps to find an element with some known value <math>x</math> in a list of length <math>n</math>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>With a prediction <math>i</math> for the position of <math>x</math>, the following learning augmented algorithm can be used<ref name="MitzenmacherVassilvitskii2020" /><del style="font-weight: bold; text-decoration: none;">:</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>With a prediction <math>i</math> for the position of <math>x</math>, the following learning augmented algorithm can be used<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="MitzenmacherVassilvitskii2020" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position <math>i</math> in the list. If <math>x_i=y</math>, the element has been found.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position <math>i</math> in the list. If <math>x_i=y</math>, the element has been found.</div></td>
</tr>
</table>
Dl2000
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089441440&oldid=prev
Dl2000: fix refpunct; need ref; tidy
2022-05-23T20:25:31Z
<p>fix refpunct; need ref; tidy</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:25, 23 May 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance<ins style="font-weight: bold; text-decoration: none;">.<ref name="MitzenmacherVassilvitskii2020">{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}</ref></ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><ref name="MitzenmacherVassilvitskii2020">{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}</ref>.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 8:</td>
<td colspan="2" class="diff-lineno">Line 7:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A learning augmented algorithm typically takes an input <math>(\mathcal{I}, \mathcal{A})</math>. Here <math>\mathcal{I}</math> is a problem instance and <math>\mathcal{A}</math> is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A learning augmented algorithm typically takes an input <math>(\mathcal{I}, \mathcal{A})</math>. Here <math>\mathcal{I}</math> is a problem instance and <math>\mathcal{A}</math> is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Consistency.''' A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction<ref name="MitzenmacherVassilvitskii2020" /><del style="font-weight: bold; text-decoration: none;">.</del> Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Consistency.''' A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="MitzenmacherVassilvitskii2020" /> Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate<ref name="MitzenmacherVassilvitskii2020" /><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="MitzenmacherVassilvitskii2020" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.<ins style="font-weight: bold; text-decoration: none;">{{fact}}</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 28:</td>
<td colspan="2" class="diff-lineno">Line 27:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Even in the worst case, the error will be at most <math>n</math>. Then the algorithm takes at most <math>O(\log(n))</math> steps, so the algorithm is robust.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Even in the worst case, the error will be at most <math>n</math>. Then the algorithm takes at most <math>O(\log(n))</math> steps, so the algorithm is robust.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td>
</tr>
</table>
Dl2000
https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089438476&oldid=prev
Plusminusone: Create page
2022-05-23T20:03:55Z
<p>Create page</p>
<p><b>New page</b></p><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance<br />
<ref name="MitzenmacherVassilvitskii2020">{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}</ref>.<br />
Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.<br />
This extra parameter often is a prediction of some property of the solution.<br />
This prediction is then used by the algorithm to improve its running time or the quality of its output.<br />
<br />
== Description ==<br />
A learning augmented algorithm typically takes an input <math>(\mathcal{I}, \mathcal{A})</math>. Here <math>\mathcal{I}</math> is a problem instance and <math>\mathcal{A}</math> is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:<br />
<br />
* '''Consistency.''' A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction<ref name="MitzenmacherVassilvitskii2020" />. Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.<br />
* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate<ref name="MitzenmacherVassilvitskii2020" />.<br />
<br />
Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.<br />
<br />
== Examples ==<br />
=== Binary search ===<br />
The [[binary search algorithm]] is an algorithm for finding elements of a sorted list <math>x_1,\ldots,x_n</math>. It needs <math>O(\log(n))</math> steps to find an element with some known value <math>x</math> in a list of length <math>n</math>.<br />
With a prediction <math>i</math> for the position of <math>x</math>, the following learning augmented algorithm can be used<ref name="MitzenmacherVassilvitskii2020" />:<br />
<br />
* First, look at position <math>i</math> in the list. If <math>x_i=y</math>, the element has been found.<br />
* If <math>x_i<y</math>, look at positions <math>i+1,i+2,i+4,\ldots</math> until an index <math>j</math> with <math>x_j\geq y</math> is found.<br />
** Now perform a binary search on <math>x_i,\ldots, x_j</math>.<br />
* If <math>x_i>y</math>, do the same as in the previous case, but instead consider <math>i-1,i-2,i-4,\ldots</math>.<br />
<br />
The error is defined to be <math>\eta=|i-i^*|</math>, where <math>i^*</math> is the real index of <math>y</math>.<br />
In the learning augmented algorithm, probing the positions <math>i+1,i+2,i+4,\ldots</math> takes <math>\log_2(\eta)</math> steps.<br />
Then a binary search is performed on a list of size at most <math>2\eta</math>, which takes <math>\log_2(\eta)</math> steps. This makes the total running time of the algorithm <math>2\log_2(\eta)</math>.<br />
So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.<br />
Even in the worst case, the error will be at most <math>n</math>. Then the algorithm takes at most <math>O(\log(n))</math> steps, so the algorithm is robust.<br />
=== More examples ===<br />
Learning augmented algorithms are known for:<br />
* The [[ski rental problem]]<ref name="WangLiWang2020">{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-7138-2954-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang<br />
| first2 = Jian<br />
| last2 = Li<br />
| first3 = Shiqiang<br />
| last3 = Wang}}</ref><br />
* The [[maximum weight matching]] problem<ref name="">{{cite book<br />
| first1 = Michael<br />
| last1 = Dinitz<br />
| first2 = Sungjin<br />
| last2 = Im<br />
| first3 = Thomas<br />
| last3 = Lavastida<br />
| first4 = Benjamin<br />
| last4 = Benjamin<br />
| first5 = Sergei<br />
| last5 = Vassilvitskii<br />
| title = Advances in Neural Information Processing Systems<br />
| publisher = Curran Associates, Inc.<br />
| chapter = Faster Matchings via Learned Duals<br />
| url = https://proceedings.neurips.cc/paper/2021/file/5616060fb8ae85d93f334e7267307664-Paper.pdf<br />
| date = 2021<br />
}}</ref><br />
* The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]<ref name="BansalCoesterKumar2022">{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv = }}</ref><br />
<br />
== See also ==<br />
* [[Machine learning]]<br />
<br />
== References ==<br />
{{Reflist}}<br />
<br />
<br />
[[Category:Algorithms]] [[Category:Theoretical computer science]]</div>
Plusminusone