https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Learning_augmented_algorithm Learning augmented algorithm - Revision history 2025-05-31T04:53:01Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1282384813&oldid=prev Citation bot: Altered isbn. Add: url, isbn. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Theoretical computer science | #UCB_Category 4/137 2025-03-26T02:25:58Z <p>Altered isbn. Add: url, isbn. Upgrade ISBN10 to 13. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Theoretical_computer_science" title="Category:Theoretical computer science">Category:Theoretical computer science</a> | #UCB_Category 4/137</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:25, 26 March 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance.&lt;ref name="MitzenmacherVassilvitskii2020"&gt;{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance.&lt;ref name="MitzenmacherVassilvitskii2020"&gt;{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123<ins style="font-weight: bold; text-decoration: none;"> | isbn = 978-1-108-63743-5</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 30:</td> <td colspan="2" class="diff-lineno">Line 30:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]&lt;ref name="WangLiWang2020"&gt;{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-71382-954-<del style="font-weight: bold; text-decoration: none;">1</del> | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]&lt;ref name="WangLiWang2020"&gt;{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=<ins style="font-weight: bold; text-decoration: none;">978-</ins>1-71382-954-<ins style="font-weight: bold; text-decoration: none;">6</ins> | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 52:</td> <td colspan="2" class="diff-lineno">Line 52:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| date = 2021</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| date = 2021</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]&lt;ref name="BansalCoesterKumar2022"&gt;{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv = }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]&lt;ref name="BansalCoesterKumar2022"&gt;{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv =<ins style="font-weight: bold; text-decoration: none;"> | isbn = 978-1-61197-707-3 | url = https://ora.ox.ac.uk/objects/uuid:f8f430f4-23fd-49b9-9cf4-1c24230151cf</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1276185509&oldid=prev 82.69.116.10: /* Binary search */ 2025-02-17T11:03:32Z <p><span class="autocomment">Binary search</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:03, 17 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 14:</td> <td colspan="2" class="diff-lineno">Line 14:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list &lt;math&gt;x_1,\ldots,x_n&lt;/math&gt;. It needs &lt;math&gt;O(\log(n))&lt;/math&gt; steps to find an element with some known value &lt;math&gt;<del style="font-weight: bold; text-decoration: none;">x</del>&lt;/math&gt; in a list of length &lt;math&gt;n&lt;/math&gt;.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list &lt;math&gt;x_1,\ldots,x_n&lt;/math&gt;. It needs &lt;math&gt;O(\log(n))&lt;/math&gt; steps to find an element with some known value &lt;math&gt;<ins style="font-weight: bold; text-decoration: none;">y</ins>&lt;/math&gt; in a list of length &lt;math&gt;n&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>With a prediction &lt;math&gt;i&lt;/math&gt; for the position of &lt;math&gt;<del style="font-weight: bold; text-decoration: none;">x</del>&lt;/math&gt;, the following learning augmented algorithm can be used.&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>With a prediction &lt;math&gt;i&lt;/math&gt; for the position of &lt;math&gt;<ins style="font-weight: bold; text-decoration: none;">y</ins>&lt;/math&gt;, the following learning augmented algorithm can be used.&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position &lt;math&gt;i&lt;/math&gt; in the list. If &lt;math&gt;x_i=y&lt;/math&gt;, the element has been found.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position &lt;math&gt;i&lt;/math&gt; in the list. If &lt;math&gt;x_i=y&lt;/math&gt;, the element has been found.</div></td> </tr> </table> 82.69.116.10 https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1275840013&oldid=prev GünniX: ref name 2025-02-15T10:48:06Z <p>ref name</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:48, 15 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 35:</td> <td colspan="2" class="diff-lineno">Line 35:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first3 = Shiqiang</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first3 = Shiqiang</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last3 = Wang}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last3 = Wang}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[maximum weight matching]] problem&lt;ref name=""&gt;{{cite book</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[maximum weight matching]] problem&lt;ref name="<ins style="font-weight: bold; text-decoration: none;">neurips_5616060fb8ae85d93f334e7267307664</ins>"&gt;{{cite book</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first1 = Michael</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first1 = Michael</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last1 = Dinitz</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last1 = Dinitz</div></td> </tr> </table> GünniX https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1094733328&oldid=prev Paloappie: Fixed: Multiple categories on one line 2022-06-24T06:44:20Z <p>Fixed: Multiple categories on one line</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:44, 24 June 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 30:</td> <td colspan="2" class="diff-lineno">Line 30:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]&lt;ref name="WangLiWang2020"&gt;{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-<del style="font-weight: bold; text-decoration: none;">7138</del>-<del style="font-weight: bold; text-decoration: none;">2954</del>-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The [[ski rental problem]]&lt;ref name="WangLiWang2020"&gt;{{cite book | title=NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-<ins style="font-weight: bold; text-decoration: none;">71382</ins>-<ins style="font-weight: bold; text-decoration: none;">954</ins>-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| first2 = Jian</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| last2 = Li</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 63:</td> <td colspan="2" class="diff-lineno">Line 63:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]<del style="font-weight: bold; text-decoration: none;"> </del>[[Category:Theoretical computer science]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theoretical computer science]]</div></td> </tr> </table> Paloappie https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089943237&oldid=prev Plusminusone: Add link to list of publications on topic 2022-05-26T13:25:42Z <p>Add link to list of publications on topic</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:25, 26 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 60:</td> <td colspan="2" class="diff-lineno">Line 60:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://algorithms-with-predictions.github.io/ An overview of publications about learning augmented algorithms]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]] [[Category:Theoretical computer science]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Algorithms]] [[Category:Theoretical computer science]]</div></td> </tr> </table> Plusminusone https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089447715&oldid=prev AnomieBOT: Dating maintenance tags: {{Fact}} 2022-05-23T21:08:08Z <p>Dating maintenance tags: {{Fact}}</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:08, 23 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate.&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate.&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.{{fact}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.{{fact<ins style="font-weight: bold; text-decoration: none;">|date=May 2022</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> </tr> </table> AnomieBOT https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089442686&oldid=prev Dl2000: /* Binary search */ fix refpunct 2022-05-23T20:34:09Z <p><span class="autocomment">Binary search: </span> fix refpunct</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:34, 23 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Binary search ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list &lt;math&gt;x_1,\ldots,x_n&lt;/math&gt;. It needs &lt;math&gt;O(\log(n))&lt;/math&gt; steps to find an element with some known value &lt;math&gt;x&lt;/math&gt; in a list of length &lt;math&gt;n&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[binary search algorithm]] is an algorithm for finding elements of a sorted list &lt;math&gt;x_1,\ldots,x_n&lt;/math&gt;. It needs &lt;math&gt;O(\log(n))&lt;/math&gt; steps to find an element with some known value &lt;math&gt;x&lt;/math&gt; in a list of length &lt;math&gt;n&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>With a prediction &lt;math&gt;i&lt;/math&gt; for the position of &lt;math&gt;x&lt;/math&gt;, the following learning augmented algorithm can be used&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;<del style="font-weight: bold; text-decoration: none;">:</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>With a prediction &lt;math&gt;i&lt;/math&gt; for the position of &lt;math&gt;x&lt;/math&gt;, the following learning augmented algorithm can be used<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position &lt;math&gt;i&lt;/math&gt; in the list. If &lt;math&gt;x_i=y&lt;/math&gt;, the element has been found.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* First, look at position &lt;math&gt;i&lt;/math&gt; in the list. If &lt;math&gt;x_i=y&lt;/math&gt;, the element has been found.</div></td> </tr> </table> Dl2000 https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089441440&oldid=prev Dl2000: fix refpunct; need ref; tidy 2022-05-23T20:25:31Z <p>fix refpunct; need ref; tidy</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:25, 23 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''learning augmented algorithm''' is an [[algorithm]] that can make use of a prediction to improve its performance<ins style="font-weight: bold; text-decoration: none;">.&lt;ref name="MitzenmacherVassilvitskii2020"&gt;{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}&lt;/ref&gt;</ins></div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;ref name="MitzenmacherVassilvitskii2020"&gt;{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}&lt;/ref&gt;.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This extra parameter often is a prediction of some property of the solution.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A learning augmented algorithm typically takes an input &lt;math&gt;(\mathcal{I}, \mathcal{A})&lt;/math&gt;. Here &lt;math&gt;\mathcal{I}&lt;/math&gt; is a problem instance and &lt;math&gt;\mathcal{A}&lt;/math&gt; is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A learning augmented algorithm typically takes an input &lt;math&gt;(\mathcal{I}, \mathcal{A})&lt;/math&gt;. Here &lt;math&gt;\mathcal{I}&lt;/math&gt; is a problem instance and &lt;math&gt;\mathcal{A}&lt;/math&gt; is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Consistency.''' A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;<del style="font-weight: bold; text-decoration: none;">.</del> Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Consistency.''' A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;ref name="MitzenmacherVassilvitskii2020" /&gt; Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;<del style="font-weight: bold; text-decoration: none;">.</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Robustnesss.''' An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;ref name="MitzenmacherVassilvitskii2020" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.<ins style="font-weight: bold; text-decoration: none;">{{fact}}</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 27:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Even in the worst case, the error will be at most &lt;math&gt;n&lt;/math&gt;. Then the algorithm takes at most &lt;math&gt;O(\log(n))&lt;/math&gt; steps, so the algorithm is robust.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Even in the worst case, the error will be at most &lt;math&gt;n&lt;/math&gt;. Then the algorithm takes at most &lt;math&gt;O(\log(n))&lt;/math&gt; steps, so the algorithm is robust.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== More examples ===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Learning augmented algorithms are known for:</div></td> </tr> </table> Dl2000 https://en.wikipedia.org/w/index.php?title=Learning_augmented_algorithm&diff=1089438476&oldid=prev Plusminusone: Create page 2022-05-23T20:03:55Z <p>Create page</p> <p><b>New page</b></p><div>A &#039;&#039;&#039;learning augmented algorithm&#039;&#039;&#039; is an [[algorithm]] that can make use of a prediction to improve its performance<br /> &lt;ref name=&quot;MitzenmacherVassilvitskii2020&quot;&gt;{{cite book | title = Beyond the Worst-Case Analysis of Algorithms | last1 = Mitzenmacher | author-link1 = Michael Mitzenmacher | first1 = Michael | last2 = Vassilvitskii | first2 = Sergei | chapter = Algorithms with Predictions | date = 31 December 2020 | pages = 646–662 | publisher = Cambridge University Press | doi = 10.1017/9781108637435.037 | arxiv=2006.09123 }}&lt;/ref&gt;.<br /> Whereas in regular algorithms just the problem instance is inputted, learning augmented algorithms accept an extra parameter.<br /> This extra parameter often is a prediction of some property of the solution.<br /> This prediction is then used by the algorithm to improve its running time or the quality of its output.<br /> <br /> == Description ==<br /> A learning augmented algorithm typically takes an input &lt;math&gt;(\mathcal{I}, \mathcal{A})&lt;/math&gt;. Here &lt;math&gt;\mathcal{I}&lt;/math&gt; is a problem instance and &lt;math&gt;\mathcal{A}&lt;/math&gt; is the advice: a prediction about a certain property of the optimal solution. The type of the problem instance and the prediction depend on the algorithm. Learning augmented algorithms usually satisfy the following two properties:<br /> <br /> * &#039;&#039;&#039;Consistency.&#039;&#039;&#039; A learning augmented algorithm is said to be consistent if the algorithm can be proven to have a good performance when it is provided with an accurate prediction&lt;ref name=&quot;MitzenmacherVassilvitskii2020&quot; /&gt;. Usually, this is quantified by giving a bound on the performance that depends on the error in the prediction.<br /> * &#039;&#039;&#039;Robustnesss.&#039;&#039;&#039; An algorithm is called robust if its worst-case performance can be bounded even if the given prediction is inaccurate&lt;ref name=&quot;MitzenmacherVassilvitskii2020&quot; /&gt;.<br /> <br /> Learning augmented algorithms generally do not prescribe how the prediction should be done. For this purpose [[machine learning]] can be used.<br /> <br /> == Examples ==<br /> === Binary search ===<br /> The [[binary search algorithm]] is an algorithm for finding elements of a sorted list &lt;math&gt;x_1,\ldots,x_n&lt;/math&gt;. It needs &lt;math&gt;O(\log(n))&lt;/math&gt; steps to find an element with some known value &lt;math&gt;x&lt;/math&gt; in a list of length &lt;math&gt;n&lt;/math&gt;.<br /> With a prediction &lt;math&gt;i&lt;/math&gt; for the position of &lt;math&gt;x&lt;/math&gt;, the following learning augmented algorithm can be used&lt;ref name=&quot;MitzenmacherVassilvitskii2020&quot; /&gt;:<br /> <br /> * First, look at position &lt;math&gt;i&lt;/math&gt; in the list. If &lt;math&gt;x_i=y&lt;/math&gt;, the element has been found.<br /> * If &lt;math&gt;x_i&lt;y&lt;/math&gt;, look at positions &lt;math&gt;i+1,i+2,i+4,\ldots&lt;/math&gt; until an index &lt;math&gt;j&lt;/math&gt; with &lt;math&gt;x_j\geq y&lt;/math&gt; is found.<br /> ** Now perform a binary search on &lt;math&gt;x_i,\ldots, x_j&lt;/math&gt;.<br /> * If &lt;math&gt;x_i&gt;y&lt;/math&gt;, do the same as in the previous case, but instead consider &lt;math&gt;i-1,i-2,i-4,\ldots&lt;/math&gt;.<br /> <br /> The error is defined to be &lt;math&gt;\eta=|i-i^*|&lt;/math&gt;, where &lt;math&gt;i^*&lt;/math&gt; is the real index of &lt;math&gt;y&lt;/math&gt;.<br /> In the learning augmented algorithm, probing the positions &lt;math&gt;i+1,i+2,i+4,\ldots&lt;/math&gt; takes &lt;math&gt;\log_2(\eta)&lt;/math&gt; steps.<br /> Then a binary search is performed on a list of size at most &lt;math&gt;2\eta&lt;/math&gt;, which takes &lt;math&gt;\log_2(\eta)&lt;/math&gt; steps. This makes the total running time of the algorithm &lt;math&gt;2\log_2(\eta)&lt;/math&gt;.<br /> So, when the error is small, the algorithm is faster than a normal binary search. This shows that the algorithm is consistent.<br /> Even in the worst case, the error will be at most &lt;math&gt;n&lt;/math&gt;. Then the algorithm takes at most &lt;math&gt;O(\log(n))&lt;/math&gt; steps, so the algorithm is robust.<br /> === More examples ===<br /> Learning augmented algorithms are known for:<br /> * The [[ski rental problem]]&lt;ref name=&quot;WangLiWang2020&quot;&gt;{{cite book | title=NIPS&#039;20: Proceedings of the 34th International Conference on Neural Information Processing Systems | chapter = Online Algorithms for Multi-shop Ski Rental with Machine Learned Advice | date=2020 | isbn=1-7138-2954-1 | oclc=1263313383 | arxiv = 2002.05808 | first1 = Shufan | last1 = Wang<br /> | first2 = Jian<br /> | last2 = Li<br /> | first3 = Shiqiang<br /> | last3 = Wang}}&lt;/ref&gt;<br /> * The [[maximum weight matching]] problem&lt;ref name=&quot;&quot;&gt;{{cite book<br /> | first1 = Michael<br /> | last1 = Dinitz<br /> | first2 = Sungjin<br /> | last2 = Im<br /> | first3 = Thomas<br /> | last3 = Lavastida<br /> | first4 = Benjamin<br /> | last4 = Benjamin<br /> | first5 = Sergei<br /> | last5 = Vassilvitskii<br /> | title = Advances in Neural Information Processing Systems<br /> | publisher = Curran Associates, Inc.<br /> | chapter = Faster Matchings via Learned Duals<br /> | url = https://proceedings.neurips.cc/paper/2021/file/5616060fb8ae85d93f334e7267307664-Paper.pdf<br /> | date = 2021<br /> }}&lt;/ref&gt;<br /> * The weighted [[Page replacement algorithm#The (h,k)-paging problem|paging problem]]&lt;ref name=&quot;BansalCoesterKumar2022&quot;&gt;{{cite book | title = Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) | last1 = Bansal | first1 = Nikhil | last2 = Coester | first2 = Christian | last3 = Kumar | first3 = Ravi | last4 = Purohit | first4 = Manish | last5 = Vee | first5 = Erik | chapter = Learning-Augmented Weighted Paging | date = January 2022 | pages = 67–89 | publisher = Society for Industrial and Applied Mathematics | doi = 10.1137/1.9781611977073.4 | arxiv = }}&lt;/ref&gt;<br /> <br /> == See also ==<br /> * [[Machine learning]]<br /> <br /> == References ==<br /> {{Reflist}}<br /> <br /> <br /> [[Category:Algorithms]] [[Category:Theoretical computer science]]</div> Plusminusone