https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Load_path_analysis Load path analysis - Revision history 2025-06-18T16:26:15Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.5 https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=1192787473&oldid=prev AB-Babayo: Added free to read link in citations with OAbot #oabot 2023-12-31T09:17:55Z <p>Added free to read link in citations with <a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">OAbot</a> #oabot</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:17, 31 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 2:</td> <td colspan="2" class="diff-lineno">Line 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite conference|year=2015|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|conference=ASME 2015 International Mechanical Engineering Congress and Exposition|pages=V009T12A009|doi=10.1115/IMECE2015-51176|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|title=Experimental Validation of U* index Theory for Load Transfer Analysis|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite conference|year=2015|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|conference=ASME 2015 International Mechanical Engineering Congress and Exposition|pages=V009T12A009|doi=10.1115/IMECE2015-51176|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription</ins>}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|title=Experimental Validation of U* index Theory for Load Transfer Analysis|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> AB-Babayo https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=1078205474&oldid=prev Jim Dixon 55104: #suggestededit-add 1.0 2022-03-20T12:00:12Z <p>#suggestededit-add 1.0</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:00, 20 March 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Technique of mechanical and structural engineering}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Jim Dixon 55104 https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=1031519502&oldid=prev Forbes72: use better template for conference paper 2021-07-02T03:02:13Z <p>use better template for conference paper</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:02, 2 July 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">book</del>|year=2015|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|<del style="font-weight: bold; text-decoration: none;">journal</del>=ASME 2015 International Mechanical Engineering Congress and Exposition|pages=V009T12A009|doi=10.1115/IMECE2015-51176|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|title=Experimental Validation of U* index Theory for Load Transfer Analysis|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">conference</ins>|year=2015|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|<ins style="font-weight: bold; text-decoration: none;">conference</ins>=ASME 2015 International Mechanical Engineering Congress and Exposition|pages=V009T12A009|doi=10.1115/IMECE2015-51176|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|title=Experimental Validation of U* index Theory for Load Transfer Analysis|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> Forbes72 https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=994467852&oldid=prev Monkbot: Task 18 (cosmetic): eval 4 templates: del empty params (12×); 2020-12-15T21:34:10Z <p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 4 templates: del empty params (12×);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:34, 15 December 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015<del style="font-weight: bold; text-decoration: none;">|others=</del>|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition<del style="font-weight: bold; text-decoration: none;">|volume=|issue=</del>|pages=V009T12A009|doi=10.1115/IMECE2015-51176<del style="font-weight: bold; text-decoration: none;">|pmid=</del>|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016<del style="font-weight: bold; text-decoration: none;">|others=</del>|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z<del style="font-weight: bold; text-decoration: none;">|pmid=</del>|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017<del style="font-weight: bold; text-decoration: none;">|others=</del>|title=Experimental Validation of U* index Theory for Load Transfer Analysis<del style="font-weight: bold; text-decoration: none;">|url=</del>|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304<del style="font-weight: bold; text-decoration: none;">|doi=|pmid=</del>|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017<del style="font-weight: bold; text-decoration: none;">|others=</del>|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7<del style="font-weight: bold; text-decoration: none;">|pmid=</del>|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|pages=V009T12A009|doi=10.1115/IMECE2015-51176|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|title=Experimental Validation of U* index Theory for Load Transfer Analysis|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> Monkbot https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=993013628&oldid=prev WikiCleanerBot: v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) 2020-12-08T09:40:18Z <p>v2.04b - <a href="/wiki/User:WikiCleanerBot#T20" title="User:WikiCleanerBot">Bot T20 CW#61</a> - Fix errors for <a href="/wiki/Wikipedia:WCW" class="mw-redirect" title="Wikipedia:WCW">CW project</a> (Reference before punctuation)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:40, 8 December 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;">.</del> In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|author1=Khashayar Pejhan |author2=Qingguo Wang }}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|author1=Pejhan, Khashayar |author2=Kuznetcov, Anton |author3=Wang, Qingguo }}&lt;/ref&gt; In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> WikiCleanerBot https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=894264991&oldid=prev Trappist the monk: /* top */Fix multiple names in cs1|2 template |author= parameters (and aliases); 2019-04-26T18:19:27Z <p><span class="autocomment">top: </span>Fix multiple names in cs1|2 template |author= parameters (and aliases);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:19, 26 April 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|<del style="font-weight: bold; text-decoration: none;">author</del>=Khashayar Pejhan<del style="font-weight: bold; text-decoration: none;">;</del> Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|<del style="font-weight: bold; text-decoration: none;">author</del>=Pejhan, Khashayar<del style="font-weight: bold; text-decoration: none;">;</del> Kuznetcov, Anton<del style="font-weight: bold; text-decoration: none;">;</del> Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang|display-authors=etal|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang|display-authors=etal}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|<ins style="font-weight: bold; text-decoration: none;">author1</ins>=Khashayar Pejhan <ins style="font-weight: bold; text-decoration: none;">|author2=</ins>Qingguo Wang<ins style="font-weight: bold; text-decoration: none;"> </ins>}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|<ins style="font-weight: bold; text-decoration: none;">author1</ins>=Pejhan, Khashayar <ins style="font-weight: bold; text-decoration: none;">|author2=</ins>Kuznetcov, Anton <ins style="font-weight: bold; text-decoration: none;">|author3=</ins>Wang, Qingguo<ins style="font-weight: bold; text-decoration: none;"> </ins>}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> Trappist the monk https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=883596595&oldid=prev Trappist the monk: /* top */Remove explicit et al (and others) from CS1|2 templates; 2019-02-16T11:21:40Z <p><span class="autocomment">top: </span>Remove explicit et al (and others) from CS1|2 templates;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:21, 16 February 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang<del style="font-weight: bold; text-decoration: none;"> et al</del>|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang<del style="font-weight: bold; text-decoration: none;"> et al</del>}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite book|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|pages=V009T12A009|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang<ins style="font-weight: bold; text-decoration: none;">|display-authors=etal</ins>|isbn=978-0-7918-5752-6}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=13|issue=3|page=1–12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang<ins style="font-weight: bold; text-decoration: none;">|display-authors=etal</ins>}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288–304|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=14|issue=2|page=1–17|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> Trappist the monk https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=882054693&oldid=prev Citation bot: Alter: template type, volume, issue, page. Add: isbn, pages. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated. 2019-02-06T15:00:50Z <p>Alter: template type, volume, issue, page. Add: isbn, pages. Removed parameters. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">User-activated</a>.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:00, 6 February 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|<del style="font-weight: bold; text-decoration: none;">page</del>=|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials<del style="font-weight: bold; text-decoration: none;">|url=https://link.springer.com/article/10.1007/s10999-016-9348-z?view=classic</del>|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=<del style="font-weight: bold; text-decoration: none;">1-12</del>|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=<del style="font-weight: bold; text-decoration: none;">288-304</del>|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method<del style="font-weight: bold; text-decoration: none;">|url=https://link.springer.com/10.1007/s10999-017-9372-7</del>|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=<del style="font-weight: bold; text-decoration: none;">1-17</del>|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=<ins style="font-weight: bold; text-decoration: none;">V009T12A009</ins>|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang et al<ins style="font-weight: bold; text-decoration: none;">|isbn=978-0-7918-5752-6</ins>}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|journal=International Journal of Mechanics and Materials in Design|volume=<ins style="font-weight: bold; text-decoration: none;">13</ins>|issue=<ins style="font-weight: bold; text-decoration: none;">3</ins>|page=<ins style="font-weight: bold; text-decoration: none;">1–12</ins>|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=<ins style="font-weight: bold; text-decoration: none;">288–304</ins>|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|journal=International Journal of Mechanics and Materials in Design|volume=<ins style="font-weight: bold; text-decoration: none;">14</ins>|issue=<ins style="font-weight: bold; text-decoration: none;">2</ins>|page=<ins style="font-weight: bold; text-decoration: none;">1–17</ins>|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=798821894&oldid=prev KolbertBot: Bot: HTTP→HTTPS 2017-09-04T01:10:00Z <p>Bot: <a href="/wiki/User:KolbertBot" title="User:KolbertBot">HTTP→HTTPS</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:10, 4 September 2017</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Load path analysis''' is a technique of [[mechanical engineering|mechanical]] and [[structural engineering]] used to determine the path of maximum [[mechanical stress|stress]] in a non-uniform [[structural load|load]]-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite journal|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|page=|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|url=https://link.springer.com/article/10.1007/s10999-016-9348-z?view=classic|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=1-12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288-304|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|url=<del style="font-weight: bold; text-decoration: none;">http</del>://link.springer.com/10.1007/s10999-017-9372-7|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=1-17|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Load path analysis may be performed using the concept of a load transfer index, U*.&lt;ref name=":3"&gt;{{Cite journal|year=2015|others=|title=Load Transfer Index for Composite Materials|url=http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2501162|journal=ASME 2015 International Mechanical Engineering Congress and Exposition|volume=|issue=|page=|doi=10.1115/IMECE2015-51176|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":0"&gt;{{Cite journal|year=2016|others=|title=Extensions of the U* Theory for Applications on Orthotropic Composites and Nonlinear Elastic Materials|url=https://link.springer.com/article/10.1007/s10999-016-9348-z?view=classic|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=1-12|doi=10.1007/s10999-016-9348-z|pmid=|author=Qingguo Wang et al}}&lt;/ref&gt;&lt;ref name=":1"&gt;{{Cite journal|year=2017|others=|title=Experimental Validation of U* index Theory for Load Transfer Analysis|url=|journal=International Journal of Heavy Vehicle System|volume=24|issue=3|page=288-304|doi=|pmid=|author=Khashayar Pejhan; Qingguo Wang}}&lt;/ref&gt;&lt;ref name=":2"&gt;{{Cite journal|year=2017|others=|title=Design assessment of a multiple passenger vehicle component using load transfer index (U*) method|url=<ins style="font-weight: bold; text-decoration: none;">https</ins>://link.springer.com/10.1007/s10999-017-9372-7|journal=International Journal of Mechanics and Materials in Design|volume=|issue=|page=1-17|doi=10.1007/s10999-017-9372-7|pmid=|author=Pejhan, Khashayar; Kuznetcov, Anton; Wang, Qingguo}}&lt;/ref&gt;. In a structure, the main portion of the load is transferred through the stiffest route. The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour) &lt;ref name=":3" /&gt; This method of analysis has been verified in physical experimentation.&lt;ref name=":1" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Load path calculation using U* index ==</div></td> </tr> </table> KolbertBot https://en.wikipedia.org/w/index.php?title=Load_path_analysis&diff=788165651&oldid=prev WikiDan61: added Category:Mechanical engineering using HotCat 2017-06-29T20:58:29Z <p>added <a href="/wiki/Category:Mechanical_engineering" title="Category:Mechanical engineering">Category:Mechanical engineering</a> using <a href="/wiki/Wikipedia:HC" class="mw-redirect" title="Wikipedia:HC">HotCat</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:58, 29 June 2017</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Mechanical engineering]]</div></td> </tr> </table> WikiDan61