https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Local_binary_patternsLocal binary patterns - Revision history2025-06-01T05:40:42ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1257468248&oldid=prevLR.127: Adding local short description: "Descriptor of computer vision", overriding Wikidata description "type of visual descriptor"2024-11-15T01:22:48Z<p>Adding local <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Descriptor of computer vision", overriding Wikidata description "type of visual descriptor"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:22, 15 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Descriptor of computer vision}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Local binary patterns''' ('''LBP''') is a type of [[visual descriptor]] used for classification in [[computer vision]]. LBP is the particular case of the Texture Spectrum model proposed in 1990.<ref>DC. He and L. Wang (1990), "Texture Unit, Texture Spectrum, And Texture Analysis", Geoscience and Remote Sensing, IEEE Transactions on, vol. 28, pp. 509 - 512.</ref><ref>L. Wang and DC. He (1990), "Texture Classification Using Texture Spectrum", Pattern Recognition, Vol. 23, No. 8, pp. 905 - 910.</ref> LBP was first described in 1994.<ref>T. Ojala, [[Matti Pietikäinen (academic)|M. Pietikäinen]], and D. Harwood (1994), "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions", Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582 - 585.</ref><ref>T. Ojala, M. Pietikäinen, and D. Harwood (1996), "A Comparative Study of Texture Measures with Classification Based on Feature Distributions", Pattern Recognition, vol. 29, pp. 51-59.</ref> It has since been found to be a powerful feature for texture classification; it has further been determined that when LBP is combined with the [[Histogram of oriented gradients]] (HOG) descriptor, it improves the detection performance considerably on some datasets.<ref>"An HOG-LBP Human Detector with Partial Occlusion Handling", Xiaoyu Wang, Tony X. Han, Shuicheng Yan, ICCV 2009</ref> A comparison of several improvements of the original LBP in the field of background subtraction was made in 2015 by Silva et al.<ref>C. Silva, T. Bouwmans, C. Frelicot, "An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos", VISAPP 2015, Berlin, Germany, March 2015.</ref> A full survey of the different versions of LBP can be found in Bouwmans et al.<ref>T. Bouwmans, C. Silva, C. Marghes, M. Zitouni, H. Bhaskar, C. Frelicot,, "On the Role and the Importance of Features for Background Modeling and Foreground Detection”, {{ArXiv|1611.09099}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Local binary patterns''' ('''LBP''') is a type of [[visual descriptor]] used for classification in [[computer vision]]. LBP is the particular case of the Texture Spectrum model proposed in 1990.<ref>DC. He and L. Wang (1990), "Texture Unit, Texture Spectrum, And Texture Analysis", Geoscience and Remote Sensing, IEEE Transactions on, vol. 28, pp. 509 - 512.</ref><ref>L. Wang and DC. He (1990), "Texture Classification Using Texture Spectrum", Pattern Recognition, Vol. 23, No. 8, pp. 905 - 910.</ref> LBP was first described in 1994.<ref>T. Ojala, [[Matti Pietikäinen (academic)|M. Pietikäinen]], and D. Harwood (1994), "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions", Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582 - 585.</ref><ref>T. Ojala, M. Pietikäinen, and D. Harwood (1996), "A Comparative Study of Texture Measures with Classification Based on Feature Distributions", Pattern Recognition, vol. 29, pp. 51-59.</ref> It has since been found to be a powerful feature for texture classification; it has further been determined that when LBP is combined with the [[Histogram of oriented gradients]] (HOG) descriptor, it improves the detection performance considerably on some datasets.<ref>"An HOG-LBP Human Detector with Partial Occlusion Handling", Xiaoyu Wang, Tony X. Han, Shuicheng Yan, ICCV 2009</ref> A comparison of several improvements of the original LBP in the field of background subtraction was made in 2015 by Silva et al.<ref>C. Silva, T. Bouwmans, C. Frelicot, "An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos", VISAPP 2015, Berlin, Germany, March 2015.</ref> A full survey of the different versions of LBP can be found in Bouwmans et al.<ref>T. Bouwmans, C. Silva, C. Marghes, M. Zitouni, H. Bhaskar, C. Frelicot,, "On the Role and the Importance of Features for Background Modeling and Foreground Detection”, {{ArXiv|1611.09099}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>LR.127https://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1228675252&oldid=prevInternetArchiveBot: Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (AManWithNoPlan - 199642024-06-12T15:04:04Z<p>Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (<a href="/wiki/User:AManWithNoPlan" title="User:AManWithNoPlan">AManWithNoPlan</a> - 19964</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:04, 12 June 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 26:</td>
<td colspan="2" class="diff-lineno">Line 26:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.cse.oulu.fi/CMV CMV], includes the general LBP [http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab implementation] and many further extensions over LBP histogram in MATLAB.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [http://www.cse.oulu.fi/CMV CMV], includes the general LBP [http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab implementation]<ins style="font-weight: bold; text-decoration: none;"> {{Webarchive|url=https://web.archive.org/web/20141128164522/http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab? |date=2014-11-28 }}</ins> and many further extensions over LBP histogram in MATLAB.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://luispedro.org/software/mahotas Python mahotas], an open source computer vision package which includes an implementation of LBPs.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [http://luispedro.org/software/mahotas Python mahotas], an open source computer vision package which includes an implementation of LBPs.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[OpenCV]]'s Cascade Classifiers support LBPs as of version 2.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[OpenCV]]'s Cascade Classifiers support LBPs as of version 2.</div></td>
</tr>
</table>InternetArchiveBothttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1115831394&oldid=prev195.158.1.149: /* Extensions */2022-10-13T12:34:54Z<p><span class="autocomment">Extensions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:34, 13 October 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 21:</td>
<td colspan="2" class="diff-lineno">Line 21:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Transition Local Binary Patterns(tLBP):<ref>Trefný, Jirí, and Jirí Matas."Extended set of local binary patterns for rapid object detection." Proceedings of the Computer Vision Winter Workshop. Vol. 2010. 2010.</ref> binary value of transition coded LBP is composed of neighbor pixel comparisons clockwise direction for all pixels except the central.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Transition Local Binary Patterns(tLBP):<ref>Trefný, Jirí, and Jirí Matas."Extended set of local binary patterns for rapid object detection." Proceedings of the Computer Vision Winter Workshop. Vol. 2010. 2010.</ref> binary value of transition coded LBP is composed of neighbor pixel comparisons clockwise direction for all pixels except the central.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Direction coded Local Binary Patterns(dLBP): the dLBP encodes the intensity variation along the four basic directions through the central pixel in two bits.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Direction coded Local Binary Patterns(dLBP): the dLBP encodes the intensity variation along the four basic directions through the central pixel in two bits.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Modified Local Binary Patterns(mLBP): the mLBP compares the values of neighboring pixels to the average of the intensity values in the 3x3 window.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
</table>195.158.1.149https://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1084786107&oldid=prevJohn of Reading: Typo fixing, replaced: et. al → et al. (2)2022-04-26T15:49:15Z<p>Typo fixing, replaced: et. al → et al. (2)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:49, 26 April 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 15:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The feature vector can now be processed using the [[Support vector machine]], [[extreme learning machine]]s, or some other [[machine learning]] algorithm to classify images. Such classifiers can be used for [[facial recognition system|face recognition]] or texture analysis.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The feature vector can now be processed using the [[Support vector machine]], [[extreme learning machine]]s, or some other [[machine learning]] algorithm to classify images. Such classifiers can be used for [[facial recognition system|face recognition]] or texture analysis.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A useful extension to the original operator is the so-called uniform pattern,<ref>Barkan et<del style="font-weight: bold; text-decoration: none;">.</del> al "Fast High Dimensional Vector Multiplication Face Recognition." Proceedings of ICCV 2013</ref> which can be used to reduce the length of the feature vector and implement a simple rotation invariant descriptor. This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not. In the computation of the LBP histogram, the histogram has a separate bin for every uniform pattern, and all non-uniform patterns are assigned to a single bin. Using uniform patterns, the length of the feature vector for a single cell reduces from 256 to 59. The 58 uniform binary patterns correspond to the integers 0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 129, 131, 135, 143, 159, 191, 192, 193, 195, 199, 207, 223, 224, 225, 227, 231, 239, 240, 241, 243, 247, 248, 249, 251, 252, 253, 254 and 255.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A useful extension to the original operator is the so-called uniform pattern,<ref>Barkan et al<ins style="font-weight: bold; text-decoration: none;">.</ins> "Fast High Dimensional Vector Multiplication Face Recognition." Proceedings of ICCV 2013</ref> which can be used to reduce the length of the feature vector and implement a simple rotation invariant descriptor. This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not. In the computation of the LBP histogram, the histogram has a separate bin for every uniform pattern, and all non-uniform patterns are assigned to a single bin. Using uniform patterns, the length of the feature vector for a single cell reduces from 256 to 59. The 58 uniform binary patterns correspond to the integers 0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 129, 131, 135, 143, 159, 191, 192, 193, 195, 199, 207, 223, 224, 225, 227, 231, 239, 240, 241, 243, 247, 248, 249, 251, 252, 253, 254 and 255.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Extensions ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Over-Complete Local Binary Patterns (OCLBP):<ref>Barkan et<del style="font-weight: bold; text-decoration: none;">.</del> al "Fast High Dimensional Vector Multiplication Face Recognition." Proceedings of ICCV 2013</ref> OCLBP is a variant of LBP that has been shown to improve the overall performance on face verification. Unlike LBP, OCLBP adopts overlapping to adjacent blocks. Formally, the configuration of OCLBP is denoted as S : (a, b, v, h, p, r): an image is divided into a×b blocks with vertical overlap of v and horizontal overlap of h, and then uniform patterns LBP(u2,p,r) are extracted from all the blocks. Moreover, OCLBP is composed of several different configurations. For example, in their original paper, the authors used three configurations: S : (10,10,12,12,8,1),(14,14,12,12,8,2),(18,18,12,12,8,3). The three configurations consider three block sizes: 10×10, 14×14, 18×18, and half overlap rates along the vertical and horizontal directions. These configurations are concatenated to form a 40877 dimensional feature vector for an image of size 150x80.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Over-Complete Local Binary Patterns (OCLBP):<ref>Barkan et al<ins style="font-weight: bold; text-decoration: none;">.</ins> "Fast High Dimensional Vector Multiplication Face Recognition." Proceedings of ICCV 2013</ref> OCLBP is a variant of LBP that has been shown to improve the overall performance on face verification. Unlike LBP, OCLBP adopts overlapping to adjacent blocks. Formally, the configuration of OCLBP is denoted as S : (a, b, v, h, p, r): an image is divided into a×b blocks with vertical overlap of v and horizontal overlap of h, and then uniform patterns LBP(u2,p,r) are extracted from all the blocks. Moreover, OCLBP is composed of several different configurations. For example, in their original paper, the authors used three configurations: S : (10,10,12,12,8,1),(14,14,12,12,8,2),(18,18,12,12,8,3). The three configurations consider three block sizes: 10×10, 14×14, 18×18, and half overlap rates along the vertical and horizontal directions. These configurations are concatenated to form a 40877 dimensional feature vector for an image of size 150x80.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Transition Local Binary Patterns(tLBP):<ref>Trefný, Jirí, and Jirí Matas."Extended set of local binary patterns for rapid object detection." Proceedings of the Computer Vision Winter Workshop. Vol. 2010. 2010.</ref> binary value of transition coded LBP is composed of neighbor pixel comparisons clockwise direction for all pixels except the central.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Transition Local Binary Patterns(tLBP):<ref>Trefný, Jirí, and Jirí Matas."Extended set of local binary patterns for rapid object detection." Proceedings of the Computer Vision Winter Workshop. Vol. 2010. 2010.</ref> binary value of transition coded LBP is composed of neighbor pixel comparisons clockwise direction for all pixels except the central.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Direction coded Local Binary Patterns(dLBP): the dLBP encodes the intensity variation along the four basic directions through the central pixel in two bits.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Direction coded Local Binary Patterns(dLBP): the dLBP encodes the intensity variation along the four basic directions through the central pixel in two bits.</div></td>
</tr>
</table>John of Readinghttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1055705963&oldid=prevLimit-theorem: Same revision, under a different name. Sockpuppet suspected. Undid revision 1055695012 by Faezekiani000 (talk)2021-11-17T09:56:07Z<p>Same revision, under a different name. Sockpuppet suspected. Undid revision 1055695012 by <a href="/wiki/Special:Contributions/Faezekiani000" title="Special:Contributions/Faezekiani000">Faezekiani000</a> (<a href="/w/index.php?title=User_talk:Faezekiani000&action=edit&redlink=1" class="new" title="User talk:Faezekiani000 (page does not exist)">talk</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:56, 17 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* One dimensional Local binary Patterns(1DLBP):<ref>Tajeripour, Farshad, and Fekri-Ershad, Shervan. "Developing a novel approach for stone porosity computing using modified local binary patterns and single scale retinex." Arabian journal for Science and Engineering. Vol.39 (2014): 875-889.</ref> 1DLBP is defined as a modified version of basic local binary patterns with new definition for neighborhoods. 1DLBP defines two horizontal and vertical segments to compute local relation between center and its neighbors. the computational complexity of 1dLBP is lower than LBP because of using one dimensional computations.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>Limit-theoremhttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1055695012&oldid=prevFaezekiani000: /* Extensions */2021-11-17T08:03:39Z<p><span class="autocomment">Extensions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:03, 17 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* One dimensional Local binary Patterns(1DLBP):<ref>Tajeripour, Farshad, and Fekri-Ershad, Shervan. "Developing a novel approach for stone porosity computing using modified local binary patterns and single scale retinex." Arabian journal for Science and Engineering. Vol.39 (2014): 875-889.</ref> 1DLBP is defined as a modified version of basic local binary patterns with new definition for neighborhoods. 1DLBP defines two horizontal and vertical segments to compute local relation between center and its neighbors. the computational complexity of 1dLBP is lower than LBP because of using one dimensional computations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>Faezekiani000https://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1055157037&oldid=prevLimit-theorem: Appears to be self-citation by editor. Undid revision 1055079848 by Shfekri (talk)2021-11-14T06:09:18Z<p>Appears to be self-citation by editor. Undid revision 1055079848 by <a href="/wiki/Special:Contributions/Shfekri" title="Special:Contributions/Shfekri">Shfekri</a> (<a href="/w/index.php?title=User_talk:Shfekri&action=edit&redlink=1" class="new" title="User talk:Shfekri (page does not exist)">talk</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:09, 14 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Multi-threshold Uniform Local Ternary Patterns(MT-ULTP): This texture descriptor is proposed first time in 2021 for cell phenotype classification. MT-ULTP extracts uniform patterns based on LTP in different threshold levels. It extracts micro and macro texture patterns. <ref>Fekri-Ershad, Shervan."Cell phenotype classification using multi threshold uniform local ternary patterns in florescence microscope images." , Multimedia Tools and Applications, 80:12103-12116, 2021.</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>Limit-theoremhttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=1055079848&oldid=prevShfekri: /* Extensions */2021-11-13T19:08:34Z<p><span class="autocomment">Extensions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:08, 13 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Multi-threshold Uniform Local Ternary Patterns(MT-ULTP): This texture descriptor is proposed first time in 2021 for cell phenotype classification. MT-ULTP extracts uniform patterns based on LTP in different threshold levels. It extracts micro and macro texture patterns. <ref>Fekri-Ershad, Shervan."Cell phenotype classification using multi threshold uniform local ternary patterns in florescence microscope images." , Multimedia Tools and Applications, 80:12103-12116, 2021.</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>Shfekrihttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=989481872&oldid=prevGsquaredxc: Reverted edits by 196.1.113.245 (talk) (HG) (3.4.10)2020-11-19T06:34:01Z<p>Reverted edits by <a href="/wiki/Special:Contributions/196.1.113.245" title="Special:Contributions/196.1.113.245">196.1.113.245</a> (<a href="/wiki/User_talk:196.1.113.245" title="User talk:196.1.113.245">talk</a>) (<a href="/wiki/Wikipedia:HG" class="mw-redirect" title="Wikipedia:HG">HG</a>) (3.4.10)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:34, 19 November 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 24:</td>
<td colspan="2" class="diff-lineno">Line 24:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together<del style="font-weight: bold; text-decoration: none;">. This is not gonna work dummy</del>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>Gsquaredxchttps://en.wikipedia.org/w/index.php?title=Local_binary_patterns&diff=989481846&oldid=prev196.1.113.245: /* Extensions */2020-11-19T06:33:47Z<p><span class="autocomment">Extensions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:33, 19 November 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 24:</td>
<td colspan="2" class="diff-lineno">Line 24:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Volume Local Binary Pattern(VLBP):<ref>Zhao, Guoying, and Matti Pietikainen. "Dynamic texture recognition using local binary patterns with an application to facial expressions." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007): 915-928.</ref> VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood of a pixel is thus defined in three dimensional space, and volume textons can be extracted into histograms.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* RGB-LBP: This operator is obtained by computing LBP over all three channels of the RGB color space independently, and then concatenating the results together<ins style="font-weight: bold; text-decoration: none;">. This is not gonna work dummy</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Implementations ==</div></td>
</tr>
</table>196.1.113.245