https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=MCS_algorithm
MCS algorithm - Revision history
2025-05-25T15:27:54Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.2
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1217589237&oldid=prev
82.69.126.43: /* External links */Fixed link which had died two years ago
2024-04-06T18:50:50Z
<p><span class="autocomment">External links: </span>Fixed link which had died two years ago</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:50, 6 April 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* [https://<del style="font-weight: bold; text-decoration: none;">www.mat.univie.ac</del>.at<del style="font-weight: bold; text-decoration: none;">/~neum</del>/software/mcs/ Homepage of the algorithm]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://<ins style="font-weight: bold; text-decoration: none;">arnold-neumaier</ins>.at/software/mcs/ Homepage of the algorithm]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.mat.univie.ac.at/~neum/glopt/janka/dix_sze_eng.html Performance of the algorithm relative to others]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.mat.univie.ac.at/~neum/glopt/janka/dix_sze_eng.html Performance of the algorithm relative to others]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
82.69.126.43
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1137063941&oldid=prev
Citation bot: Add: s2cid. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 2984/3499
2023-02-02T16:20:52Z
<p>Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Corvus florensis | #UCB_webform 2984/3499</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:20, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS-himmelblau-new.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS-himmelblau-new.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For [[mathematical optimization]], '''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For [[mathematical optimization]], '''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y<ins style="font-weight: bold; text-decoration: none;"> |s2cid=254652321</ins> |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369<ins style="font-weight: bold; text-decoration: none;"> |s2cid=1855536</ins> |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1078871932&oldid=prev
JoeNMLC: /* top */ ce lead, add wikilink, rm context tag
2022-03-23T19:49:24Z
<p><span class="autocomment">top: </span> ce lead, add wikilink, rm context tag</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:49, 23 March 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Context|date=October 2009}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS-himmelblau-new.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS-himmelblau-new.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_4_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">For [[mathematical optimization]], </ins>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_2_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_0_lhs"></a>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
</tr>
</table>
JoeNMLC
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036946307&oldid=prev
Najko32 at 16:38, 3 August 2021
2021-08-03T16:38:24Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:38, 3 August 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS<del style="font-weight: bold; text-decoration: none;"> </del>himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS<ins style="font-weight: bold; text-decoration: none;">-</ins>himmelblau<ins style="font-weight: bold; text-decoration: none;">-new</ins>.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]].<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
</tr>
</table>
Najko32
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036835151&oldid=prev
WikiCleanerBot: v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
2021-08-03T00:16:47Z
<p>v2.04b - <a href="/wiki/User:WikiCleanerBot#T20" title="User:WikiCleanerBot">Bot T20 CW#61</a> - Fix errors for <a href="/wiki/Wikipedia:WCW" class="mw-redirect" title="Wikipedia:WCW">CW project</a> (Reference before punctuation)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:16, 3 August 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y|hdl=10.1007/s10898-012-9951-y |hdl-access=free }}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 26:</td>
<td colspan="2" class="diff-lineno">Line 26:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recursive implementation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recursive implementation==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>MCS is designed to be implemented in an efficient [[recursion (computer science)|recursive]] manner with the aid of [[tree (data structure)|trees]]. With this approach the amount of memory required is independent of problem dimensionality since the sampling points are not stored explicitly. Instead, just a single coordinate of each sample is saved and the remaining coordinates can be recovered by tracing the history of a box back to the root (initial box). This method was suggested by the authors and used in their original implementation<del style="font-weight: bold; text-decoration: none;"> </del><ref name="mcs" /><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>MCS is designed to be implemented in an efficient [[recursion (computer science)|recursive]] manner with the aid of [[tree (data structure)|trees]]. With this approach the amount of memory required is independent of problem dimensionality since the sampling points are not stored explicitly. Instead, just a single coordinate of each sample is saved and the remaining coordinates can be recovered by tracing the history of a box back to the root (initial box). This method was suggested by the authors and used in their original implementation<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="mcs" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
WikiCleanerBot
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036681735&oldid=prev
OAbot: Open access bot: hdl added to citation with #oabot.
2021-08-02T03:11:36Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: hdl added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:11, 2 August 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y<ins style="font-weight: bold; text-decoration: none;">|hdl=10.1007/s10898-012-9951-y |hdl-access=free </ins>}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To do so, the n-dimensional [[Candidate solution|search space]] is represented by a set of non-intersecting hypercubes (boxes). The boxes are then iteratively split along an axis plane according to the value of the function at a representative point of the box (and its neighbours) and the box's size. These two splitting criteria combine to form a global search by splitting large boxes and a local search by splitting areas for which the function value is good. </div></td>
</tr>
</table>
OAbot
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036345311&oldid=prev
Najko32 at 00:03, 31 July 2021
2021-07-31T00:03:11Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:03, 31 July 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt<del style="font-weight: bold; text-decoration: none;">.</del>|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=no alt|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
</tr>
</table>
Najko32
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036345179&oldid=prev
Najko32 at 00:02, 31 July 2021
2021-07-31T00:02:19Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:02, 31 July 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 12:</td>
<td colspan="2" class="diff-lineno">Line 12:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Simplified workflow==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Simplified workflow==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The MCS workflow is <del style="font-weight: bold; text-decoration: none;">presented</del> in Figures 1 and 2. Each step of the algorithm can be split into four stages:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The MCS workflow is <ins style="font-weight: bold; text-decoration: none;">visualized</ins> in Figures 1 and 2. Each step of the algorithm can be split into four stages:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Identify a potential candidate for splitting (magenta, thick).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Identify a potential candidate for splitting (magenta, thick).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Identify the optimal splitting direction and the expected optimal position of the splitting point (green).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Identify the optimal splitting direction and the expected optimal position of the splitting point (green).</div></td>
</tr>
</table>
Najko32
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036344998&oldid=prev
Najko32 at 00:01, 31 July 2021
2021-07-31T00:01:16Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:01, 31 July 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS algorithm.gif|thumb|400px|alt=A cartoon centipede reads books and types on a laptop.|''Figure 1:'' MCS algorithm (''without'' local search) applied to the two-dimensional [[Rosenbrock function]]. The global minimum <math>f_{min}=0</math> is located at <math>(x,y)=(1,1)</math>. MCS identifies a position with <math>f\approx 0.002</math> within 21 function evaluations. After additional 21 evaluations the optimal value is not improved and the algorithm terminates. Observe dense clustering of samples around potential minima - this effect can be reduced significantly by employing local searches appropriately.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=<del style="font-weight: bold; text-decoration: none;">-empty-</del>|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:MCS himmelblau.gif|thumb|400px|alt=<ins style="font-weight: bold; text-decoration: none;">no alt.</ins>|''Figure 2:'' MCS (without local search) applied to the [[Himmelblau's function]] with four local minima where <math>f(x)=0</math>.]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Multilevel Coordinate Search''' ('''MCS''') is an efficient<ref>{{cite journal |last1=Rios |first1=L. M. |last2=Sahinidis |first2=N. V. |title=Derivative-free optimization: a review of algorithms and comparison of software implementations |journal=Journal of Global Optimization |date=2013 |volume=56 |issue=3 |pages=1247–1293 |doi=10.1007/s10898-012-9951-y|url=https://link.springer.com/article/10.1007/s10898-012-9951-y}}</ref> [[algorithm]] for bound constrained [[global optimization]] using [[function (mathematics)|function]] values [[derivative-free optimization|only]]<ref name="mcs">{{cite journal |last1=Huyer |first1=W. |last2=Neumaier |first2=A. |title=Global Optimization by Multilevel Coordinate Search |journal=Journal of Global Optimization |date=1999 |volume=14 |issue=4 |pages=331–355 |doi=10.1023/A:1008382309369 |url=https://link.springer.com/article/10.1023/A:1008382309369}}</ref>.</div></td>
</tr>
</table>
Najko32
https://en.wikipedia.org/w/index.php?title=MCS_algorithm&diff=1036344629&oldid=prev
Najko32: Removed the 'unreferenced' message since references have been added in the previous edit.
2021-07-30T23:58:32Z
<p>Removed the 'unreferenced' message since references have been added in the previous edit.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:58, 30 July 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{unreferenced|date=July 2012}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Context|date=October 2009}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Context|date=October 2009}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Najko32