https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Memetic_algorithmMemetic algorithm - Revision history2025-05-29T10:57:02ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.2https://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1291714861&oldid=prevOAbot: Open access bot: url-access updated in citation with #oabot.2025-05-22T23:01:38Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: url-access updated in citation with #oabot.</p>
<a href="//en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1291714861&oldid=1268558750">Show changes</a>OAbothttps://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1268558750&oldid=prevStudi90: some links added2025-01-10T10:38:51Z<p>some links added</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:38, 10 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''memetic algorithm''' (MA) is an extension of an [[evolutionary algorithm]] (EA) that aims to accelerate the evolutionary search for the optimum. An EA is a [[metaheuristic]] that reproduces the basic principles of [[biological evolution]] as a [[computer algorithm]] in order to solve challenging [[Optimization problem|optimization]] or [[planning]] tasks, at least [[Approximation|approximately]]. An MA uses one or more suitable [[heuristic]]s or [[Local search (optimization)|local search]] techniques to improve the quality of solutions generated by the EA and to speed up the search. The effects on the reliability of finding the global optimum depend on both the use case and the design of the MA.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[computer science]] and [[operations research]], a '''memetic algorithm''' (MA) is an extension of an [[evolutionary algorithm]] (EA) that aims to accelerate the evolutionary search for the <ins style="font-weight: bold; text-decoration: none;">[[</ins>optimum<ins style="font-weight: bold; text-decoration: none;">]]</ins>. An EA is a [[metaheuristic]] that reproduces the basic principles of [[biological evolution]] as a [[computer algorithm]] in order to solve challenging [[Optimization problem|optimization]] or [[planning]] tasks, at least [[Approximation|approximately]]. An MA uses one or more suitable [[heuristic]]s or [[Local search (optimization)|local search]] techniques to improve the quality of solutions generated by the EA and to speed up the search. The effects on the <ins style="font-weight: bold; text-decoration: none;">[[Premature convergence|</ins>reliability of finding the global optimum<ins style="font-weight: bold; text-decoration: none;">]]</ins> depend on both the use case and the<ins style="font-weight: bold; text-decoration: none;"> [[Memetic algorithm#Some</ins> <ins style="font-weight: bold; text-decoration: none;">design notes|</ins>design of the MA<ins style="font-weight: bold; text-decoration: none;">]]</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary algorithms<del style="font-weight: bold; text-decoration: none;"> (EAs)</del>, Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary algorithms, Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 86:</td>
<td colspan="2" class="diff-lineno">Line 86:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Choice of Lamarckian or Baldwinian learning ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Choice of Lamarckian or Baldwinian learning ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is to be decided whether a found improvement is to work only by the better fitness (Baldwinian learning) or whether also the individual is adapted accordingly (lamarckian learning). In the case of an EA, this would mean an adjustment of the genotype. This question has been controversially discussed for EAs in the literature already in the 1990s, stating that the specific use case plays a major role.<ref>{{Cite journal |last1=Gruau |first1=Frédéric |last2=Whitley |first2=Darrell |date=September 1993 |title=Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect |url=https://direct.mit.edu/evco/article/1/3/213-233/1109 |journal=Evolutionary Computation |language=en |volume=1 |issue=3 |pages=213–233 |doi=10.1162/evco.1993.1.3.213 |s2cid=15048360 |issn=1063-6560}}</ref><ref>{{Citation |last1=Orvosh |first1=David |last2=Davis |first2=Lawrence |title=Shall We Repair? Genetic Algorithms, Combinatorial Optimization, and Feasibility Constraints |date=1993 |work=Conf. Proc. of the 5th Int. Conf. on Genetic Algorithms (ICGA) |pages=650 |editor-last=Forrest |editor-first=Stephanie |place=San Mateo, CA, USA |publisher=Morgan Kaufmann |isbn=978-1-55860-299-1 |s2cid=10098180 }}</ref><ref>{{Citation |last1=Whitley |first1=Darrell |title=Lamarckian evolution, the Baldwin effect and function optimization |date=1994 |url=http://link.springer.com/10.1007/3-540-58484-6_245 |work=Parallel Problem Solving from Nature — PPSN III |volume=866 |pages=5–15 |editor-last=Davidor |editor-first=Yuval |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/3-540-58484-6_245 |isbn=978-3-540-58484-1 |access-date=2023-02-07 |last2=Gordon |first2=V. Scott |last3=Mathias |first3=Keith |editor2-last=Schwefel |editor2-first=Hans-Paul |editor3-last=Männer |editor3-first=Reinhard}}</ref> The background of the debate is that genome adaptation may promote [[premature convergence]]. This risk can be effectively mitigated by other measures to better balance breadth and depth searches, such as the use of [[Population model (evolutionary algorithm)|structured populations]].<ref<del style="font-weight: bold; text-decoration: none;">>{{Cite</del> <del style="font-weight: bold; text-decoration: none;">journal |last</del>=<del style="font-weight: bold; text-decoration: none;">Jakob |first=Wilfried |date=September 2010 |title=A general cost-benefit-based adaptation framework for multimeme algorithms |url=http</del>:<del style="font-weight: bold; text-decoration: none;">//link.springer.com/10.1007/s12293-010-0040-9</del> <del style="font-weight: bold; text-decoration: none;">|journal=Memetic Computing |series=p.207 |language=en |volume=2 |issue=3 |pages=201–218 |doi=10.1007/s12293-010-0040-9 |s2cid=167807 |issn=1865-9284}}<</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is to be decided whether a found improvement is to work only by the better fitness (Baldwinian learning) or whether also the individual is adapted accordingly (lamarckian learning). In the case of an EA, this would mean an adjustment of the genotype. This question has been controversially discussed for EAs in the literature already in the 1990s, stating that the specific use case plays a major role.<ref>{{Cite journal |last1=Gruau |first1=Frédéric |last2=Whitley |first2=Darrell |date=September 1993 |title=Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect |url=https://direct.mit.edu/evco/article/1/3/213-233/1109 |journal=Evolutionary Computation |language=en |volume=1 |issue=3 |pages=213–233 |doi=10.1162/evco.1993.1.3.213 |s2cid=15048360 |issn=1063-6560}}</ref><ref>{{Citation |last1=Orvosh |first1=David |last2=Davis |first2=Lawrence |title=Shall We Repair? Genetic Algorithms, Combinatorial Optimization, and Feasibility Constraints |date=1993 |work=Conf. Proc. of the 5th Int. Conf. on Genetic Algorithms (ICGA) |pages=650 |editor-last=Forrest |editor-first=Stephanie |place=San Mateo, CA, USA |publisher=Morgan Kaufmann |isbn=978-1-55860-299-1 |s2cid=10098180 }}</ref><ref>{{Citation |last1=Whitley |first1=Darrell |title=Lamarckian evolution, the Baldwin effect and function optimization |date=1994 |url=http://link.springer.com/10.1007/3-540-58484-6_245 |work=Parallel Problem Solving from Nature — PPSN III |volume=866 |pages=5–15 |editor-last=Davidor |editor-first=Yuval |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/3-540-58484-6_245 |isbn=978-3-540-58484-1 |access-date=2023-02-07 |last2=Gordon |first2=V. Scott |last3=Mathias |first3=Keith |editor2-last=Schwefel |editor2-first=Hans-Paul |editor3-last=Männer |editor3-first=Reinhard}}</ref> The background of the debate is that genome adaptation may promote [[premature convergence]]. This risk can be effectively mitigated by other measures to better balance breadth and depth searches, such as the use of [[Population model (evolutionary algorithm)|structured populations]].<ref <ins style="font-weight: bold; text-decoration: none;">name</ins>=<ins style="font-weight: bold; text-decoration: none;">"</ins>:<ins style="font-weight: bold; text-decoration: none;">0"</ins> /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
</table>Studi90https://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1268555515&oldid=prevStudi90: Introduction: Deletion of the assertion that MAs would generally reduce the risk of premature convergence and replacement with a suitable text.2025-01-10T10:11:37Z<p>Introduction: Deletion of the assertion that MAs would generally reduce the risk of premature convergence and replacement with a suitable text.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:11, 10 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">A '''memetic algorithm''' (MA) in</del> [[computer science]] and [[operations research]], is an extension of <del style="font-weight: bold; text-decoration: none;">the traditional</del> [[<del style="font-weight: bold; text-decoration: none;">genetic</del> algorithm]] (<del style="font-weight: bold; text-decoration: none;">GA</del>) <del style="font-weight: bold; text-decoration: none;">or</del> <del style="font-weight: bold; text-decoration: none;">more</del> <del style="font-weight: bold; text-decoration: none;">general</del> <del style="font-weight: bold; text-decoration: none;">[[</del>evolutionary <del style="font-weight: bold; text-decoration: none;">algorithm]]</del> <del style="font-weight: bold; text-decoration: none;">(EA)</del>. An EA is a [[metaheuristic]] that reproduces the basic principles of [[biological evolution]] as a [[computer algorithm]] in order to solve challenging [[Optimization problem|optimization]] or [[planning]] tasks, at least [[Approximation|approximately]]. An MA uses <del style="font-weight: bold; text-decoration: none;">a</del> suitable [[heuristic]] or [[Local search (optimization)|local search]] <del style="font-weight: bold; text-decoration: none;">technique</del> to improve the quality of solutions generated by the EA and to <del style="font-weight: bold; text-decoration: none;">reduce</del> the <del style="font-weight: bold; text-decoration: none;">likelihood of [[premature convergence]]</del>.<del style="font-weight: bold; text-decoration: none;"><ref>{{cite</del> <del style="font-weight: bold; text-decoration: none;">journal|title=</del> <del style="font-weight: bold; text-decoration: none;">A</del> <del style="font-weight: bold; text-decoration: none;">Comparison between Memetic algorithm and Genetic algorithm for</del> the <del style="font-weight: bold; text-decoration: none;">cryptanalysis</del> of <del style="font-weight: bold; text-decoration: none;">Simplified</del> <del style="font-weight: bold; text-decoration: none;">Data</del> <del style="font-weight: bold; text-decoration: none;">Encryption</del> <del style="font-weight: bold; text-decoration: none;">Standard</del> <del style="font-weight: bold; text-decoration: none;">algorithm|author=Poonam</del> <del style="font-weight: bold; text-decoration: none;">Garg</del> <del style="font-weight: bold; text-decoration: none;">|journal=International</del> <del style="font-weight: bold; text-decoration: none;">Journal</del> <del style="font-weight: bold; text-decoration: none;">of</del> <del style="font-weight: bold; text-decoration: none;">Network</del> <del style="font-weight: bold; text-decoration: none;">Security</del> <del style="font-weight: bold; text-decoration: none;">&</del> <del style="font-weight: bold; text-decoration: none;">Its</del> <del style="font-weight: bold; text-decoration: none;">Applications</del> <del style="font-weight: bold; text-decoration: none;">(IJNSA)|volume=1|issue=1|date=April</del> <del style="font-weight: bold; text-decoration: none;">2009|arxiv= 1004</del>.<del style="font-weight: bold; text-decoration: none;">0574 |bibcode=2010arXiv1004.0574G }}</ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">In</ins> [[computer science]] and [[operations research]],<ins style="font-weight: bold; text-decoration: none;"> a '''memetic algorithm''' (MA)</ins> is an extension of <ins style="font-weight: bold; text-decoration: none;">an</ins> [[<ins style="font-weight: bold; text-decoration: none;">evolutionary</ins> algorithm]] (<ins style="font-weight: bold; text-decoration: none;">EA</ins>) <ins style="font-weight: bold; text-decoration: none;">that</ins> <ins style="font-weight: bold; text-decoration: none;">aims</ins> <ins style="font-weight: bold; text-decoration: none;">to accelerate the</ins> evolutionary <ins style="font-weight: bold; text-decoration: none;">search</ins> <ins style="font-weight: bold; text-decoration: none;">for the optimum</ins>. An EA is a [[metaheuristic]] that reproduces the basic principles of [[biological evolution]] as a [[computer algorithm]] in order to solve challenging [[Optimization problem|optimization]] or [[planning]] tasks, at least [[Approximation|approximately]]. An MA uses <ins style="font-weight: bold; text-decoration: none;">one or more</ins> suitable [[heuristic]]<ins style="font-weight: bold; text-decoration: none;">s</ins> or [[Local search (optimization)|local search]] <ins style="font-weight: bold; text-decoration: none;">techniques</ins> to improve the quality of solutions generated by the EA and to <ins style="font-weight: bold; text-decoration: none;">speed up</ins> the <ins style="font-weight: bold; text-decoration: none;">search</ins>. <ins style="font-weight: bold; text-decoration: none;">The</ins> <ins style="font-weight: bold; text-decoration: none;">effects</ins> <ins style="font-weight: bold; text-decoration: none;">on</ins> the <ins style="font-weight: bold; text-decoration: none;">reliability</ins> of <ins style="font-weight: bold; text-decoration: none;">finding</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">global</ins> <ins style="font-weight: bold; text-decoration: none;">optimum</ins> <ins style="font-weight: bold; text-decoration: none;">depend</ins> <ins style="font-weight: bold; text-decoration: none;">on</ins> <ins style="font-weight: bold; text-decoration: none;">both</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">use</ins> <ins style="font-weight: bold; text-decoration: none;">case</ins> <ins style="font-weight: bold; text-decoration: none;">and</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">design</ins> <ins style="font-weight: bold; text-decoration: none;">of</ins> <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">MA</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary algorithms (EAs), Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary algorithms (EAs), Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 109:</td>
<td colspan="2" class="diff-lineno">Line 109:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist|30em}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist|30em}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[pe:الگوریتم میمتیک]]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Evolutionary algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Evolutionary algorithms]]</div></td>
</tr>
</table>Studi90https://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1268407382&oldid=prevStudi90: Revision of the introduction with the aim of a better classification2025-01-09T16:36:40Z<p>Revision of the introduction with the aim of a better classification</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:36, 9 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Algorithm for searching a problem space}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). <del style="font-weight: bold; text-decoration: none;">It</del> <del style="font-weight: bold; text-decoration: none;">may</del> <del style="font-weight: bold; text-decoration: none;">provide</del> a <del style="font-weight: bold; text-decoration: none;">sufficiently</del> <del style="font-weight: bold; text-decoration: none;">good</del> <del style="font-weight: bold; text-decoration: none;">solution</del> to <del style="font-weight: bold; text-decoration: none;">an</del> [[<del style="font-weight: bold; text-decoration: none;">optimization</del> problem]]. <del style="font-weight: bold; text-decoration: none;">It</del> uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). <ins style="font-weight: bold; text-decoration: none;">An</ins> <ins style="font-weight: bold; text-decoration: none;">EA</ins> <ins style="font-weight: bold; text-decoration: none;">is</ins> a <ins style="font-weight: bold; text-decoration: none;">[[metaheuristic]]</ins> <ins style="font-weight: bold; text-decoration: none;">that</ins> <ins style="font-weight: bold; text-decoration: none;">reproduces the basic principles of [[biological evolution]] as a [[computer algorithm]] in order</ins> to <ins style="font-weight: bold; text-decoration: none;">solve challenging</ins> [[<ins style="font-weight: bold; text-decoration: none;">Optimization</ins> problem<ins style="font-weight: bold; text-decoration: none;">|optimization]] or [[planning]] tasks, at least [[Approximation|approximately</ins>]]. <ins style="font-weight: bold; text-decoration: none;">An MA</ins> uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian <del style="font-weight: bold; text-decoration: none;">[[</del>evolutionary <del style="font-weight: bold; text-decoration: none;">algorithm]]s</del> (EAs), Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Memetic algorithms represent one of the recent growing areas of research in [[evolutionary computation]]. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary <ins style="font-weight: bold; text-decoration: none;">algorithms</ins> (EAs), Lamarckian EAs, cultural algorithms, or genetic local search.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 93:</td>
<td colspan="2" class="diff-lineno">Line 93:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Researchers have used memetic algorithms to tackle many classical [[NP (complexity)|NP]] problems. To cite some of them: [[graph partition]]ing, [[knapsack problem|multidimensional knapsack]], [[travelling salesman problem]], [[quadratic assignment problem]], [[set cover problem]], [[graph coloring#Algorithms|minimal graph coloring]], [[independent set problem|max independent set problem]], [[bin packing problem]], and [[Generalized Assignment Problem|generalized assignment problem]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Researchers have used memetic algorithms to tackle many classical [[NP (complexity)|NP]] problems. To cite some of them: [[graph partition]]ing, [[knapsack problem|multidimensional knapsack]], [[travelling salesman problem]], [[quadratic assignment problem]], [[set cover problem]], [[graph coloring#Algorithms|minimal graph coloring]], [[independent set problem|max independent set problem]], [[bin packing problem]], and [[Generalized Assignment Problem|generalized assignment problem]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent applications include (but are not limited to) [[business analytics]] and [[data science]],<ref name=MAs-in-Data-Science-and-Business-Analytics> </ref> training of [[artificial neural network]]s,<ref name=training_ANN>{{cite conference |author1=Ichimura, T. |author2=Kuriyama, Y. |title=Learning of neural networks with parallel hybrid GA using a royal road function|conference=IEEE International Joint Conference on Neural Networks|volume=2|pages=1131–1136|year=1998|location=New York, NY |doi=10.1109/IJCNN.1998.685931 }}</ref> [[pattern recognition]],<ref name=pattern_recognition>{{cite journal|author1=Aguilar, J. |author2=Colmenares, A. |year=1998|title=Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm|journal=Pattern Analysis and Applications|volume=1|issue=1|pages=52–61|doi=10.1007/BF01238026|s2cid=15803359 }}</ref> robotic [[motion planning]],<ref name=motion_planning>{{cite book|author1=Ridao, M. |author2=Riquelme, J. |author3=Camacho, E. |author4=Toro, M. |title=Tasks and Methods in Applied Artificial Intelligence |chapter=An evolutionary and local search algorithm for planning two manipulators motion | year=1998|volume=1416| pages=105–114|publisher=Springer-Verlag|doi=10.1007/3-540-64574-8_396|series=Lecture Notes in Computer Science|isbn=978-3-540-64574-0|citeseerx=10.1.1.324.2668 }}</ref> [[charged particle beam|beam]] orientation,<ref name=beam_orientation>{{cite journal|author1=Haas, O. |author2=Burnham, K. |author3=Mills, J. |year=1998 |title=Optimization of beam orientation in radiotherapy using planar geometry|journal=Physics in Medicine and Biology|volume=43|issue=8|pages=2179–2193|doi=10.1088/0031-9155/43/8/013|pmid=9725597|bibcode=1998PMB....43.2179H |s2cid=250856984 }}</ref> [[circuit design]],<ref name=circuit_design>{{cite journal|author1=Harris, S. |author2=Ifeachor, E. |year=1998|title=Automatic design of frequency sampling filters by hybrid genetic algorithm techniques|journal=IEEE Transactions on Signal Processing |volume=46 |issue=12 |pages=3304–3314 |doi=10.1109/78.735305 |bibcode=1998ITSP...46.3304H }}</ref> electric service restoration,<ref name=service_restoration>{{cite journal|author1=Augugliaro, A. |author2=Dusonchet, L. |author3=Riva-Sanseverino, E. |year=1998|title=Service restoration in compensated distribution networks using a hybrid genetic algorithm|journal=Electric Power Systems Research|volume=46|issue=1|pages=59–66|doi=10.1016/S0378-7796(98)00025-X|bibcode=1998EPSR...46...59A }}</ref> medical [[expert system]]s,<ref name=medical_expert_system>{{cite journal|author1=Wehrens, R. |author2=Lucasius, C. |author3=Buydens, L. |author4=Kateman, G. |year=1993|title=HIPS, A hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms|journal=Analytica Chimica Acta|volume=277|issue=2|pages=313–324|doi=10.1016/0003-2670(93)80444-P|bibcode=1993AcAC..277..313W |hdl=2066/112321 |s2cid=53954763 |hdl-access=free}}</ref> [[single machine scheduling]],<ref name=single_machine_sched>{{cite conference|author1=França, P. |author2=Mendes, A. |author3=Moscato, P. |title=Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup times|conference=Proceedings of the 5th International Conference of the Decision Sciences Institute|pages=1708–1710|year=1999|location=Athens, Greece|s2cid=10797987 }}</ref> automatic timetabling (notably, the timetable for the [[NHL]]),<ref name="nhl_timetabling">{{cite journal | last=Costa | first=Daniel | title=An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem | journal=INFOR: Information Systems and Operational Research | volume=33 | issue=3 | year=1995 | doi=10.1080/03155986.1995.11732279 | pages=161–178| s2cid=15491435 }}</ref> [[Schedule (workplace)|manpower scheduling]],<ref name=nurse_rostering>{{cite conference|author=Aickelin, U.|title=Nurse rostering with genetic algorithms|conference=Proceedings of young operational research conference 1998|year=1998|location=Guildford, UK|arxiv=1004.2870}}</ref> [[nurse rostering problem|nurse rostering optimisation]],<ref name=nurse_rostering_function_opt>{{cite book| author = Ozcan, E.|title=Practice and Theory of Automated Timetabling VI|year=2007|chapter=Memes, Self-generation and Nurse Rostering|volume=3867|pages=85–104|publisher=Springer-Verlag|doi=10.1007/978-3-540-77345-0_6|series=Lecture Notes in Computer Science|isbn=978-3-540-77344-3}}</ref> [[processor allocation]],<ref name=proc_alloc>{{cite journal|author1=Ozcan, E. |author2=Onbasioglu, E. |year=2007|title=Memetic Algorithms for Parallel Code Optimization|journal=International Journal of Parallel Programming|volume=35|issue=1|pages=33–61|doi=10.1007/s10766-006-0026-x|s2cid=15182941 }}</ref> maintenance scheduling (for example, of an electric distribution network),<ref name=planned_maintenance>{{cite journal|author1=Burke, E. |author2=Smith, A. |year=1999|title=A memetic algorithm to schedule planned maintenance for the national grid| journal=Journal of Experimental Algorithmics |issue=4|pages=1–13 |doi=10.1145/347792.347801 |volume=4|s2cid=17174080 |doi-access=free}}</ref> [[Scheduling (production processes)|scheduling]] of multiple [[Workflow|workflows]] to constrained heterogeneous resources,<ref>{{Cite journal |last1=Jakob |first1=Wilfried |last2=Strack |first2=Sylvia |last3=Quinte |first3=Alexander |last4=Bengel |first4=Günther |last5=Stucky |first5=Karl-Uwe |last6=Süß |first6=Wolfgang |date=2013-04-22 |title=Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing |journal=Algorithms |language=en |volume=6 |issue=2 |pages=245–277 |doi=10.3390/a6020245 |issn=1999-4893|doi-access=free }}</ref> multidimensional knapsack problem,<ref name=mkp_ma>{{cite journal|author1=Ozcan, E. |author2=Basaran, C. |year=2009|title=A Case Study of Memetic Algorithms for Constraint Optimization|journal=Soft Computing: A Fusion of Foundations, Methodologies and Applications |volume=13|issue=8–9 |pages=871–882 |doi=10.1007/s00500-008-0354-4 |citeseerx=10.1.1.368.7327 |s2cid=17032624 }}</ref> [[VLSI]] design,<ref name="vlsi_design">{{cite journal |author=Areibi |first1=S. |last2=Yang |first2=Z. |year=2004 |title=Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering |journal=Evolutionary Computation |volume=12 |issue=3 |pages=327–353 |doi=10.1162/1063656041774947 |pmid=15355604 |s2cid=2190268}}</ref> [[cluster analysis|clustering]] of [[expression profiling|gene expression profiles]],<ref name=clustering_gene_expression >{{cite book|author1=Merz, P. |author2=Zell, A. |title = Parallel Problem Solving from Nature — PPSN VII|volume=2439 |year=2002|publisher=[[Springer Science+Business Media|Springer]]|doi=10.1007/3-540-45712-7_78|pages=811–820| chapter=Clustering Gene Expression Profiles with Memetic Algorithms|series=Lecture Notes in Computer Science |isbn=978-3-540-44139-7 }}</ref> feature/gene selection,<ref name=gene_selection1>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Markov Blanket-Embedded Genetic Algorithm for Gene Selection|year=2007|journal=Pattern Recognition|volume=49|issue=11|pages=3236–3248|doi=10.1016/j.patcog.2007.02.007|bibcode=2007PatRe..40.3236Z}}</ref><ref name=gene_selection2>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Wrapper-Filter Feature Selection Algorithm Using A Memetic Framework|year=2007|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=37|issue=1|pages=70–76|doi=10.1109/TSMCB.2006.883267|pmid=17278560|hdl=10338.dmlcz/141593|s2cid=18382400|hdl-access=free}}</ref> parameter determination for hardware fault injection,<ref>{{Cite web|title=Artificial Intelligence for Fault Injection Parameter Selection {{!}} Marina Krček {{!}} Hardwear.io Webinar|url=https://hardwear.io/webinar/AI-for-fault-injection-parameter-selection.php|access-date=2021-05-21|website=hardwear.io}}</ref> and multi-class, multi-objective [[feature selection]].<ref>{{Cite journal |last1=Zhu |first1=Zexuan |last2=Ong |first2=Yew-Soon |last3=Zurada |first3=Jacek M |date=April 2010 |title=Identification of Full and Partial Class Relevant Genes |url=https://ieeexplore.ieee.org/document/4653480 |journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics |volume=7 |issue=2 |pages=263–277 |doi=10.1109/TCBB.2008.105 |pmid=20431146 |s2cid=2904028 |issn=1545-5963}}</ref><ref name=feature_selection2>{{cite book|author1=G. Karkavitsas |author2=G. Tsihrintzis |title=Intelligent Interactive Multimedia Systems and Services |chapter=Automatic Music Genre Classification Using Hybrid Genetic Algorithms |name-list-style=amp |year=2011|volume=11|pages=323–335|publisher=Springer|doi=10.1007/978-3-642-22158-3_32|series=Smart Innovation, Systems and Technologies |isbn=978-3-642-22157-6 |s2cid=15011089 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent applications include (but are not limited to) [[business analytics]] and [[data science]],<ref name=MAs-in-Data-Science-and-Business-Analytics> </ref> training of [[artificial neural network]]s,<ref name=training_ANN>{{cite conference |author1=Ichimura, T. |author2=Kuriyama, Y. |title=Learning of neural networks with parallel hybrid GA using a royal road function|conference=IEEE International Joint Conference on Neural Networks|volume=2|pages=1131–1136|year=1998|location=New York, NY |doi=10.1109/IJCNN.1998.685931 }}</ref> [[pattern recognition]],<ref name=pattern_recognition>{{cite journal|author1=Aguilar, J. |author2=Colmenares, A. |year=1998|title=Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm|journal=Pattern Analysis and Applications|volume=1|issue=1|pages=52–61|doi=10.1007/BF01238026|s2cid=15803359 }}</ref> robotic [[motion planning]],<ref name=motion_planning>{{cite book|author1=Ridao, M. |author2=Riquelme, J. |author3=Camacho, E. |author4=Toro, M. |title=Tasks and Methods in Applied Artificial Intelligence |chapter=An evolutionary and local search algorithm for planning two manipulators motion | year=1998|volume=1416| pages=105–114|publisher=Springer-Verlag|doi=10.1007/3-540-64574-8_396|series=Lecture Notes in Computer Science|isbn=978-3-540-64574-0|citeseerx=10.1.1.324.2668 }}</ref> [[charged particle beam|beam]] orientation,<ref name=beam_orientation>{{cite journal|author1=Haas, O. |author2=Burnham, K. |author3=Mills, J. |year=1998 |title=Optimization of beam orientation in radiotherapy using planar geometry|journal=Physics in Medicine and Biology|volume=43|issue=8|pages=2179–2193|doi=10.1088/0031-9155/43/8/013|pmid=9725597|bibcode=1998PMB....43.2179H |s2cid=250856984 }}</ref> [[circuit design]],<ref name=circuit_design>{{cite journal|author1=Harris, S. |author2=Ifeachor, E. |year=1998|title=Automatic design of frequency sampling filters by hybrid genetic algorithm techniques|journal=IEEE Transactions on Signal Processing |volume=46 |issue=12 |pages=3304–3314 |doi=10.1109/78.735305 |bibcode=1998ITSP...46.3304H }}</ref> electric service restoration,<ref name=service_restoration>{{cite journal|author1=Augugliaro, A. |author2=Dusonchet, L. |author3=Riva-Sanseverino, E. |year=1998|title=Service restoration in compensated distribution networks using a hybrid genetic algorithm|journal=Electric Power Systems Research|volume=46|issue=1|pages=59–66|doi=10.1016/S0378-7796(98)00025-X|bibcode=1998EPSR...46...59A }}</ref> medical [[expert system]]s,<ref name=medical_expert_system>{{cite journal|author1=Wehrens, R. |author2=Lucasius, C. |author3=Buydens, L. |author4=Kateman, G. |year=1993|title=HIPS, A hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms|journal=Analytica Chimica Acta|volume=277|issue=2|pages=313–324|doi=10.1016/0003-2670(93)80444-P|bibcode=1993AcAC..277..313W |hdl=2066/112321 |s2cid=53954763 |hdl-access=free}}</ref> [[single machine scheduling]],<ref name=single_machine_sched>{{cite conference|author1=França, P. |author2=Mendes, A. |author3=Moscato, P. |title=Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup times|conference=Proceedings of the 5th International Conference of the Decision Sciences Institute|pages=1708–1710|year=1999|location=Athens, Greece|s2cid=10797987 }}</ref> automatic timetabling (notably, the timetable for the [[NHL]]),<ref name="nhl_timetabling">{{cite journal | last=Costa | first=Daniel | title=An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem | journal=INFOR: Information Systems and Operational Research | volume=33 | issue=3 | year=1995 | doi=10.1080/03155986.1995.11732279 | pages=161–178| s2cid=15491435 }}</ref> [[Schedule (workplace)|manpower scheduling]],<ref name=nurse_rostering>{{cite conference|author=Aickelin, U.|title=Nurse rostering with genetic algorithms|conference=Proceedings of young operational research conference 1998|year=1998|location=Guildford, UK|arxiv=1004.2870}}</ref> [[nurse rostering problem|nurse rostering optimisation]],<ref name=nurse_rostering_function_opt>{{cite book| author = Ozcan, E.|title=Practice and Theory of Automated Timetabling VI|year=2007|chapter=Memes, Self-generation and Nurse Rostering|volume=3867|pages=85–104|publisher=Springer-Verlag|doi=10.1007/978-3-540-77345-0_6|series=Lecture Notes in Computer Science|isbn=978-3-540-77344-3}}</ref> [[<ins style="font-weight: bold; text-decoration: none;">Scheduling (computing)#Operating system process scheduler implementations|</ins>processor allocation]],<ref name=proc_alloc>{{cite journal|author1=Ozcan, E. |author2=Onbasioglu, E. |year=2007|title=Memetic Algorithms for Parallel Code Optimization|journal=International Journal of Parallel Programming|volume=35|issue=1|pages=33–61|doi=10.1007/s10766-006-0026-x|s2cid=15182941 }}</ref> maintenance scheduling (for example, of an electric distribution network),<ref name=planned_maintenance>{{cite journal|author1=Burke, E. |author2=Smith, A. |year=1999|title=A memetic algorithm to schedule planned maintenance for the national grid| journal=Journal of Experimental Algorithmics |issue=4|pages=1–13 |doi=10.1145/347792.347801 |volume=4|s2cid=17174080 |doi-access=free}}</ref> [[Scheduling (production processes)|scheduling]] of multiple [[Workflow|workflows]] to constrained heterogeneous resources,<ref>{{Cite journal |last1=Jakob |first1=Wilfried |last2=Strack |first2=Sylvia |last3=Quinte |first3=Alexander |last4=Bengel |first4=Günther |last5=Stucky |first5=Karl-Uwe |last6=Süß |first6=Wolfgang |date=2013-04-22 |title=Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing |journal=Algorithms |language=en |volume=6 |issue=2 |pages=245–277 |doi=10.3390/a6020245 |issn=1999-4893|doi-access=free }}</ref> multidimensional knapsack problem,<ref name=mkp_ma>{{cite journal|author1=Ozcan, E. |author2=Basaran, C. |year=2009|title=A Case Study of Memetic Algorithms for Constraint Optimization|journal=Soft Computing: A Fusion of Foundations, Methodologies and Applications |volume=13|issue=8–9 |pages=871–882 |doi=10.1007/s00500-008-0354-4 |citeseerx=10.1.1.368.7327 |s2cid=17032624 }}</ref> [[VLSI]] design,<ref name="vlsi_design">{{cite journal |author=Areibi |first1=S. |last2=Yang |first2=Z. |year=2004 |title=Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering |journal=Evolutionary Computation |volume=12 |issue=3 |pages=327–353 |doi=10.1162/1063656041774947 |pmid=15355604 |s2cid=2190268}}</ref> [[cluster analysis|clustering]] of [[expression profiling|gene expression profiles]],<ref name=clustering_gene_expression >{{cite book|author1=Merz, P. |author2=Zell, A. |title = Parallel Problem Solving from Nature — PPSN VII|volume=2439 |year=2002|publisher=[[Springer Science+Business Media|Springer]]|doi=10.1007/3-540-45712-7_78|pages=811–820| chapter=Clustering Gene Expression Profiles with Memetic Algorithms|series=Lecture Notes in Computer Science |isbn=978-3-540-44139-7 }}</ref> feature/gene selection,<ref name=gene_selection1>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Markov Blanket-Embedded Genetic Algorithm for Gene Selection|year=2007|journal=Pattern Recognition|volume=49|issue=11|pages=3236–3248|doi=10.1016/j.patcog.2007.02.007|bibcode=2007PatRe..40.3236Z}}</ref><ref name=gene_selection2>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Wrapper-Filter Feature Selection Algorithm Using A Memetic Framework|year=2007|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=37|issue=1|pages=70–76|doi=10.1109/TSMCB.2006.883267|pmid=17278560|hdl=10338.dmlcz/141593|s2cid=18382400|hdl-access=free}}</ref> parameter determination for hardware fault injection,<ref>{{Cite web|title=Artificial Intelligence for Fault Injection Parameter Selection {{!}} Marina Krček {{!}} Hardwear.io Webinar|url=https://hardwear.io/webinar/AI-for-fault-injection-parameter-selection.php|access-date=2021-05-21|website=hardwear.io}}</ref> and multi-class, multi-objective [[feature selection]].<ref>{{Cite journal |last1=Zhu |first1=Zexuan |last2=Ong |first2=Yew-Soon |last3=Zurada |first3=Jacek M |date=April 2010 |title=Identification of Full and Partial Class Relevant Genes |url=https://ieeexplore.ieee.org/document/4653480 |journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics |volume=7 |issue=2 |pages=263–277 |doi=10.1109/TCBB.2008.105 |pmid=20431146 |s2cid=2904028 |issn=1545-5963}}</ref><ref name=feature_selection2>{{cite book|author1=G. Karkavitsas |author2=G. Tsihrintzis |title=Intelligent Interactive Multimedia Systems and Services |chapter=Automatic Music Genre Classification Using Hybrid Genetic Algorithms |name-list-style=amp |year=2011|volume=11|pages=323–335|publisher=Springer|doi=10.1007/978-3-642-22158-3_32|series=Smart Innovation, Systems and Technologies |isbn=978-3-642-22157-6 |s2cid=15011089 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recent activities in memetic algorithms==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recent activities in memetic algorithms==</div></td>
</tr>
</table>Studi90https://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1265778104&oldid=prevStudi90: Added a link.2024-12-28T16:35:41Z<p>Added a link.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:35, 28 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 33:</td>
<td colspan="2" class="diff-lineno">Line 33:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> '''end while'''</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> '''end while'''</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Lamarckism|Lamarckian learning]] in this context means to update the chromosome according to the improved solution found by the individual learning step, while [[Baldwin effect|Baldwinian learning]] leaves the chromosome unchanged and uses only the improved fitness. This pseudo code leaves open which steps are based on the fitness of the individuals and which are not. In question are the evolving of the new population and the selection of <math>\Omega_{il}</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Lamarckism|Lamarckian learning]] in this context means to update the chromosome according to the improved solution found by the individual learning step, while [[Baldwin effect|Baldwinian learning]] leaves the chromosome unchanged and uses only the improved <ins style="font-weight: bold; text-decoration: none;">[[Fitness function|</ins>fitness<ins style="font-weight: bold; text-decoration: none;">]]</ins>. This pseudo code leaves open which steps are based on the fitness of the individuals and which are not. In question are the evolving of the new population and the selection of <math>\Omega_{il}</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since most MA implementations are based on EAs, the pseudo code of a corresponding representative of the first generation is also given here, following Krasnogor:<ref>{{cite thesis |last=Krasnogor |first=Natalio |date=2002 |title=Studies on the Theory and Design Space of Memetic Algorithms |type=PhD |publisher=University of the West of England |place=Bristol, UK |url=https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249135 |page=23 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since most MA implementations are based on EAs, the pseudo code of a corresponding representative of the first generation is also given here, following Krasnogor:<ref>{{cite thesis |last=Krasnogor |first=Natalio |date=2002 |title=Studies on the Theory and Design Space of Memetic Algorithms |type=PhD |publisher=University of the West of England |place=Bristol, UK |url=https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249135 |page=23 }}</ref></div></td>
</tr>
</table>Studi90https://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1258778109&oldid=prevTharkoo at 15:57, 21 November 20242024-11-21T15:57:33Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:57, 21 November 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 109:</td>
<td colspan="2" class="diff-lineno">Line 109:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist|30em}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist|30em}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[pe:الگوریتم میمتیک]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Evolutionary algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Evolutionary algorithms]]</div></td>
</tr>
</table>Tharkoohttps://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1229646531&oldid=prevCitation bot: Altered url. URLs might have been anonymized. Added bibcode. | Use this bot. Report bugs. | Suggested by LeapTorchGear | #UCB_webform 72/1142024-06-17T23:26:59Z<p>Altered url. URLs might have been anonymized. Added bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by LeapTorchGear | #UCB_webform 72/114</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:26, 17 June 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 72:</td>
<td colspan="2" class="diff-lineno">Line 72:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Selection of an individual learning method or meme to be used for a particular problem or individual ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Selection of an individual learning method or meme to be used for a particular problem or individual ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the context of continuous optimization, individual learning exists in the form of local heuristics or conventional exact enumerative methods.<ref name="schwefel1995eao">{{cite book |author=Schwefel |first=Hans-Paul |url=https://www.researchgate.net/publication/<del style="font-weight: bold; text-decoration: none;">220690578_Evolution_and_Optimum_Seeking</del> |title=Evolution and Optimum Seeking |publisher=Wiley |year=1995 |isbn=0-471-57148-2 |location=New York |language=en}}</ref> Examples of individual learning strategies include the [[hill climbing]], Simplex method, Newton/Quasi-Newton method, [[interior point method]]s, [[conjugate gradient method]], line search, and other local heuristics. Note that most of the common individual learning methods are deterministic.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the context of continuous optimization, individual learning exists in the form of local heuristics or conventional exact enumerative methods.<ref name="schwefel1995eao">{{cite book |author=Schwefel |first=Hans-Paul |url=https://www.researchgate.net/publication/<ins style="font-weight: bold; text-decoration: none;">220690578</ins> |title=Evolution and Optimum Seeking |publisher=Wiley |year=1995 |isbn=0-471-57148-2 |location=New York |language=en}}</ref> Examples of individual learning strategies include the [[hill climbing]], Simplex method, Newton/Quasi-Newton method, [[interior point method]]s, [[conjugate gradient method]], line search, and other local heuristics. Note that most of the common individual learning methods are deterministic.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In combinatorial optimization, on the other hand, individual learning methods commonly exist in the form of heuristics (which can be deterministic or stochastic) that are tailored to a specific problem of interest. Typical heuristic procedures and schemes include the k-gene exchange, edge exchange, first-improvement, and many others.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In combinatorial optimization, on the other hand, individual learning methods commonly exist in the form of heuristics (which can be deterministic or stochastic) that are tailored to a specific problem of interest. Typical heuristic procedures and schemes include the k-gene exchange, edge exchange, first-improvement, and many others.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 93:</td>
<td colspan="2" class="diff-lineno">Line 93:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Researchers have used memetic algorithms to tackle many classical [[NP (complexity)|NP]] problems. To cite some of them: [[graph partition]]ing, [[knapsack problem|multidimensional knapsack]], [[travelling salesman problem]], [[quadratic assignment problem]], [[set cover problem]], [[graph coloring#Algorithms|minimal graph coloring]], [[independent set problem|max independent set problem]], [[bin packing problem]], and [[Generalized Assignment Problem|generalized assignment problem]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Researchers have used memetic algorithms to tackle many classical [[NP (complexity)|NP]] problems. To cite some of them: [[graph partition]]ing, [[knapsack problem|multidimensional knapsack]], [[travelling salesman problem]], [[quadratic assignment problem]], [[set cover problem]], [[graph coloring#Algorithms|minimal graph coloring]], [[independent set problem|max independent set problem]], [[bin packing problem]], and [[Generalized Assignment Problem|generalized assignment problem]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent applications include (but are not limited to) [[business analytics]] and [[data science]],<ref name=MAs-in-Data-Science-and-Business-Analytics> </ref> training of [[artificial neural network]]s,<ref name=training_ANN>{{cite conference |author1=Ichimura, T. |author2=Kuriyama, Y. |title=Learning of neural networks with parallel hybrid GA using a royal road function|conference=IEEE International Joint Conference on Neural Networks|volume=2|pages=1131–1136|year=1998|location=New York, NY |doi=10.1109/IJCNN.1998.685931 }}</ref> [[pattern recognition]],<ref name=pattern_recognition>{{cite journal|author1=Aguilar, J. |author2=Colmenares, A. |year=1998|title=Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm|journal=Pattern Analysis and Applications|volume=1|issue=1|pages=52–61|doi=10.1007/BF01238026|s2cid=15803359 }}</ref> robotic [[motion planning]],<ref name=motion_planning>{{cite book|author1=Ridao, M. |author2=Riquelme, J. |author3=Camacho, E. |author4=Toro, M. |title=Tasks and Methods in Applied Artificial Intelligence |chapter=An evolutionary and local search algorithm for planning two manipulators motion | year=1998|volume=1416| pages=105–114|publisher=Springer-Verlag|doi=10.1007/3-540-64574-8_396|series=Lecture Notes in Computer Science|isbn=978-3-540-64574-0|citeseerx=10.1.1.324.2668 }}</ref> [[charged particle beam|beam]] orientation,<ref name=beam_orientation>{{cite journal|author1=Haas, O. |author2=Burnham, K. |author3=Mills, J. |year=1998 |title=Optimization of beam orientation in radiotherapy using planar geometry|journal=Physics in Medicine and Biology|volume=43|issue=8|pages=2179–2193|doi=10.1088/0031-9155/43/8/013|pmid=9725597|bibcode=1998PMB....43.2179H |s2cid=250856984 }}</ref> [[circuit design]],<ref name=circuit_design>{{cite journal|author1=Harris, S. |author2=Ifeachor, E. |year=1998|title=Automatic design of frequency sampling filters by hybrid genetic algorithm techniques|journal=IEEE Transactions on Signal Processing |volume=46 |issue=12 |pages=3304–3314 |doi=10.1109/78.735305 |bibcode=1998ITSP...46.3304H }}</ref> electric service restoration,<ref name=service_restoration>{{cite journal|author1=Augugliaro, A. |author2=Dusonchet, L. |author3=Riva-Sanseverino, E. |year=1998|title=Service restoration in compensated distribution networks using a hybrid genetic algorithm|journal=Electric Power Systems Research|volume=46|issue=1|pages=59–66|doi=10.1016/S0378-7796(98)00025-X}}</ref> medical [[expert system]]s,<ref name=medical_expert_system>{{cite journal|author1=Wehrens, R. |author2=Lucasius, C. |author3=Buydens, L. |author4=Kateman, G. |year=1993|title=HIPS, A hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms|journal=Analytica Chimica Acta|volume=277|issue=2|pages=313–324|doi=10.1016/0003-2670(93)80444-P|hdl=2066/112321 |s2cid=53954763 |hdl-access=free}}</ref> [[single machine scheduling]],<ref name=single_machine_sched>{{cite conference|author1=França, P. |author2=Mendes, A. |author3=Moscato, P. |title=Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup times|conference=Proceedings of the 5th International Conference of the Decision Sciences Institute|pages=1708–1710|year=1999|location=Athens, Greece|s2cid=10797987 }}</ref> automatic timetabling (notably, the timetable for the [[NHL]]),<ref name="nhl_timetabling">{{cite journal | last=Costa | first=Daniel | title=An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem | journal=INFOR: Information Systems and Operational Research | volume=33 | issue=3 | year=1995 | doi=10.1080/03155986.1995.11732279 | pages=161–178| s2cid=15491435 }}</ref> [[Schedule (workplace)|manpower scheduling]],<ref name=nurse_rostering>{{cite conference|author=Aickelin, U.|title=Nurse rostering with genetic algorithms|conference=Proceedings of young operational research conference 1998|year=1998|location=Guildford, UK|arxiv=1004.2870}}</ref> [[nurse rostering problem|nurse rostering optimisation]],<ref name=nurse_rostering_function_opt>{{cite book| author = Ozcan, E.|title=Practice and Theory of Automated Timetabling VI|year=2007|chapter=Memes, Self-generation and Nurse Rostering|volume=3867|pages=85–104|publisher=Springer-Verlag|doi=10.1007/978-3-540-77345-0_6|series=Lecture Notes in Computer Science|isbn=978-3-540-77344-3}}</ref> [[processor allocation]],<ref name=proc_alloc>{{cite journal|author1=Ozcan, E. |author2=Onbasioglu, E. |year=2007|title=Memetic Algorithms for Parallel Code Optimization|journal=International Journal of Parallel Programming|volume=35|issue=1|pages=33–61|doi=10.1007/s10766-006-0026-x|s2cid=15182941 }}</ref> maintenance scheduling (for example, of an electric distribution network),<ref name=planned_maintenance>{{cite journal|author1=Burke, E. |author2=Smith, A. |year=1999|title=A memetic algorithm to schedule planned maintenance for the national grid| journal=Journal of Experimental Algorithmics |issue=4|pages=1–13 |doi=10.1145/347792.347801 |volume=4|s2cid=17174080 |doi-access=free}}</ref> [[Scheduling (production processes)|scheduling]] of multiple [[Workflow|workflows]] to constrained heterogeneous resources,<ref>{{Cite journal |last1=Jakob |first1=Wilfried |last2=Strack |first2=Sylvia |last3=Quinte |first3=Alexander |last4=Bengel |first4=Günther |last5=Stucky |first5=Karl-Uwe |last6=Süß |first6=Wolfgang |date=2013-04-22 |title=Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing |journal=Algorithms |language=en |volume=6 |issue=2 |pages=245–277 |doi=10.3390/a6020245 |issn=1999-4893|doi-access=free }}</ref> multidimensional knapsack problem,<ref name=mkp_ma>{{cite journal|author1=Ozcan, E. |author2=Basaran, C. |year=2009|title=A Case Study of Memetic Algorithms for Constraint Optimization|journal=Soft Computing: A Fusion of Foundations, Methodologies and Applications |volume=13|issue=8–9 |pages=871–882 |doi=10.1007/s00500-008-0354-4 |citeseerx=10.1.1.368.7327 |s2cid=17032624 }}</ref> [[VLSI]] design,<ref name="vlsi_design">{{cite journal |author=Areibi |first1=S. |last2=Yang |first2=Z. |year=2004 |title=Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering |journal=Evolutionary Computation |volume=12 |issue=3 |pages=327–353 |doi=10.1162/1063656041774947 |pmid=15355604 |s2cid=2190268}}</ref> [[cluster analysis|clustering]] of [[expression profiling|gene expression profiles]],<ref name=clustering_gene_expression >{{cite book|author1=Merz, P. |author2=Zell, A. |title = Parallel Problem Solving from Nature — PPSN VII|volume=2439 |year=2002|publisher=[[Springer Science+Business Media|Springer]]|doi=10.1007/3-540-45712-7_78|pages=811–820| chapter=Clustering Gene Expression Profiles with Memetic Algorithms|series=Lecture Notes in Computer Science |isbn=978-3-540-44139-7 }}</ref> feature/gene selection,<ref name=gene_selection1>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Markov Blanket-Embedded Genetic Algorithm for Gene Selection|year=2007|journal=Pattern Recognition|volume=49|issue=11|pages=3236–3248|doi=10.1016/j.patcog.2007.02.007|bibcode=2007PatRe..40.3236Z}}</ref><ref name=gene_selection2>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Wrapper-Filter Feature Selection Algorithm Using A Memetic Framework|year=2007|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=37|issue=1|pages=70–76|doi=10.1109/TSMCB.2006.883267|pmid=17278560|hdl=10338.dmlcz/141593|s2cid=18382400|hdl-access=free}}</ref> parameter determination for hardware fault injection,<ref>{{Cite web|title=Artificial Intelligence for Fault Injection Parameter Selection {{!}} Marina Krček {{!}} Hardwear.io Webinar|url=https://hardwear.io/webinar/AI-for-fault-injection-parameter-selection.php|access-date=2021-05-21|website=hardwear.io}}</ref> and multi-class, multi-objective [[feature selection]].<ref>{{Cite journal |last1=Zhu |first1=Zexuan |last2=Ong |first2=Yew-Soon |last3=Zurada |first3=Jacek M |date=April 2010 |title=Identification of Full and Partial Class Relevant Genes |url=https://ieeexplore.ieee.org/document/4653480 |journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics |volume=7 |issue=2 |pages=263–277 |doi=10.1109/TCBB.2008.105 |pmid=20431146 |s2cid=2904028 |issn=1545-5963}}</ref><ref name=feature_selection2>{{cite book|author1=G. Karkavitsas |author2=G. Tsihrintzis |title=Intelligent Interactive Multimedia Systems and Services |chapter=Automatic Music Genre Classification Using Hybrid Genetic Algorithms |name-list-style=amp |year=2011|volume=11|pages=323–335|publisher=Springer|doi=10.1007/978-3-642-22158-3_32|series=Smart Innovation, Systems and Technologies |isbn=978-3-642-22157-6 |s2cid=15011089 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent applications include (but are not limited to) [[business analytics]] and [[data science]],<ref name=MAs-in-Data-Science-and-Business-Analytics> </ref> training of [[artificial neural network]]s,<ref name=training_ANN>{{cite conference |author1=Ichimura, T. |author2=Kuriyama, Y. |title=Learning of neural networks with parallel hybrid GA using a royal road function|conference=IEEE International Joint Conference on Neural Networks|volume=2|pages=1131–1136|year=1998|location=New York, NY |doi=10.1109/IJCNN.1998.685931 }}</ref> [[pattern recognition]],<ref name=pattern_recognition>{{cite journal|author1=Aguilar, J. |author2=Colmenares, A. |year=1998|title=Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm|journal=Pattern Analysis and Applications|volume=1|issue=1|pages=52–61|doi=10.1007/BF01238026|s2cid=15803359 }}</ref> robotic [[motion planning]],<ref name=motion_planning>{{cite book|author1=Ridao, M. |author2=Riquelme, J. |author3=Camacho, E. |author4=Toro, M. |title=Tasks and Methods in Applied Artificial Intelligence |chapter=An evolutionary and local search algorithm for planning two manipulators motion | year=1998|volume=1416| pages=105–114|publisher=Springer-Verlag|doi=10.1007/3-540-64574-8_396|series=Lecture Notes in Computer Science|isbn=978-3-540-64574-0|citeseerx=10.1.1.324.2668 }}</ref> [[charged particle beam|beam]] orientation,<ref name=beam_orientation>{{cite journal|author1=Haas, O. |author2=Burnham, K. |author3=Mills, J. |year=1998 |title=Optimization of beam orientation in radiotherapy using planar geometry|journal=Physics in Medicine and Biology|volume=43|issue=8|pages=2179–2193|doi=10.1088/0031-9155/43/8/013|pmid=9725597|bibcode=1998PMB....43.2179H |s2cid=250856984 }}</ref> [[circuit design]],<ref name=circuit_design>{{cite journal|author1=Harris, S. |author2=Ifeachor, E. |year=1998|title=Automatic design of frequency sampling filters by hybrid genetic algorithm techniques|journal=IEEE Transactions on Signal Processing |volume=46 |issue=12 |pages=3304–3314 |doi=10.1109/78.735305 |bibcode=1998ITSP...46.3304H }}</ref> electric service restoration,<ref name=service_restoration>{{cite journal|author1=Augugliaro, A. |author2=Dusonchet, L. |author3=Riva-Sanseverino, E. |year=1998|title=Service restoration in compensated distribution networks using a hybrid genetic algorithm|journal=Electric Power Systems Research|volume=46|issue=1|pages=59–66|doi=10.1016/S0378-7796(98)00025-X<ins style="font-weight: bold; text-decoration: none;">|bibcode=1998EPSR...46...59A </ins>}}</ref> medical [[expert system]]s,<ref name=medical_expert_system>{{cite journal|author1=Wehrens, R. |author2=Lucasius, C. |author3=Buydens, L. |author4=Kateman, G. |year=1993|title=HIPS, A hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms|journal=Analytica Chimica Acta|volume=277|issue=2|pages=313–324|doi=10.1016/0003-2670(93)80444-P<ins style="font-weight: bold; text-decoration: none;">|bibcode=1993AcAC..277..313W </ins>|hdl=2066/112321 |s2cid=53954763 |hdl-access=free}}</ref> [[single machine scheduling]],<ref name=single_machine_sched>{{cite conference|author1=França, P. |author2=Mendes, A. |author3=Moscato, P. |title=Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup times|conference=Proceedings of the 5th International Conference of the Decision Sciences Institute|pages=1708–1710|year=1999|location=Athens, Greece|s2cid=10797987 }}</ref> automatic timetabling (notably, the timetable for the [[NHL]]),<ref name="nhl_timetabling">{{cite journal | last=Costa | first=Daniel | title=An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem | journal=INFOR: Information Systems and Operational Research | volume=33 | issue=3 | year=1995 | doi=10.1080/03155986.1995.11732279 | pages=161–178| s2cid=15491435 }}</ref> [[Schedule (workplace)|manpower scheduling]],<ref name=nurse_rostering>{{cite conference|author=Aickelin, U.|title=Nurse rostering with genetic algorithms|conference=Proceedings of young operational research conference 1998|year=1998|location=Guildford, UK|arxiv=1004.2870}}</ref> [[nurse rostering problem|nurse rostering optimisation]],<ref name=nurse_rostering_function_opt>{{cite book| author = Ozcan, E.|title=Practice and Theory of Automated Timetabling VI|year=2007|chapter=Memes, Self-generation and Nurse Rostering|volume=3867|pages=85–104|publisher=Springer-Verlag|doi=10.1007/978-3-540-77345-0_6|series=Lecture Notes in Computer Science|isbn=978-3-540-77344-3}}</ref> [[processor allocation]],<ref name=proc_alloc>{{cite journal|author1=Ozcan, E. |author2=Onbasioglu, E. |year=2007|title=Memetic Algorithms for Parallel Code Optimization|journal=International Journal of Parallel Programming|volume=35|issue=1|pages=33–61|doi=10.1007/s10766-006-0026-x|s2cid=15182941 }}</ref> maintenance scheduling (for example, of an electric distribution network),<ref name=planned_maintenance>{{cite journal|author1=Burke, E. |author2=Smith, A. |year=1999|title=A memetic algorithm to schedule planned maintenance for the national grid| journal=Journal of Experimental Algorithmics |issue=4|pages=1–13 |doi=10.1145/347792.347801 |volume=4|s2cid=17174080 |doi-access=free}}</ref> [[Scheduling (production processes)|scheduling]] of multiple [[Workflow|workflows]] to constrained heterogeneous resources,<ref>{{Cite journal |last1=Jakob |first1=Wilfried |last2=Strack |first2=Sylvia |last3=Quinte |first3=Alexander |last4=Bengel |first4=Günther |last5=Stucky |first5=Karl-Uwe |last6=Süß |first6=Wolfgang |date=2013-04-22 |title=Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing |journal=Algorithms |language=en |volume=6 |issue=2 |pages=245–277 |doi=10.3390/a6020245 |issn=1999-4893|doi-access=free }}</ref> multidimensional knapsack problem,<ref name=mkp_ma>{{cite journal|author1=Ozcan, E. |author2=Basaran, C. |year=2009|title=A Case Study of Memetic Algorithms for Constraint Optimization|journal=Soft Computing: A Fusion of Foundations, Methodologies and Applications |volume=13|issue=8–9 |pages=871–882 |doi=10.1007/s00500-008-0354-4 |citeseerx=10.1.1.368.7327 |s2cid=17032624 }}</ref> [[VLSI]] design,<ref name="vlsi_design">{{cite journal |author=Areibi |first1=S. |last2=Yang |first2=Z. |year=2004 |title=Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering |journal=Evolutionary Computation |volume=12 |issue=3 |pages=327–353 |doi=10.1162/1063656041774947 |pmid=15355604 |s2cid=2190268}}</ref> [[cluster analysis|clustering]] of [[expression profiling|gene expression profiles]],<ref name=clustering_gene_expression >{{cite book|author1=Merz, P. |author2=Zell, A. |title = Parallel Problem Solving from Nature — PPSN VII|volume=2439 |year=2002|publisher=[[Springer Science+Business Media|Springer]]|doi=10.1007/3-540-45712-7_78|pages=811–820| chapter=Clustering Gene Expression Profiles with Memetic Algorithms|series=Lecture Notes in Computer Science |isbn=978-3-540-44139-7 }}</ref> feature/gene selection,<ref name=gene_selection1>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Markov Blanket-Embedded Genetic Algorithm for Gene Selection|year=2007|journal=Pattern Recognition|volume=49|issue=11|pages=3236–3248|doi=10.1016/j.patcog.2007.02.007|bibcode=2007PatRe..40.3236Z}}</ref><ref name=gene_selection2>{{cite journal|author=Zexuan Zhu, Y. S. Ong and M. Dash|title=Wrapper-Filter Feature Selection Algorithm Using A Memetic Framework|year=2007|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=37|issue=1|pages=70–76|doi=10.1109/TSMCB.2006.883267|pmid=17278560|hdl=10338.dmlcz/141593|s2cid=18382400|hdl-access=free}}</ref> parameter determination for hardware fault injection,<ref>{{Cite web|title=Artificial Intelligence for Fault Injection Parameter Selection {{!}} Marina Krček {{!}} Hardwear.io Webinar|url=https://hardwear.io/webinar/AI-for-fault-injection-parameter-selection.php|access-date=2021-05-21|website=hardwear.io}}</ref> and multi-class, multi-objective [[feature selection]].<ref>{{Cite journal |last1=Zhu |first1=Zexuan |last2=Ong |first2=Yew-Soon |last3=Zurada |first3=Jacek M |date=April 2010 |title=Identification of Full and Partial Class Relevant Genes |url=https://ieeexplore.ieee.org/document/4653480 |journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics |volume=7 |issue=2 |pages=263–277 |doi=10.1109/TCBB.2008.105 |pmid=20431146 |s2cid=2904028 |issn=1545-5963}}</ref><ref name=feature_selection2>{{cite book|author1=G. Karkavitsas |author2=G. Tsihrintzis |title=Intelligent Interactive Multimedia Systems and Services |chapter=Automatic Music Genre Classification Using Hybrid Genetic Algorithms |name-list-style=amp |year=2011|volume=11|pages=323–335|publisher=Springer|doi=10.1007/978-3-642-22158-3_32|series=Smart Innovation, Systems and Technologies |isbn=978-3-642-22157-6 |s2cid=15011089 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recent activities in memetic algorithms==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Recent activities in memetic algorithms==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1223247866&oldid=prevGhostInTheMachine: Changing short description from "extension of the traditional genetic algorithm" to "Algorithm for searching a problem space"2024-05-10T20:43:22Z<p>Changing <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a> from "extension of the traditional genetic algorithm" to "Algorithm for searching a problem space"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:43, 10 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<del style="font-weight: bold; text-decoration: none;">extension</del> <del style="font-weight: bold; text-decoration: none;">of</del> <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">traditional</del> <del style="font-weight: bold; text-decoration: none;">genetic</del> <del style="font-weight: bold; text-decoration: none;">algorithm</del>}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<ins style="font-weight: bold; text-decoration: none;">Algorithm</ins> <ins style="font-weight: bold; text-decoration: none;">for</ins> <ins style="font-weight: bold; text-decoration: none;">searching</ins> <ins style="font-weight: bold; text-decoration: none;">a</ins> <ins style="font-weight: bold; text-decoration: none;">problem</ins> <ins style="font-weight: bold; text-decoration: none;">space</ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). It may provide a sufficiently good solution to an [[optimization problem]]. It uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). It may provide a sufficiently good solution to an [[optimization problem]]. It uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
</tr>
</table>GhostInTheMachinehttps://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1223232351&oldid=prevSimone Biancolilla at 18:43, 10 May 20242024-05-10T18:43:48Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:43, 10 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|extension of the traditional genetic algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Evolutionary algorithms}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). It may provide a sufficiently good solution to an [[optimization problem]]. It uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''memetic algorithm''' (MA) in [[computer science]] and [[operations research]], is an extension of the traditional [[genetic algorithm]] (GA) or more general [[evolutionary algorithm]] (EA). It may provide a sufficiently good solution to an [[optimization problem]]. It uses a suitable [[heuristic]] or [[Local search (optimization)|local search]] technique to improve the quality of solutions generated by the EA and to reduce the likelihood of [[premature convergence]].<ref>{{cite journal|title= A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm|author=Poonam Garg |journal=International Journal of Network Security & Its Applications (IJNSA)|volume=1|issue=1|date=April 2009|arxiv= 1004.0574 |bibcode=2010arXiv1004.0574G }}</ref></div></td>
</tr>
</table>Simone Biancolillahttps://en.wikipedia.org/w/index.php?title=Memetic_algorithm&diff=1215048716&oldid=prevJarble: linking2024-03-22T20:29:25Z<p>linking</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:29, 22 March 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the context of complex optimization, many different instantiations of memetic algorithms have been reported across a wide range of [[#Applications|application domains]], in general, converging to high-quality solutions more efficiently than their conventional evolutionary counterparts.<ref name=MAs-in-Data-Science-and-Business-Analytics>{{cite book|author1=Moscato, P. |author2=Mathieson, L. |title = Business and Consumer Analytics: New Ideas|year=2019|publisher=[[Springer Science+Business Media |Springer]] |doi=10.1007/978-3-030-06222-4_13 |pages=545–608 |chapter=Memetic Algorithms for Business Analytics and Data Science: A Brief Survey|isbn=978-3-030-06221-7|s2cid=173187844 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the context of complex optimization, many different instantiations of memetic algorithms have been reported across a wide range of [[#Applications|application domains]], in general, converging to high-quality solutions more efficiently than their conventional evolutionary counterparts.<ref name=MAs-in-Data-Science-and-Business-Analytics>{{cite book|author1=Moscato, P. |author2=Mathieson, L. |title = Business and Consumer Analytics: New Ideas|year=2019|publisher=[[Springer Science+Business Media |Springer]] |doi=10.1007/978-3-030-06222-4_13 |pages=545–608 |chapter=Memetic Algorithms for Business Analytics and Data Science: A Brief Survey|isbn=978-3-030-06221-7|s2cid=173187844 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In general, using the ideas of memetics within a computational framework is called ''memetic computing'' or ''memetic computation'' (MC).<ref name=MC2011>{{cite journal|last1=Chen|first1=X. S. |last2=Ong |first2=Y. S. |last3=Lim |first3=M. H. |last4=Tan |first4=K. C. |year=2011 |title=A Multi-Facet Survey on Memetic Computation |journal=[[IEEE Transactions on Evolutionary Computation]] |volume=15 |issue=5 |pages=591–607 |doi=10.1109/tevc.2011.2132725 |s2cid=17006589 }}</ref><ref name="MC2010">{{cite journal |last1=Chen |first1=X. S. |last2=Ong |first2=Y. S. |last3=Lim |first3=M. H.|year=2010 |title=Research Frontier: Memetic Computation - Past, Present & Future |journal=[[IEEE Computational Intelligence Society#Publications |IEEE Computational Intelligence Magazine]] |volume=5|issue=2|pages=24–36|doi=10.1109/mci.2010.936309|hdl=10356/148175 |s2cid=17955514 |hdl-access=free }}</ref> With MC, the traits of universal Darwinism are more appropriately captured. Viewed in this perspective, MA is a more constrained notion of MC. More specifically, MA covers one area of MC, in particular dealing with areas of evolutionary algorithms that marry other deterministic refinement techniques for solving optimization problems. MC extends the notion of memes to cover conceptual entities of knowledge-enhanced procedures or representations.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In general, using the ideas of memetics within a computational framework is called ''<ins style="font-weight: bold; text-decoration: none;">[[</ins>memetic computing<ins style="font-weight: bold; text-decoration: none;">]]</ins>'' or ''memetic computation'' (MC).<ref name=MC2011>{{cite journal|last1=Chen|first1=X. S. |last2=Ong |first2=Y. S. |last3=Lim |first3=M. H. |last4=Tan |first4=K. C. |year=2011 |title=A Multi-Facet Survey on Memetic Computation |journal=[[IEEE Transactions on Evolutionary Computation]] |volume=15 |issue=5 |pages=591–607 |doi=10.1109/tevc.2011.2132725 |s2cid=17006589 }}</ref><ref name="MC2010">{{cite journal |last1=Chen |first1=X. S. |last2=Ong |first2=Y. S. |last3=Lim |first3=M. H.|year=2010 |title=Research Frontier: Memetic Computation - Past, Present & Future |journal=[[IEEE Computational Intelligence Society#Publications |IEEE Computational Intelligence Magazine]] |volume=5|issue=2|pages=24–36|doi=10.1109/mci.2010.936309|hdl=10356/148175 |s2cid=17955514 |hdl-access=free }}</ref> With MC, the traits of universal Darwinism are more appropriately captured. Viewed in this perspective, MA is a more constrained notion of MC. More specifically, MA covers one area of MC, in particular dealing with areas of evolutionary algorithms that marry other deterministic refinement techniques for solving optimization problems. MC extends the notion of memes to cover conceptual entities of knowledge-enhanced procedures or representations.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Theoretical Background ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Theoretical Background ==</div></td>
</tr>
</table>Jarble