https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Microarray_analysis_techniquesMicroarray analysis techniques - Revision history2025-06-08T08:47:48ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.4https://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1292965460&oldid=prevGreenC bot: Rescued 1 archive link. Wayback Medic 2.5 per WP:URLREQ#fda.gov2025-05-29T21:31:04Z<p>Rescued 1 archive link. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#fda.gov" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#fda.gov</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:31, 29 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Introduction==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/<ins style="font-weight: bold; text-decoration: none;"> | archive-url = https://web.archive.org/web/20051208055601/http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | url-status = dead | archive-date = December 8, 2005</ins> | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]</div></td>
</tr>
</table>GreenC bothttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1227689310&oldid=prev81.191.81.174: /* Aggregation and normalization */2024-06-07T08:05:35Z<p><span class="autocomment">Aggregation and normalization</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:05, 7 June 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R and MATLAB.<ref>{{Cite journal |last1=Gatto |first1=Laurent |last2=Breckels |first2=Lisa M. |last3=Naake |first3=Thomas |last4=Gibb |first4=Sebastian |date=2015 |title=Visualization of proteomics data using R and Bioconductor |journal=Proteomics |language=en |volume=15 |issue=8 |pages=1375–1389 |doi=10.1002/pmic.201400392 |issn=1615-9853 |pmc=4510819 |pmid=25690415}}</ref><ref>{{Cite web |title=Create intensity versus ratio scatter plot of microarray data - MATLAB mairplot |url=https://www.mathworks.com/help/bioinfo/ref/mairplot.html#responsive_offcanvas |access-date=2023-11-24 |website=MathWorks}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R and MATLAB.<ref>{{Cite journal |last1=Gatto |first1=Laurent |last2=Breckels |first2=Lisa M. |last3=Naake |first3=Thomas |last4=Gibb |first4=Sebastian |date=2015 |title=Visualization of proteomics data using R and Bioconductor |journal=Proteomics |language=en |volume=15 |issue=8 |pages=1375–1389 |doi=10.1002/pmic.201400392 |issn=1615-9853 |pmc=4510819 |pmid=25690415}}</ref><ref>{{Cite web |title=Create intensity versus ratio scatter plot of microarray data - MATLAB mairplot |url=https://www.mathworks.com/help/bioinfo/ref/mairplot.html#responsive_offcanvas |access-date=2023-11-24 |website=MathWorks}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA)<ref>{{cite journal|last1=Irizarry|first1=RA|author-link1=Rafael Irizarry (scientist) |author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA)<ref>{{cite journal|last1=Irizarry|first1=RA|author-link1=Rafael Irizarry (scientist) |author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> <ins style="font-weight: bold; text-decoration: none;">[[</ins>Quantile normalization<ins style="font-weight: bold; text-decoration: none;">]]</ins>, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
</tr>
</table>81.191.81.174https://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1188518730&oldid=prevCitation bot: Alter: journal. Add: authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 308/5182023-12-05T23:09:43Z<p>Alter: journal. Add: authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 308/518</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:09, 5 December 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 12:</td>
<td colspan="2" class="diff-lineno">Line 12:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Aggregation and normalization===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Aggregation and normalization===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R and MATLAB.<ref>{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Gatto |<del style="font-weight: bold; text-decoration: none;">first</del>=Laurent |last2=Breckels |first2=Lisa M. |last3=Naake |first3=Thomas |last4=Gibb |first4=Sebastian |date=2015 |title=Visualization of proteomics data using R and Bioconductor<del style="font-weight: bold; text-decoration: none;"> |url=https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.201400392</del> |journal=<del style="font-weight: bold; text-decoration: none;">PROTEOMICS</del> |language=en |volume=15 |issue=8 |pages=1375–1389 |doi=10.1002/pmic.201400392 |issn=1615-9853 |pmc=4510819 |pmid=25690415}}</ref><ref>{{Cite web |title=Create intensity versus ratio scatter plot of microarray data - MATLAB mairplot |url=https://www.mathworks.com/help/bioinfo/ref/mairplot.html#responsive_offcanvas |access-date=2023-11-24 |website=MathWorks}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R and MATLAB.<ref>{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Gatto |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Laurent |last2=Breckels |first2=Lisa M. |last3=Naake |first3=Thomas |last4=Gibb |first4=Sebastian |date=2015 |title=Visualization of proteomics data using R and Bioconductor |journal=<ins style="font-weight: bold; text-decoration: none;">Proteomics</ins> |language=en |volume=15 |issue=8 |pages=1375–1389 |doi=10.1002/pmic.201400392 |issn=1615-9853 |pmc=4510819 |pmid=25690415}}</ref><ref>{{Cite web |title=Create intensity versus ratio scatter plot of microarray data - MATLAB mairplot |url=https://www.mathworks.com/help/bioinfo/ref/mairplot.html#responsive_offcanvas |access-date=2023-11-24 |website=MathWorks}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA)<ref>{{cite journal|last1=Irizarry|first1=RA|author-link1=Rafael Irizarry (scientist) |author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA)<ref>{{cite journal|last1=Irizarry|first1=RA|author-link1=Rafael Irizarry (scientist) |author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1186666843&oldid=prevCambrianCrab: ce and filled in missing refs2023-11-24T19:06:54Z<p>ce and filled in missing refs</p>
<a href="//en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1186666843&oldid=1177966697">Show changes</a>CambrianCrabhttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1177966697&oldid=prev81.191.81.174 at 19:49, 30 September 20232023-09-30T19:49:03Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:49, 30 September 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R, MATLAB, and Excel.{{cn|date=March 2023}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R, MATLAB, and Excel.{{cn|date=March 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA) <ref>{{cite journal|<del style="font-weight: bold; text-decoration: none;">last</del>=Irizarry|<del style="font-weight: bold; text-decoration: none;">first</del>=RA|author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots, but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA) <ref>{{cite journal|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Irizarry|<ins style="font-weight: bold; text-decoration: none;">first1</ins>=RA<ins style="font-weight: bold; text-decoration: none;">|author-link1=Rafael Irizarry (scientist) </ins>|author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots, but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528 |doi-access=free }}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
</tr>
</table>81.191.81.174https://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1173463026&oldid=prevCitation bot: Add: doi-access. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 1534/38442023-09-02T16:02:41Z<p>Add: doi-access. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | #UCB_webform 1534/3844</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:02, 2 September 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R, MATLAB, and Excel.{{cn|date=March 2023}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Comparing two different arrays or two different samples hybridized to the same array generally involves making adjustments for systematic errors introduced by differences in procedures and dye intensity effects. Dye normalization for two color arrays is often achieved by [[local regression]]. LIMMA provides a set of tools for background correction and scaling, as well as an option to average on-slide duplicate spots.<ref>{{cite web |url=http://bioinf.wehi.edu.au/limma/ |title=LIMMA Library: Linear Models for Microarray Data |access-date=2008-01-01 }}</ref> A common method for evaluating how well normalized an array is, is to plot an [[MA plot]] of the data. MA plots can be produced using programs and languages such as R, MATLAB, and Excel.{{cn|date=March 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA) <ref>{{cite journal|last=Irizarry|first=RA|author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots, but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528}}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Raw Affy data contains about twenty probes for the same RNA target. Half of these are "mismatch spots", which do not precisely match the target sequence. These can theoretically measure the amount of nonspecific binding for a given target. Robust Multi-array Average (RMA) <ref>{{cite journal|last=Irizarry|first=RA|author2=Hobbs, B |author3=Collin, F |author4=Beazer-Barclay, YD |author5=Antonellis, KJ |author6=Scherf, U |author7= Speed, TP |title=Exploration, normalization, and summaries of high density oligonucleotide array probe level data.|journal=Biostatistics|volume=4|issue=2|pages=249–64|year=2003|pmid=12925520 |doi=10.1093/biostatistics/4.2.249|doi-access=free}}</ref> is a normalization approach that does not take advantage of these mismatch spots, but still must summarize the perfect matches through [[median polish]].<ref>{{cite journal |vauthors=Bolstad BM, Irizarry RA, Astrand M, Speed TP |title=A comparison of normalization methods for high density oligonucleotide array data based on variance and bias |journal=Bioinformatics |volume=19 |issue=2 |pages=185–93 |year=2003 |pmid=12538238 |doi=10.1093/bioinformatics/19.2.185|doi-access=free }}</ref> The median polish algorithm, although robust, behaves differently depending on the number of samples analyzed.<ref>{{cite journal |vauthors=Giorgi FM, Bolger AM, Lohse M, Usadel B |title=Algorithm-driven Artifacts in median polish summarization of Microarray data |journal=BMC Bioinformatics |volume=11 |pages=553 |year=2010 |pmid=21070630 |doi=10.1186/1471-2105-11-553 |pmc=2998528<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free </ins>}}</ref> Quantile normalization, also part of RMA, is one sensible approach to normalize a batch of arrays in order to make further comparisons meaningful.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests.<ref>{{cite journal |vauthors=Lim WK, Wang K, Lefebvre C, Califano A |title=Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks |journal=Bioinformatics |volume=23 |issue=13 |pages=i282–8 |year=2007 |pmid=17646307 |doi=10.1093/bioinformatics/btm201|doi-access=free }}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Hierarchical clustering ====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Hierarchical clustering ====</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{main|Hierarchical clustering}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{main|Hierarchical clustering}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Hierarchical clustering is a statistical method for finding relatively [[Homogeneity and heterogeneity#Homogeneity|homogeneous]] clusters. Hierarchical clustering consists of two separate phases. Initially, a [[distance matrix]] containing all the pairwise distances between the genes is calculated. [[Pearson product-moment correlation coefficient|Pearson's correlation]] and [[Spearman's rank correlation coefficient|Spearman's correlation]] are often used as dissimilarity estimates, but other methods, like [[Taxicab geometry|Manhattan distance]] or [[Euclidean distance]], can also be applied. Given the number of distance measures available and their influence in the clustering algorithm results, several studies have compared and evaluated different distance measures for the clustering of microarray data, considering their intrinsic properties and robustness to noise.<ref name=Gentleman>{{cite book|last1=Gentleman|first1=Robert|title=Bioinformatics and computational biology solutions using R and Bioconductor|date=2005|publisher=Springer Science+Business Media|location=New York|isbn=978-0-387-29362-2|display-authors=etal}}</ref><ref name=Jaskowiak2013>{{cite journal|last1=Jaskowiak|first1=Pablo A.|last2=Campello|first2=Ricardo J.G.B.|last3=Costa|first3=Ivan G.|title=Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis|journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics|volume=10|issue=4|pages=845–857|doi=10.1109/TCBB.2013.9|pmid=24334380|year=2013|s2cid=760277}}</ref><ref name=Jaskowiak2014>{{cite journal|last1=Jaskowiak|first1=Pablo A|last2=Campello|first2=Ricardo JGB|last3=Costa|first3=Ivan G|title=On the selection of appropriate distances for gene expression data clustering|journal=BMC Bioinformatics|volume=15|issue=Suppl 2|pages=S2|doi=10.1186/1471-2105-15-S2-S2|pmid=24564555|pmc=4072854|year=2014}}</ref> After calculation of the initial distance matrix, the hierarchical clustering algorithm either (A) joins iteratively the two closest clusters starting from single data points (agglomerative, bottom-up approach, which is fairly more commonly used), or (B) partitions clusters iteratively starting from the complete set (divisive, top-down approach). After each step, a new distance matrix between the newly formed clusters and the other clusters is recalculated. Hierarchical cluster analysis methods include:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Hierarchical clustering is a statistical method for finding relatively [[Homogeneity and heterogeneity#Homogeneity|homogeneous]] clusters. Hierarchical clustering consists of two separate phases. Initially, a [[distance matrix]] containing all the pairwise distances between the genes is calculated. [[Pearson product-moment correlation coefficient|Pearson's correlation]] and [[Spearman's rank correlation coefficient|Spearman's correlation]] are often used as dissimilarity estimates, but other methods, like [[Taxicab geometry|Manhattan distance]] or [[Euclidean distance]], can also be applied. Given the number of distance measures available and their influence in the clustering algorithm results, several studies have compared and evaluated different distance measures for the clustering of microarray data, considering their intrinsic properties and robustness to noise.<ref name=Gentleman>{{cite book|last1=Gentleman|first1=Robert|title=Bioinformatics and computational biology solutions using R and Bioconductor|date=2005|publisher=Springer Science+Business Media|location=New York|isbn=978-0-387-29362-2|display-authors=etal}}</ref><ref name=Jaskowiak2013>{{cite journal|last1=Jaskowiak|first1=Pablo A.|last2=Campello|first2=Ricardo J.G.B.|last3=Costa|first3=Ivan G.|title=Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis|journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics|volume=10|issue=4|pages=845–857|doi=10.1109/TCBB.2013.9|pmid=24334380|year=2013|s2cid=760277}}</ref><ref name=Jaskowiak2014>{{cite journal|last1=Jaskowiak|first1=Pablo A|last2=Campello|first2=Ricardo JGB|last3=Costa|first3=Ivan G|title=On the selection of appropriate distances for gene expression data clustering|journal=BMC Bioinformatics|volume=15|issue=Suppl 2|pages=S2|doi=10.1186/1471-2105-15-S2-S2|pmid=24564555|pmc=4072854|year=2014<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free </ins>}}</ref> After calculation of the initial distance matrix, the hierarchical clustering algorithm either (A) joins iteratively the two closest clusters starting from single data points (agglomerative, bottom-up approach, which is fairly more commonly used), or (B) partitions clusters iteratively starting from the complete set (divisive, top-down approach). After each step, a new distance matrix between the newly formed clusters and the other clusters is recalculated. Hierarchical cluster analysis methods include:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Single linkage (minimum method, nearest neighbor)</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Single linkage (minimum method, nearest neighbor)</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Average linkage ([[UPGMA]]).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Average linkage ([[UPGMA]]).</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 38:</td>
<td colspan="2" class="diff-lineno">Line 38:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== K-means clustering ====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== K-means clustering ====</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{main|k-means clustering}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{main|k-means clustering}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>K-means clustering is an algorithm for grouping genes or samples based on pattern into ''K'' groups. Grouping is done by minimizing the sum of the squares of distances between the data and the corresponding cluster [[centroid]]. Thus the purpose of K-means clustering is to classify data based on similar expression.<ref>{{cite web |url=http://www.biostat.ucsf.edu/ |title=Home |website=biostat.ucsf.edu}}</ref> K-means clustering algorithm and some of its variants (including [[k-medoids]]) have been shown to produce good results for gene expression data (at least better than hierarchical clustering methods). Empirical comparisons of [[k-means]], [[k-medoids]], hierarchical methods and, different distance measures can be found in the literature.<ref name="Jaskowiak2014" /><ref name=Souto2011>{{cite journal|last1=de Souto|first1=Marcilio C. P.|last2=Costa|first2=Ivan G.|last3=de Araujo|first3=Daniel S. A.|last4=Ludermir|first4=Teresa B.|last5=Schliep|first5=Alexander|title=Clustering cancer gene expression data: a comparative study|journal=BMC Bioinformatics|volume=9|issue=1|pages=497|doi=10.1186/1471-2105-9-497|pmid=19038021|pmc=2632677|year=2008}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>K-means clustering is an algorithm for grouping genes or samples based on pattern into ''K'' groups. Grouping is done by minimizing the sum of the squares of distances between the data and the corresponding cluster [[centroid]]. Thus the purpose of K-means clustering is to classify data based on similar expression.<ref>{{cite web |url=http://www.biostat.ucsf.edu/ |title=Home |website=biostat.ucsf.edu}}</ref> K-means clustering algorithm and some of its variants (including [[k-medoids]]) have been shown to produce good results for gene expression data (at least better than hierarchical clustering methods). Empirical comparisons of [[k-means]], [[k-medoids]], hierarchical methods and, different distance measures can be found in the literature.<ref name="Jaskowiak2014" /><ref name=Souto2011>{{cite journal|last1=de Souto|first1=Marcilio C. P.|last2=Costa|first2=Ivan G.|last3=de Araujo|first3=Daniel S. A.|last4=Ludermir|first4=Teresa B.|last5=Schliep|first5=Alexander|title=Clustering cancer gene expression data: a comparative study|journal=BMC Bioinformatics|volume=9|issue=1|pages=497|doi=10.1186/1471-2105-9-497|pmid=19038021|pmc=2632677|year=2008<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free </ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Pattern recognition===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Pattern recognition===</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 64:</td>
<td colspan="2" class="diff-lineno">Line 64:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Permutations]] are calculated based on the number of samples</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Permutations]] are calculated based on the number of samples</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Block Permutations</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Block Permutations</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** Blocks are batches of microarrays; for example for eight samples split into two groups (control and affected) there are 4!=24 permutations for each block and the total number of permutations is (24)(24)= 576. A minimum of 1000 permutations are recommended;<ref name="R1"/><ref name="R2">{{cite journal | last1 = Dinu | first1 = I. P. | last2 = JD | last3 = Mueller | first3 = T | last4 = Liu | first4 = Q | last5 = Adewale | first5 = AJ | last6 = Jhangri | first6 = GS | last7 = Einecke | first7 = G | last8 = Famulski | first8 = KS | last9 = Halloran | first9 = P | last10 = Yasui | first10 = Y. | year = 2007 | title = Improving gene set analysis of microarray data by SAM-GS. | journal = BMC Bioinformatics | volume = 8 | page = 242 | doi=10.1186/1471-2105-8-242| pmid = 17612399 | pmc = 1931607 }}</ref><ref name="R3">{{cite journal | last1 = Jeffery | first1 = I. H. | last2 = DG | last3 = Culhane | first3 = AC. | year = 2006 | title = Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data | journal = BMC Bioinformatics | volume = 7 | page = 359 | doi=10.1186/1471-2105-7-359| pmid = 16872483 | pmc = 1544358 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** Blocks are batches of microarrays; for example for eight samples split into two groups (control and affected) there are 4!=24 permutations for each block and the total number of permutations is (24)(24)= 576. A minimum of 1000 permutations are recommended;<ref name="R1"/><ref name="R2">{{cite journal | last1 = Dinu | first1 = I. P. | last2 = JD | last3 = Mueller | first3 = T | last4 = Liu | first4 = Q | last5 = Adewale | first5 = AJ | last6 = Jhangri | first6 = GS | last7 = Einecke | first7 = G | last8 = Famulski | first8 = KS | last9 = Halloran | first9 = P | last10 = Yasui | first10 = Y. | year = 2007 | title = Improving gene set analysis of microarray data by SAM-GS. | journal = BMC Bioinformatics | volume = 8 | page = 242 | doi=10.1186/1471-2105-8-242| pmid = 17612399 | pmc = 1931607<ins style="font-weight: bold; text-decoration: none;"> | doi-access = free</ins> }}</ref><ref name="R3">{{cite journal | last1 = Jeffery | first1 = I. H. | last2 = DG | last3 = Culhane | first3 = AC. | year = 2006 | title = Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data | journal = BMC Bioinformatics | volume = 7 | page = 359 | doi=10.1186/1471-2105-7-359| pmid = 16872483 | pmc = 1544358<ins style="font-weight: bold; text-decoration: none;"> | doi-access = free</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>the number of permutations is set by the user when imputing correct values for the data set to run SAM</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>the number of permutations is set by the user when imputing correct values for the data set to run SAM</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 106:</td>
<td colspan="2" class="diff-lineno">Line 106:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Correlates expression data to clinical parameters<ref name="R6"/></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Correlates expression data to clinical parameters<ref name="R6"/></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Correlates expression data with time<ref name="R1"/></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Correlates expression data with time<ref name="R1"/></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Uses data permutation to estimates False Discovery Rate for multiple testing<ref name="R7"/><ref name="R8"/><ref name="R6"/><ref name="R5">{{cite journal | last1 = Larsson | first1 = O. W. C | last2 = Timmons | first2 = JA. | year = 2005 | title = Considerations when using the significance analysis of microarrays (SAM) algorithm | journal = BMC Bioinformatics | volume = 6 | page = 129 | doi = 10.1186/1471-2105-6-129 | pmid = 15921534 | pmc = 1173086 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Uses data permutation to estimates False Discovery Rate for multiple testing<ref name="R7"/><ref name="R8"/><ref name="R6"/><ref name="R5">{{cite journal | last1 = Larsson | first1 = O. W. C | last2 = Timmons | first2 = JA. | year = 2005 | title = Considerations when using the significance analysis of microarrays (SAM) algorithm | journal = BMC Bioinformatics | volume = 6 | page = 129 | doi = 10.1186/1471-2105-6-129 | pmid = 15921534 | pmc = 1173086<ins style="font-weight: bold; text-decoration: none;"> | doi-access = free</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Reports local false discovery rate (the FDR for genes having a similar d<sub>i</sub> as that gene)<ref name="R1"/> and miss rates <ref name="R1"/><ref name="R7"/></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Reports local false discovery rate (the FDR for genes having a similar d<sub>i</sub> as that gene)<ref name="R1"/> and miss rates <ref name="R1"/><ref name="R7"/></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Can work with blocked design for when treatments are applied within different batches of arrays<ref name="R1"/></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Can work with blocked design for when treatments are applied within different batches of arrays<ref name="R1"/></div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1156986318&oldid=prevDreamRimmer: Reverted edits by 217.149.179.66 (talk) (AV)2023-05-25T16:21:29Z<p>Reverted edits by <a href="/wiki/Special:Contributions/217.149.179.66" title="Special:Contributions/217.149.179.66">217.149.179.66</a> (<a href="/wiki/User_talk:217.149.179.66" title="User talk:217.149.179.66">talk</a>) (<a href="/wiki/Wikipedia:AntiVandal" title="Wikipedia:AntiVandal">AV</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:21, 25 May 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Identification of significant differential expression===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Identification of significant differential expression===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Many strategies exist to identify array probes that show an unusual level of over-expression or under-expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |vauthors=Shi L, Reid LH, Jones WD, etal |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239 |pmc=3272078}}</ref><ref>{{cite journal |vauthors=Guo L, Lobenhofer EK, Wang C, etal |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=10.1038/nbt1238|s2cid=8192240 }}</ref> This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p-values.{{cn|date=March 2023}}<del style="font-weight: bold; text-decoration: none;"> NOO</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Many strategies exist to identify array probes that show an unusual level of over-expression or under-expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |vauthors=Shi L, Reid LH, Jones WD, etal |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239 |pmc=3272078}}</ref><ref>{{cite journal |vauthors=Guo L, Lobenhofer EK, Wang C, etal |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=10.1038/nbt1238|s2cid=8192240 }}</ref> This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p-values.{{cn|date=March 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Clustering ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Clustering ===</div></td>
</tr>
</table>DreamRimmerhttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1156986288&oldid=prev217.149.179.66: /* Identification of significant differential expression */2023-05-25T16:21:13Z<p><span class="autocomment">Identification of significant differential expression</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:21, 25 May 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Identification of significant differential expression===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Identification of significant differential expression===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Many strategies exist to identify array probes that show an unusual level of over-expression or under-expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |vauthors=Shi L, Reid LH, Jones WD, etal |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239 |pmc=3272078}}</ref><ref>{{cite journal |vauthors=Guo L, Lobenhofer EK, Wang C, etal |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=10.1038/nbt1238|s2cid=8192240 }}</ref> This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p-values.{{cn|date=March 2023}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Many strategies exist to identify array probes that show an unusual level of over-expression or under-expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |vauthors=Shi L, Reid LH, Jones WD, etal |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239 |pmc=3272078}}</ref><ref>{{cite journal |vauthors=Guo L, Lobenhofer EK, Wang C, etal |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=10.1038/nbt1238|s2cid=8192240 }}</ref> This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p-values.{{cn|date=March 2023}}<ins style="font-weight: bold; text-decoration: none;"> NOO</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Clustering ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Clustering ===</div></td>
</tr>
</table>217.149.179.66https://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1156986240&oldid=prevIngenuity: Reverted edits by 217.149.179.66 (talk) (AV)2023-05-25T16:20:49Z<p>Reverted edits by <a href="/wiki/Special:Contributions/217.149.179.66" title="Special:Contributions/217.149.179.66">217.149.179.66</a> (<a href="/wiki/User_talk:217.149.179.66" title="User talk:217.149.179.66">talk</a>) (<a href="/wiki/Wikipedia:AntiVandal" title="Wikipedia:AntiVandal">AV</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:20, 25 May 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]<del style="font-weight: bold; text-decoration: none;">я шучу (im joking)</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Techniques==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Techniques==</div></td>
</tr>
</table>Ingenuityhttps://en.wikipedia.org/w/index.php?title=Microarray_analysis_techniques&diff=1156986210&oldid=prev217.149.179.66: /* Introduction */2023-05-25T16:20:36Z<p><span class="autocomment">Introduction</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:20, 25 May 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Microarray data analysis is the final step in reading and processing data produced by a microarray chip. Samples undergo various processes including purification and scanning using the microchip, which then produces a large amount of data that requires processing via computer software. It involves several distinct steps, as outlined in the image below. Changing any one of the steps will change the outcome of the analysis, so the MAQC Project<ref>{{cite web | url = https://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ | title = MicroArray Quality Control (MAQC) Project | access-date = 2007-12-26 | author = Dr. Leming Shi, National Center for Toxicological Research | publisher = U.S. Food and Drug Administration }}</ref> was created to identify a set of standard strategies. Companies exist that use the MAQC protocols to perform a complete analysis.<ref>{{cite web |url=http://www.genusbiosystems.com/services-data.shtml |title=GenUs BioSystems - Services - Data Analysis |access-date=2008-01-02 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]я шучу</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Microarray exp horizontal.svg|thumb|800px|none|The steps required in a microarray experiment]]я шучу<ins style="font-weight: bold; text-decoration: none;"> (im joking)</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Techniques==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Techniques==</div></td>
</tr>
</table>217.149.179.66