https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Minimax_approximation_algorithm Minimax approximation algorithm - Revision history 2025-05-25T08:21:26Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=1046794977&oldid=prev Artoria2e5 at 13:10, 27 September 2021 2021-09-27T13:10:00Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:10, 27 September 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One popular minimax approximation algorithm is the [[Remez algorithm]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One popular minimax approximation algorithm is the [[Remez algorithm]].</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_3_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_1_rhs"></a>==References==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_3_2_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_2_rhs"></a>{{Reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://mathworld.wolfram.com/MinimaxApproximation.html Minimax approximation algorithm at MathWorld]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://mathworld.wolfram.com/MinimaxApproximation.html Minimax approximation algorithm at MathWorld]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_1_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_0_lhs"></a>==References==</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_2_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_2_lhs"></a>{{Reflist}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical analysis]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical analysis]]</div></td> </tr> </table> Artoria2e5 https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=1033640472&oldid=prev David Eppstein: Nathalie Revol 2021-07-14T23:03:19Z <p><a href="/wiki/Nathalie_Revol" title="Nathalie Revol">Nathalie Revol</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:03, 14 July 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |url=https://archive.org/details/handbookfloating00mull_867 |url-access=limited |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=[https://archive.org/details/handbookfloating00mull_867/page/n388 376]}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | url = https://archive.org/details/interpolationapp00phil_282 | url-access = limited | series = CMS Books in Mathematics | pages = [https://archive.org/details/interpolationapp00phil_282/page/n63 49]–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7<ins style="font-weight: bold; text-decoration: none;">=Nathalie|author7-link</ins>=Nathalie<ins style="font-weight: bold; text-decoration: none;"> Revol</ins> |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |url=https://archive.org/details/handbookfloating00mull_867 |url-access=limited |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=[https://archive.org/details/handbookfloating00mull_867/page/n388 376]}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | url = https://archive.org/details/interpolationapp00phil_282 | url-access = limited | series = CMS Books in Mathematics | pages = [https://archive.org/details/interpolationapp00phil_282/page/n63 49]–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=997168864&oldid=prev Monkbot: Task 18 (cosmetic): eval 3 templates: del empty params (2×); hyphenate params (1×); 2020-12-30T08:28:06Z <p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 3 templates: del empty params (2×); hyphenate params (1×);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:28, 30 December 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |url=https://archive.org/details/handbookfloating00mull_867 |url-access=limited |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=[https://archive.org/details/handbookfloating00mull_867/page/n388 376]}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | url = https://archive.org/details/interpolationapp00phil_282 | url-access = limited | series = CMS Books in Mathematics | pages = [https://archive.org/details/interpolationapp00phil_282/page/n63 49]–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4<del style="font-weight: bold; text-decoration: none;"> | pmid = | pmc =</del> }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |url=https://archive.org/details/handbookfloating00mull_867 |url-access=limited |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=[https://archive.org/details/handbookfloating00mull_867/page/n388 376]}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | url = https://archive.org/details/interpolationapp00phil_282 | url-access = limited | series = CMS Books in Mathematics | pages = [https://archive.org/details/interpolationapp00phil_282/page/n63 49]–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\max_{a \leq x \leq b}|f(x)-p(x)|.&lt;/math&gt;&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | <del style="font-weight: bold; text-decoration: none;">authorlink</del>=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\max_{a \leq x \leq b}|f(x)-p(x)|.&lt;/math&gt;&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | <ins style="font-weight: bold; text-decoration: none;">author-link</ins>=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Polynomial approximations==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Polynomial approximations==</div></td> </tr> </table> Monkbot https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=958917995&oldid=prev InternetArchiveBot: Bluelink 2 books for verifiability (prndis)) #IABot (v2.0) (GreenC bot 2020-05-26T08:40:55Z <p>Bluelink 2 books for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifiability</a> (prndis)) #IABot (v2.0) (<a href="/wiki/User:GreenC_bot" title="User:GreenC bot">GreenC bot</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:40, 26 May 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = <del style="font-weight: bold; text-decoration: none;">49–11</del> | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic<ins style="font-weight: bold; text-decoration: none;"> |url=https://archive.org/details/handbookfloating00mull_867 |url-access=limited</ins> |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=<ins style="font-weight: bold; text-decoration: none;">[https://archive.org/details/handbookfloating00mull_867/page/n388 </ins>376<ins style="font-weight: bold; text-decoration: none;">]</ins>}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials<ins style="font-weight: bold; text-decoration: none;"> | url = https://archive.org/details/interpolationapp00phil_282 | url-access = limited</ins> | series = CMS Books in Mathematics | pages = <ins style="font-weight: bold; text-decoration: none;">[https://archive.org/details/interpolationapp00phil_282/page/n63 49]–11</ins> | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=896118768&oldid=prev Filipović Zoran at 12:20, 8 May 2019 2019-05-08T12:20:12Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:20, 8 May 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">::&lt;math&gt;\max_{a \leq x \leq b}|f(x)-p(x)|.&lt;/math&gt;</ins>&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\max_{a \leq x \leq b}|f(x)-p(x)|.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Polynomial approximations==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Polynomial approximations==</div></td> </tr> </table> Filipović Zoran https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=896118668&oldid=prev Filipović Zoran at 12:19, 8 May 2019 2019-05-08T12:19:19Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:19, 8 May 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;"> or '''uniform approximation'''</del>&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;">) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''<ins style="font-weight: bold; text-decoration: none;"> or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</ins>&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt;&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> </table> Filipović Zoran https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=753235375&oldid=prev Magioladitis: clean up using AWB 2016-12-05T23:52:29Z <p>clean up using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:52, 5 December 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN<del style="font-weight: bold; text-decoration: none;">-10</del> 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref name="Muller_2010"&gt;{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --&gt; |page=376}}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> </table> Magioladitis https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=727566512&oldid=prev Tom.Reding: /* References */Rem stub tag (class = non-stub & non-list) using AWB 2016-06-29T20:33:36Z <p><span class="autocomment">References: </span>Rem stub tag (class = non-stub &amp; non-list) using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:33, 29 June 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 21:</td> <td colspan="2" class="diff-lineno">Line 21:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical analysis]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Numerical analysis]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{algorithm-stub}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> </table> Tom.Reding https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=719465142&oldid=prev Matthiaspaul: improved ref 2016-05-09T21:17:47Z <p>improved ref</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:17, 9 May 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref&gt;{{cite book |<del style="font-weight: bold; text-decoration: none;"> title = Handbook of Floating</del>-<del style="font-weight: bold; text-decoration: none;">Point Arithmetic | page </del>=<del style="font-weight: bold; text-decoration: none;"> 376</del> |<del style="font-weight: bold; text-decoration: none;"> publisher = Springer | year = 2009 | isbn = 081764704X | </del>first1=Jean-Michel |<del style="font-weight: bold; text-decoration: none;"> last1=Muller|</del>last2=Brisebarre |<del style="font-weight: bold; text-decoration: none;"> </del>first2=Nicolas |<del style="font-weight: bold; text-decoration: none;"> </del>last3=de Dinechin |<del style="font-weight: bold; text-decoration: none;"> </del>first3=Florent |<del style="font-weight: bold; text-decoration: none;"> </del>last4=Jeannerod |<del style="font-weight: bold; text-decoration: none;"> </del>first4=Claude-Pierre |<del style="font-weight: bold; text-decoration: none;"> </del>last5=Lefèvre |<del style="font-weight: bold; text-decoration: none;"> </del>first5=Vincent |<del style="font-weight: bold; text-decoration: none;"> </del>last6=Melquiond |<del style="font-weight: bold; text-decoration: none;"> </del>first6=Guillaume |<del style="font-weight: bold; text-decoration: none;"> </del>last7=Revol |<del style="font-weight: bold; text-decoration: none;"> </del>first7=Nathalie |<del style="font-weight: bold; text-decoration: none;"> </del>last8=Stehlé |<del style="font-weight: bold; text-decoration: none;"> </del>first8=Damien |<del style="font-weight: bold; text-decoration: none;"> </del>last9=Torres |<del style="font-weight: bold; text-decoration: none;"> </del>first9=Serge | <del style="font-weight: bold; text-decoration: none;">display</del>-<del style="font-weight: bold; text-decoration: none;">authors</del>=1 }}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref<ins style="font-weight: bold; text-decoration: none;"> name="Muller_2010"</ins>&gt;{{cite book |<ins style="font-weight: bold; text-decoration: none;">author</ins>-<ins style="font-weight: bold; text-decoration: none;">last1</ins>=<ins style="font-weight: bold; text-decoration: none;">Muller</ins> |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first1=Jean-Michel |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last2=Brisebarre |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first2=Nicolas |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last3=de Dinechin |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first3=Florent |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last4=Jeannerod |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first4=Claude-Pierre |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last5=Lefèvre |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first5=Vincent |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last6=Melquiond |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first6=Guillaume |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last7=Revol |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first7=Nathalie |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last8=Stehlé |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first8=Damien |<ins style="font-weight: bold; text-decoration: none;">author-</ins>last9=Torres |<ins style="font-weight: bold; text-decoration: none;">author-</ins>first9=Serge |<ins style="font-weight: bold; text-decoration: none;">title=Handbook</ins> <ins style="font-weight: bold; text-decoration: none;">of Floating</ins>-<ins style="font-weight: bold; text-decoration: none;">Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition</ins>=1 <ins style="font-weight: bold; text-decoration: none;">|isbn=978-0-8176-4704-9&lt;!-- print --&gt; |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668&lt;!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN-10 0-8176-4704-X (print) --&gt; |page=376</ins>}}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{Cite book | doi = 10.1007/0-387-21682-0_2 | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = }}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> </table> Matthiaspaul https://en.wikipedia.org/w/index.php?title=Minimax_approximation_algorithm&diff=679088137&oldid=prev Dexbot: Bot: Deprecating Template:Cite doi and some minor fixes 2015-09-02T11:11:08Z <p>Bot: Deprecating <a href="/wiki/Template:Cite_doi" title="Template:Cite doi">Template:Cite doi</a> and some minor fixes</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:11, 2 September 2015</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref&gt;{{cite book | title = Handbook of Floating-Point Arithmetic | page = 376 | publisher = Springer | year = 2009 | isbn = 081764704X | first1=Jean-Michel | last1=Muller|last2=Brisebarre | first2=Nicolas | last3=de Dinechin | first3=Florent | last4=Jeannerod | first4=Claude-Pierre | last5=Lefèvre | first5=Vincent | last6=Melquiond | first6=Guillaume | last7=Revol | first7=Nathalie | last8=Stehlé | first8=Damien | last9=Torres | first9=Serge | display-authors=1 }}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{<del style="font-weight: bold; text-decoration: none;">cite</del> <del style="font-weight: bold; text-decoration: none;">doi</del> | 10.1007/0-387-21682-0_2}}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''minimax approximation algorithm''' (or '''L&lt;sup&gt;∞&lt;/sup&gt; approximation'''&lt;ref&gt;{{cite book | title = Handbook of Floating-Point Arithmetic | page = 376 | publisher = Springer | year = 2009 | isbn = 081764704X | first1=Jean-Michel | last1=Muller|last2=Brisebarre | first2=Nicolas | last3=de Dinechin | first3=Florent | last4=Jeannerod | first4=Claude-Pierre | last5=Lefèvre | first5=Vincent | last6=Melquiond | first6=Guillaume | last7=Revol | first7=Nathalie | last8=Stehlé | first8=Damien | last9=Torres | first9=Serge | display-authors=1 }}&lt;/ref&gt; or '''uniform approximation'''&lt;ref name="phillips"&gt;{{<ins style="font-weight: bold; text-decoration: none;">Cite</ins> <ins style="font-weight: bold; text-decoration: none;">book</ins> |<ins style="font-weight: bold; text-decoration: none;"> doi =</ins> 10.1007/0-387-21682-0_2<ins style="font-weight: bold; text-decoration: none;"> | first = George M. | last = Phillips| chapter = Best Approximation | title = Interpolation and Approximation by Polynomials | series = CMS Books in Mathematics | pages = 49–11 | year = 2003 | publisher = Springer | isbn = 0-387-00215-4 | pmid = | pmc = </ins>}}&lt;/ref&gt;) is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a function &lt;math&gt;f&lt;/math&gt; defined on the interval &lt;math&gt;[a,b]&lt;/math&gt; and a degree bound &lt;math&gt;n&lt;/math&gt;, a minimax polynomial approximation algorithm will find a polynomial &lt;math&gt;p&lt;/math&gt; of degree at most &lt;math&gt;n&lt;/math&gt; to minimize&lt;ref name="powell"&gt;{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}&lt;/ref&gt;</div></td> </tr> </table> Dexbot