https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Modular_lambda_function Modular lambda function - Revision history 2025-05-25T17:11:08Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1274846233&oldid=prev Bumpf at 15:53, 9 February 2025 2025-02-09T15:53:23Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:53, 9 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Symmetric holomorphic function}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Symmetric holomorphic function}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric [[<del style="font-weight: bold; text-decoration: none;">Holomorphic</del> function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric [[<ins style="font-weight: bold; text-decoration: none;">holomorphic</ins> function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The q-expansion, where &lt;math&gt;q = e^{\pi i \tau}&lt;/math&gt; is the [[Nome (mathematics)|nome]], is given by:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The q-expansion, where &lt;math&gt;q = e^{\pi i \tau}&lt;/math&gt; is the [[Nome (mathematics)|nome]], is given by:</div></td> </tr> </table> Bumpf https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1202597253&oldid=prev Jengod: Short description 2024-02-03T03:21:23Z <p>Short description</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:21, 3 February 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Symmetric holomorphic function}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric [[Holomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric [[Holomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> </tr> </table> Jengod https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1193767245&oldid=prev OAbot: Open access bot: pmc updated in citation with #oabot. 2024-01-05T14:48:07Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: pmc updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:48, 5 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 102:</td> <td colspan="2" class="diff-lineno">Line 102:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7 |page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 |doi-access=free}}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pages=86–110}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7 |page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 |doi-access=free<ins style="font-weight: bold; text-decoration: none;">|pmc=1063041</ins>}}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pages=86–110}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1184128242&oldid=prev OAbot: Open access bot: doi updated in citation with #oabot. 2023-11-08T14:18:57Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:18, 8 November 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 102:</td> <td colspan="2" class="diff-lineno">Line 102:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7 |page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 }}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pages=86–110}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7 |page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 <ins style="font-weight: bold; text-decoration: none;">|doi-access=free</ins>}}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pages=86–110}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1181807708&oldid=prev Citation bot: Alter: template type. Add: pages, s2cid, doi, issue, volume, date, journal. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine 2023-10-25T10:05:42Z <p>Alter: template type. Add: pages, s2cid, doi, issue, volume, date, journal. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_CommandLine</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:05, 25 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 102:</td> <td colspan="2" class="diff-lineno">Line 102:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">web|url=https://www.semanticscholar.org/paper/On-Epstein's-Zeta-Function-(I).-Chowla-Selberg/87dc02200853b431bfa900e297cd6c2f80a5a4b1</del>|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|<del style="font-weight: bold; text-decoration: none;">website</del>=<del style="font-weight: bold; text-decoration: none;">Semantic</del> <del style="font-weight: bold; text-decoration: none;">Scholar</del>|page=373}}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|<del style="font-weight: bold; text-decoration: none;">page</del>=86–110}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;K(\lambda^*(x))&lt;/math&gt; and &lt;math&gt;E(\lambda^*(x))&lt;/math&gt; (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any &lt;math&gt;x\in\mathbb{Q}^+&lt;/math&gt;, as Selberg and Chowla proved in 1949.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">journal</ins>|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=<ins style="font-weight: bold; text-decoration: none;">Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7</ins> |page=373<ins style="font-weight: bold; text-decoration: none;">|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 </ins>}}&lt;/ref&gt;&lt;ref&gt;{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=86–110}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following expression is valid for all &lt;math&gt;n \in \mathbb{N}&lt;/math&gt;:</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1162418732&oldid=prev 2601:483:800:2EC0:315F:6339:675B:5E4A: Added links 2023-06-29T01:36:32Z <p>Added links</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:36, 29 June 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric <del style="font-weight: bold; text-decoration: none;">holomorphic</del> function on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], the '''modular lambda''' function λ(τ)&lt;ref group="note&gt;&lt;math&gt;\lambda(\tau)&lt;/math&gt; is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in &lt;math&gt;\lambda(\tau)&lt;/math&gt;. Some authors use a non-equivalent definition of "modular functions".&lt;/ref&gt; is a highly symmetric <ins style="font-weight: bold; text-decoration: none;">[[Holomorphic</ins> function<ins style="font-weight: bold; text-decoration: none;">]]</ins> on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &amp;Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] &lt;math&gt;\mathbb{C}/\langle 1, \tau \rangle&lt;/math&gt;, where the map is defined as the quotient by the [&amp;minus;1] involution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The q-expansion, where &lt;math&gt;q = e^{\pi i \tau}&lt;/math&gt; is the [[Nome (mathematics)|nome]], is given by:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The q-expansion, where &lt;math&gt;q = e^{\pi i \tau}&lt;/math&gt; is the [[Nome (mathematics)|nome]], is given by:</div></td> </tr> </table> 2601:483:800:2EC0:315F:6339:675B:5E4A https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1130954064&oldid=prev A1E6: /* Relations to other functions */ 2023-01-01T20:39:47Z <p><span class="autocomment">Relations to other functions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:39, 1 January 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 55:</td> <td colspan="2" class="diff-lineno">Line 55:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which is the ''j''-invariant of the elliptic curve of [[Legendre form]] &lt;math&gt;y^2=x(x-1)(x-\lambda)&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which is the ''j''-invariant of the elliptic curve of [[Legendre form]] &lt;math&gt;y^2=x(x-1)(x-\lambda)&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given &lt;math&gt;m\in\mathbb{C}\setminus\{0,1\}&lt;/math&gt;, let</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\tau=i\frac{K\{1-m\}}{K\{m\}}&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;K&lt;/math&gt; is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]] with parameter &lt;math&gt;m=k^2&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Then</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda (\tau)=m.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Modular equations==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Modular equations==</div></td> </tr> </table> A1E6 https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1126345568&oldid=prev 2A02:842B:80F5:1A01:45CE:AF02:1C5F:B21A: /* Properties of lambda-star */ better spacing 2022-12-08T21:31:26Z <p><span class="autocomment">Properties of lambda-star: </span> better spacing</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:31, 8 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 120:</td> <td colspan="2" class="diff-lineno">Line 120:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display=block&gt;\begin{align}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_9_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_1_rhs"></a><ins style="font-weight: bold; text-decoration: none;">&amp; </ins>a^{<ins style="font-weight: bold; text-decoration: none;">6</ins>}-<ins style="font-weight: bold; text-decoration: none;">f</ins>^{<ins style="font-weight: bold; text-decoration: none;">6</ins>} = <ins style="font-weight: bold; text-decoration: none;">2af </ins>+2a^<ins style="font-weight: bold; text-decoration: none;">5f</ins>^<ins style="font-weight: bold; text-decoration: none;">5</ins>\, <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(<ins style="font-weight: bold; text-decoration: none;">f</ins> = \left[\frac{2\lambda^*(<ins style="font-weight: bold; text-decoration: none;">25x</ins>)}{1-\lambda^*(<ins style="font-weight: bold; text-decoration: none;">25x</ins>)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">\\</ins></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_10_1_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_2_rhs"></a><ins style="font-weight: bold; text-decoration: none;"> &amp;</ins>a^<ins style="font-weight: bold; text-decoration: none;">{8}</ins>+<ins style="font-weight: bold; text-decoration: none;">b</ins>^<ins style="font-weight: bold; text-decoration: none;">{8}</ins>-7a^<ins style="font-weight: bold; text-decoration: none;">4b</ins>^4<ins style="font-weight: bold; text-decoration: none;"> = </ins>2<ins style="font-weight: bold; text-decoration: none;">\sqrt{</ins>2<ins style="font-weight: bold; text-decoration: none;">}ab</ins>+2<ins style="font-weight: bold; text-decoration: none;">\sqrt{</ins>2}<ins style="font-weight: bold; text-decoration: none;">a</ins>^<ins style="font-weight: bold; text-decoration: none;">7b^7</ins>\, <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(<ins style="font-weight: bold; text-decoration: none;">b</ins> = \left[\frac{2\lambda^*(<ins style="font-weight: bold; text-decoration: none;">49x</ins>)}{1-\lambda^*(<ins style="font-weight: bold; text-decoration: none;">49x</ins>)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">\\</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:&lt;math&gt;</del>a^{<del style="font-weight: bold; text-decoration: none;">6</del>}-<del style="font-weight: bold; text-decoration: none;">f</del>^{<del style="font-weight: bold; text-decoration: none;">6</del>} = <del style="font-weight: bold; text-decoration: none;">2af </del>+2a^<del style="font-weight: bold; text-decoration: none;">5f</del>^<del style="font-weight: bold; text-decoration: none;">5</del>\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(<del style="font-weight: bold; text-decoration: none;">f</del> = \left[\frac{2\lambda^*(<del style="font-weight: bold; text-decoration: none;">25x</del>)}{1-\lambda^*(<del style="font-weight: bold; text-decoration: none;">25x</del>)^2}\right]^{1/12}\right) <del style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">&amp; </ins>a^{<ins style="font-weight: bold; text-decoration: none;">12</ins>}-<ins style="font-weight: bold; text-decoration: none;">c</ins>^{<ins style="font-weight: bold; text-decoration: none;">12</ins>} = <ins style="font-weight: bold; text-decoration: none;">2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2</ins>+2a^<ins style="font-weight: bold; text-decoration: none;">4c</ins>^<ins style="font-weight: bold; text-decoration: none;">4)</ins>\, <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(<ins style="font-weight: bold; text-decoration: none;">c</ins> = \left[\frac{2\lambda^*(<ins style="font-weight: bold; text-decoration: none;">121x</ins>)}{1-\lambda^*(<ins style="font-weight: bold; text-decoration: none;">121x</ins>)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">\\</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">:&lt;math&gt;</del>a^<del style="font-weight: bold; text-decoration: none;">{8}</del>+<del style="font-weight: bold; text-decoration: none;">b</del>^<del style="font-weight: bold; text-decoration: none;">{8}</del>-7a^<del style="font-weight: bold; text-decoration: none;">4b</del>^4<del style="font-weight: bold; text-decoration: none;"> = </del>2<del style="font-weight: bold; text-decoration: none;">\sqrt{</del>2<del style="font-weight: bold; text-decoration: none;">}ab</del>+2<del style="font-weight: bold; text-decoration: none;">\sqrt{</del>2}<del style="font-weight: bold; text-decoration: none;">a</del>^<del style="font-weight: bold; text-decoration: none;">7b^7</del>\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(<del style="font-weight: bold; text-decoration: none;">b</del> = \left[\frac{2\lambda^*(<del style="font-weight: bold; text-decoration: none;">49x</del>)}{1-\lambda^*(<del style="font-weight: bold; text-decoration: none;">49x</del>)^2}\right]^{1/12}\right) <del style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"> &amp; (</ins>a^<ins style="font-weight: bold; text-decoration: none;">2-d^2)(a^4</ins>+<ins style="font-weight: bold; text-decoration: none;">d</ins>^<ins style="font-weight: bold; text-decoration: none;">4</ins>-7a^<ins style="font-weight: bold; text-decoration: none;">2d^2)[(a^2-d^2)</ins>^4<ins style="font-weight: bold; text-decoration: none;">-a^2d^</ins>2<ins style="font-weight: bold; text-decoration: none;">(a^</ins>2+<ins style="font-weight: bold; text-decoration: none;">d^</ins>2<ins style="font-weight: bold; text-decoration: none;">)^</ins>2<ins style="font-weight: bold; text-decoration: none;">] = 8ad+8a^{13</ins>}<ins style="font-weight: bold; text-decoration: none;">d</ins>^<ins style="font-weight: bold; text-decoration: none;">{13}</ins>\, <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) <ins style="font-weight: bold; text-decoration: none;">&amp;</ins>\left(<ins style="font-weight: bold; text-decoration: none;">d</ins> = \left[\frac{2\lambda^*(<ins style="font-weight: bold; text-decoration: none;">169x</ins>)}{1-\lambda^*(<ins style="font-weight: bold; text-decoration: none;">169x</ins>)^2}\right]^{1/12}\right) </div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_1_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_9_0_lhs"></a><del style="font-weight: bold; text-decoration: none;">:&lt;math&gt;</del>a^{<del style="font-weight: bold; text-decoration: none;">12</del>}-<del style="font-weight: bold; text-decoration: none;">c</del>^{<del style="font-weight: bold; text-decoration: none;">12</del>} = <del style="font-weight: bold; text-decoration: none;">2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2</del>+2a^<del style="font-weight: bold; text-decoration: none;">4c</del>^<del style="font-weight: bold; text-decoration: none;">4)</del>\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(<del style="font-weight: bold; text-decoration: none;">c</del> = \left[\frac{2\lambda^*(<del style="font-weight: bold; text-decoration: none;">121x</del>)}{1-\lambda^*(<del style="font-weight: bold; text-decoration: none;">121x</del>)^2}\right]^{1/12}\right) <del style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</del></div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_2_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_10_1_lhs"></a><del style="font-weight: bold; text-decoration: none;">:&lt;math&gt;(</del>a^<del style="font-weight: bold; text-decoration: none;">2-d^2)(a^4</del>+<del style="font-weight: bold; text-decoration: none;">d</del>^<del style="font-weight: bold; text-decoration: none;">4</del>-7a^<del style="font-weight: bold; text-decoration: none;">2d^2)[(a^2-d^2)</del>^4<del style="font-weight: bold; text-decoration: none;">-a^2d^</del>2<del style="font-weight: bold; text-decoration: none;">(a^</del>2+<del style="font-weight: bold; text-decoration: none;">d^</del>2<del style="font-weight: bold; text-decoration: none;">)^</del>2<del style="font-weight: bold; text-decoration: none;">] = 8ad+8a^{13</del>}<del style="font-weight: bold; text-decoration: none;">d</del>^<del style="font-weight: bold; text-decoration: none;">{13}</del>\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(<del style="font-weight: bold; text-decoration: none;">d</del> = \left[\frac{2\lambda^*(<del style="font-weight: bold; text-decoration: none;">169x</del>)}{1-\lambda^*(<del style="font-weight: bold; text-decoration: none;">169x</del>)^2}\right]^{1/12}\right) <del style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</del></div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Collapse top|title=Special values}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Collapse top|title=Special values}}</div></td> </tr> </table> 2A02:842B:80F5:1A01:45CE:AF02:1C5F:B21A https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1126344077&oldid=prev 2A02:842B:80F5:1A01:45CE:AF02:1C5F:B21A: /* Properties of lambda-star */ 2022-12-08T21:20:32Z <p><span class="autocomment">Properties of lambda-star</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:20, 8 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 120:</td> <td colspan="2" class="diff-lineno">Line 120:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/2} - \left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/2} = 2\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12} + 2\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{5/12}\left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{5/12} &lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;a^{6}-f^{6} = 2af +2a^5f^5\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(f = \left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12}\right) &lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) &lt;/math&gt;</div></td> </tr> </table> 2A02:842B:80F5:1A01:45CE:AF02:1C5F:B21A https://en.wikipedia.org/w/index.php?title=Modular_lambda_function&diff=1096813759&oldid=prev A1E6: /* Modular equations */ 2022-07-06T20:04:57Z <p><span class="autocomment">Modular equations</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:04, 6 July 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda (ni)=\prod_{k=1}^{n/2} \operatorname{sl}^8\frac{(2k-1)\varpi}{2n}\quad (n\,\text{even})&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda (ni)=\prod_{k=1}^{n/2} \operatorname{sl}^8\frac{(2k-1)\varpi}{2n}\quad (n\,\text{even})&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2\quad (n\,\text{odd})&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2\quad (n\,\text{odd})&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;\operatorname{sl}&lt;/math&gt; is the [[Lemniscate elliptic functions|lemniscate sine]] and &lt;math&gt;\varpi&lt;/math&gt; is the [[<del style="font-weight: bold; text-decoration: none;">Lemniscate elliptic functions#Lemniscate constant|</del>lemniscate constant]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;\operatorname{sl}&lt;/math&gt; is the [[Lemniscate elliptic functions|lemniscate sine]] and &lt;math&gt;\varpi&lt;/math&gt; is the [[lemniscate constant]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Lambda-star==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Lambda-star==</div></td> </tr> </table> A1E6