https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Multi-objective_linear_programmingMulti-objective linear programming - Revision history2025-05-30T04:30:52ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=1194907022&oldid=prevJohn of Reading: /* Solution concepts */Typo fixing, replaced: can seen → can be seen2024-01-11T10:09:09Z<p><span class="autocomment">Solution concepts: </span>Typo fixing, replaced: can seen → can be seen</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:09, 11 January 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968|s2cid=42726689}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493|s2cid=120455645}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611|s2cid=45440728}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968|s2cid=42726689}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493|s2cid=120455645}}</ref> Based on these goals, the set of all efficient (extreme) points can<ins style="font-weight: bold; text-decoration: none;"> be</ins> seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611|s2cid=45440728}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|publisher=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|publisher=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
</tr>
</table>John of Readinghttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=1030766402&oldid=prevCitation bot: Add: s2cid. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 101/1622021-06-27T22:42:42Z<p>Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 101/162</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:42, 27 June 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968<ins style="font-weight: bold; text-decoration: none;">|s2cid=42726689</ins>}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493<ins style="font-weight: bold; text-decoration: none;">|s2cid=120455645</ins>}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611<ins style="font-weight: bold; text-decoration: none;">|s2cid=45440728</ins>}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|publisher=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|publisher=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=0377-2217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998" /> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011" /><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108<ins style="font-weight: bold; text-decoration: none;">|s2cid=54519405</ins>|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=0377-2217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998" /> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011" /><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978" /><ref name="EckerHegner1980" /><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978" /><ref name="EckerHegner1980" /><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730<ins style="font-weight: bold; text-decoration: none;">|s2cid=18407847</ins>}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895<ins style="font-weight: bold; text-decoration: none;">|s2cid=13844342</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998" /><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=0377-2217|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998" /><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=0377-2217|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823<ins style="font-weight: bold; text-decoration: none;">|s2cid=17267946</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Related problem classes ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Related problem classes ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective linear programming is equivalent to [[Polyhedral combinatorics|polyhedral]] projection.<ref name="LöhneWeißing2016">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming|journal=Mathematical Methods of Operations Research|volume=84|issue=2|year=2016|pages=411–426|issn=1432-2994|doi=10.1007/s00186-016-0554-0|arxiv=1507.00228}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective linear programming is equivalent to [[Polyhedral combinatorics|polyhedral]] projection.<ref name="LöhneWeißing2016">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming|journal=Mathematical Methods of Operations Research|volume=84|issue=2|year=2016|pages=411–426|issn=1432-2994|doi=10.1007/s00186-016-0554-0|arxiv=1507.00228<ins style="font-weight: bold; text-decoration: none;">|s2cid=26137201</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=1030740014&oldid=prevHeadbomb: /* Solution concepts */clean up, replaced: |journal=Springer → |publisher=Springer2021-06-27T19:38:35Z<p><span class="autocomment">Solution concepts: </span>clean up, replaced: |journal=Springer → |publisher=Springer</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:38, 27 June 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 11:</td>
<td colspan="2" class="diff-lineno">Line 11:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|<del style="font-weight: bold; text-decoration: none;">journal</del>=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|<ins style="font-weight: bold; text-decoration: none;">publisher</ins>=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=0377-2217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998" /> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011" /><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=0377-2217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998" /> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011" /><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
</tr>
</table>Headbombhttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=1000302372&oldid=prevYobot: Fix REFPUNCT + other minor fixes2021-01-14T15:23:23Z<p>Fix REFPUNCT + other minor fixes</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:23, 14 January 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=<del style="font-weight: bold; text-decoration: none;">09255001</del>|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points<ins style="font-weight: bold; text-decoration: none;">.</ins>....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref> There are also algorithms to determine the set of all maximal efficient faces.<ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''.<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=<ins style="font-weight: bold; text-decoration: none;">0925-5001</ins>|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=<del style="font-weight: bold; text-decoration: none;">03772217</del>|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=<ins style="font-weight: bold; text-decoration: none;">0377-2217</ins>|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"<ins style="font-weight: bold; text-decoration: none;"> </ins>/> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math>\operatorname{conv} P[\bar S] + \mathbb{R}^q_+ = \mathcal{P}</math> ("conv" denotes the convex hull).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math>\operatorname{conv} P[\bar S] + \mathbb{R}^q_+ = \mathcal{P}</math> ("conv" denotes the convex hull).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If MOLP is not bounded, a solution consists not only of points but of points and directions <ref name="Löhne2011"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="LöhneWeißing2017"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If MOLP is not bounded, a solution consists not only of points but of points and directions <ref name="Löhne2011"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="LöhneWeißing2017"<ins style="font-weight: bold; text-decoration: none;"> </ins>/></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="EckerHegner1980"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="EckerHegner1980"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=<del style="font-weight: bold; text-decoration: none;">03772217</del>|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=<ins style="font-weight: bold; text-decoration: none;">0377-2217</ins>|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Related problem classes ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Related problem classes ==</div></td>
</tr>
</table>Yobothttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=994953687&oldid=prevWikiCleanerBot: v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)2020-12-18T11:53:44Z<p>v2.04b - <a href="/wiki/User:WikiCleanerBot#T20" title="User:WikiCleanerBot">Bot T20 CW#61</a> - Fix errors for <a href="/wiki/Wikipedia:WCW" class="mw-redirect" title="Wikipedia:WCW">CW project</a> (Reference before punctuation)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:53, 18 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math> denotes the component-wise ordering.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref>. There are also algorithms to determine the set of all maximal efficient faces<del style="font-weight: bold; text-decoration: none;"> </del><ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=09255001|doi=10.1023/A:1008215702611}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref>. There are also algorithms to determine the set of all maximal efficient faces<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref> Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=09255001|doi=10.1023/A:1008215702611}}</ref> It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref><del style="font-weight: bold; text-decoration: none;">.</del> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref> Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
</tr>
</table>WikiCleanerBothttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=942004783&oldid=prev4.53.61.66: fix wrong word2020-02-22T00:17:29Z<p>fix wrong word</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:17, 22 February 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-<del style="font-weight: bold; text-decoration: none;">objection</del> linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-<ins style="font-weight: bold; text-decoration: none;">objective</ins> linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
</tr>
</table>4.53.61.66https://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=923138002&oldid=prevMrOllie: Reverted 1 edit by 129.15.133.239 (talk): Spammer (TW)2019-10-26T16:32:26Z<p>Reverted 1 edit by <a href="/wiki/Special:Contributions/129.15.133.239" title="Special:Contributions/129.15.133.239">129.15.133.239</a> (<a href="/wiki/User_talk:129.15.133.239" title="User talk:129.15.133.239">talk</a>): Spammer (<a href="/wiki/Wikipedia:TW" class="mw-redirect" title="Wikipedia:TW">TW</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:32, 26 October 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' <del style="font-weight: bold; text-decoration: none;"><ref name="GOLBO16">{{Cite book |url=http://cdn.intechopen.com/pdfs-wm/53332.pdf |doi=10.5772/66.399| isbn=9781466557529|title=Beamforming in Wireless Networks|year=2016|last1=Golbon-Haghighi|first1=M.H. |journal=InTech Open| pages=163-199}}</ref></del>is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-objection linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-objection linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
</tr>
</table>MrOlliehttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=923137054&oldid=prev129.15.133.239 at 16:25, 26 October 20192019-10-26T16:25:04Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:25, 26 October 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-objection linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Multi-objective linear programming''' <ins style="font-weight: bold; text-decoration: none;"><ref name="GOLBO16">{{Cite book |url=http://cdn.intechopen.com/pdfs-wm/53332.pdf |doi=10.5772/66.399| isbn=9781466557529|title=Beamforming in Wireless Networks|year=2016|last1=Golbon-Haghighi|first1=M.H. |journal=InTech Open| pages=163-199}}</ref></ins>is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one objective function. An MOLP is a special case of a [[vector linear program]]. Multi-objection linear programming is also a subarea of [[Multi-objective optimization]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Problem formulation ==</div></td>
</tr>
</table>129.15.133.239https://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=916303665&oldid=prevMarnie Hawes: Added free to read link in citations with OAbot #oabot2019-09-18T06:28:34Z<p>Added free to read link in citations with <a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">OAbot</a> #oabot</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:28, 18 September 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ref name="Ehrgott2015">{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108}}</ref> and corresponding algorithms<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref>. Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108<ins style="font-weight: bold; text-decoration: none;">|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf</ins>}}</ref> and corresponding algorithms<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref>. Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}}</ref> is as follows:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
</tr>
</table>Marnie Haweshttps://en.wikipedia.org/w/index.php?title=Multi-objective_linear_programming&diff=883418980&oldid=prevCitation bot: Alter: template type, issue. Add: series, citeseerx, isbn. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated.2019-02-15T08:24:41Z<p>Alter: template type, issue. Add: series, citeseerx, isbn. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">User-activated</a>.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:24, 15 February 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 11:</td>
<td colspan="2" class="diff-lineno">Line 11:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref>. There are also algorithms to determine the set of all maximal efficient faces <ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref>. Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=09255001|doi=10.1023/A:1008215702611}}</ref>. It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points....<ref name="EckerKouada1978">{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968}}</ref>. There are also algorithms to determine the set of all maximal efficient faces <ref name="EckerHegner1980">{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493}}</ref>. Based on these goals, the set of all efficient (extreme) points can seen to be the solution of MOLP. This type of solution concept is called ''decision set based''<ref name="Benson1998">{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=09255001|doi=10.1023/A:1008215702611}}</ref>. It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ref name="Ehrgott2015">{{cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9}}</ref>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP<ref name="Ehrgott2015">{{cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|journal=Springer|year=2005|doi=10.1007/3-540-27659-9<ins style="font-weight: bold; text-decoration: none;">|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223</ins>}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108}}</ref> and corresponding algorithms<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref>. Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5}}</ref> is as follows:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108}}</ref> and corresponding algorithms<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=03772217|doi=10.1016/0377-2217(90)90011-Y}}</ref><ref name="Benson1998"></ref>. Assume MOLP is bounded, i.e. there is some <math>y \in \mathbb{R}^q</math> such that <math>y \leq Px</math> for all feasible <math>x</math>. A solution of MOLP is defined to be a finite subset <math>\bar S</math> of efficient points that carries a sufficient amount of information in order to describe the ''upper image'' of MOLP. Denoting by <math>S</math> the feasible set of MOLP, the ''upper image'' of MOLP is the set <math>\mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}</math>. A formal definition of a solution <ref name="HeydeLöhne2011"></ref><ref name="Löhne2011">{{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5<ins style="font-weight: bold; text-decoration: none;">|series=Vector Optimization|isbn=978-3-642-18350-8</ins>}}</ref> is as follows:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Solution methods ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978"></ref><ref name="EckerHegner1980"></ref><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=<del style="font-weight: bold; text-decoration: none;">1-2</del>|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978"></ref><ref name="EckerHegner1980"></ref><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298<ins style="font-weight: bold; text-decoration: none;">|citeseerx=10.1.1.161.9730</ins>}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=<ins style="font-weight: bold; text-decoration: none;">1–2</ins>|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998"></ref><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=03772217|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Objective set based solutions can be obtained by [[Benson's algorithm]].<ref name="Benson1998"></ref><ref name="LöhneWeißing2017">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=03772217|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823}}</ref></div></td>
</tr>
</table>Citation bot