https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Nested_sampling_algorithm
Nested sampling algorithm - Revision history
2025-06-09T04:02:25Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.4
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1266109913&oldid=prev
OAbot: Open access bot: arxiv updated in citation with #oabot.
2024-12-30T04:14:35Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: arxiv updated in citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:14, 30 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The original procedure outlined by Skilling (given above in pseudocode) does not specify what specific Markov chain Monte Carlo algorithm should be used to choose new points with better likelihood.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The original procedure outlined by Skilling (given above in pseudocode) does not specify what specific Markov chain Monte Carlo algorithm should be used to choose new points with better likelihood.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Skilling's own code examples (such as one in Sivia and Skilling (2006),<ref>{{cite book | last=Sivia | first=Devinderjit | last2=Skilling | first2=John | title=Data Analysis: A Bayesian Tutorial | publisher=Oxford University Press, USA | publication-place=Oxford | date=June 2006 | isbn=978-0-19-856832-2 | page=}}</ref> [https://www.inference.org.uk/bayesys/sivia/lighthouse.c available on Skilling's website]) chooses a random existing point and selects a nearby point chosen by a random distance from the existing point; if the likelihood is better, then the point is accepted, else it is rejected and the process repeated. Mukherjee et al. (2006)<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> found higher acceptance rates by selecting points randomly within an ellipsoid drawn around the existing points; this idea was refined into the MultiNest algorithm<ref name="multinest">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. | last3=Bridges|first3=M.|title= MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics |journal= MNRAS |volume= 398 |issue= 4 |year= 2008 |url= https://arxiv.org/abs/0809.3437 |doi= 10.1111/j.1365-2966.2009.14548.x}}</ref> which handles multimodal posteriors better by grouping points into likelihood contours and drawing an ellipsoid for each contour.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Skilling's own code examples (such as one in Sivia and Skilling (2006),<ref>{{cite book | last=Sivia | first=Devinderjit | last2=Skilling | first2=John | title=Data Analysis: A Bayesian Tutorial | publisher=Oxford University Press, USA | publication-place=Oxford | date=June 2006 | isbn=978-0-19-856832-2 | page=}}</ref> [https://www.inference.org.uk/bayesys/sivia/lighthouse.c available on Skilling's website]) chooses a random existing point and selects a nearby point chosen by a random distance from the existing point; if the likelihood is better, then the point is accepted, else it is rejected and the process repeated. Mukherjee et al. (2006)<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> found higher acceptance rates by selecting points randomly within an ellipsoid drawn around the existing points; this idea was refined into the MultiNest algorithm<ref name="multinest">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. | last3=Bridges|first3=M.|title= MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics |journal= MNRAS |volume= 398 |issue= 4 |year= 2008 |url= https://arxiv.org/abs/0809.3437 |doi= 10.1111/j.1365-2966.2009.14548.x<ins style="font-weight: bold; text-decoration: none;">|arxiv= 0809.3437 </ins>}}</ref> which handles multimodal posteriors better by grouping points into likelihood contours and drawing an ellipsoid for each contour.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
</table>
OAbot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1265781930&oldid=prev
BattyBot: Fixed reference date error(s) (see CS1 errors: dates for details) and AWB general fixes
2024-12-28T16:59:55Z
<p>Fixed reference date error(s) (see <a href="/wiki/Category:CS1_errors:_dates" title="Category:CS1 errors: dates">CS1 errors: dates</a> for details) and <a href="/wiki/Wikipedia:AWB/GF" class="mw-redirect" title="Wikipedia:AWB/GF">AWB general fixes</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:59, 28 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 47:</td>
<td colspan="2" class="diff-lineno">Line 47:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Choice of MCMC algorithm ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Choice of MCMC algorithm ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The original procedure outlined by Skilling (given above in pseudocode) does not specify what specific Markov chain Monte Carlo algorithm should be used to choose new points with better likelihood.<del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The original procedure outlined by Skilling (given above in pseudocode) does not specify what specific Markov chain Monte Carlo algorithm should be used to choose new points with better likelihood.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Skilling's own code examples (such as one in Sivia and Skilling (2006)<ref>{{cite book | last=Sivia | first=Devinderjit | last2=Skilling | first2=John | title=Data Analysis: A Bayesian Tutorial | publisher=Oxford University Press, USA | publication-place=Oxford | date=2006<del style="font-weight: bold; text-decoration: none;">-06</del> | isbn=978-0-19-856832-2 | page=}}</ref><del style="font-weight: bold; text-decoration: none;">,</del> [https://www.inference.org.uk/bayesys/sivia/lighthouse.c available on Skilling's website]) chooses a random existing point and selects a nearby point chosen by a random distance from the existing point; if the likelihood is better, then the point is accepted, else it is rejected and the process repeated. Mukherjee et al. (2006)<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> found higher acceptance rates by selecting points randomly within an ellipsoid drawn around the existing points; this idea was refined into the MultiNest algorithm<ref name="multinest">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. | last3=Bridges|first3=M.|title= MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics |journal= MNRAS |volume= 398 |issue= 4 |year= 2008 |url= https://arxiv.org/abs/0809.3437 |doi= 10.1111/j.1365-2966.2009.14548.x}}</ref> which handles multimodal posteriors better by grouping points into likelihood contours and drawing an ellipsoid for each contour.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Skilling's own code examples (such as one in Sivia and Skilling (2006)<ins style="font-weight: bold; text-decoration: none;">,</ins><ref>{{cite book | last=Sivia | first=Devinderjit | last2=Skilling | first2=John | title=Data Analysis: A Bayesian Tutorial | publisher=Oxford University Press, USA | publication-place=Oxford | date=<ins style="font-weight: bold; text-decoration: none;">June </ins>2006 | isbn=978-0-19-856832-2 | page=}}</ref> [https://www.inference.org.uk/bayesys/sivia/lighthouse.c available on Skilling's website]) chooses a random existing point and selects a nearby point chosen by a random distance from the existing point; if the likelihood is better, then the point is accepted, else it is rejected and the process repeated. Mukherjee et al. (2006)<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> found higher acceptance rates by selecting points randomly within an ellipsoid drawn around the existing points; this idea was refined into the MultiNest algorithm<ref name="multinest">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. | last3=Bridges|first3=M.|title= MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics |journal= MNRAS |volume= 398 |issue= 4 |year= 2008 |url= https://arxiv.org/abs/0809.3437 |doi= 10.1111/j.1365-2966.2009.14548.x}}</ref> which handles multimodal posteriors better by grouping points into likelihood contours and drawing an ellipsoid for each contour.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 60:</td>
<td colspan="2" class="diff-lineno">Line 60:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is [https://github.com/js850/nested_sampling on GitHub].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is [https://github.com/js850/nested_sampling on GitHub].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is [https://github.com/libAtoms/pymatnest on GitHub]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is [https://github.com/libAtoms/pymatnest on GitHub]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ref name="multinest"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>><ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, [[Fortran]] and Python inputs, and is [https://github.com/farhanferoz/MultiNest available on GitHub].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ref name="multinest"<ins style="font-weight: bold; text-decoration: none;"> </ins>/><ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, [[Fortran]] and Python inputs, and is [https://github.com/farhanferoz/MultiNest available on GitHub].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package [https://github.com/PolyChord/PolyChordLite available on GitHub]. PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911 |doi-access=free |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref> It has interfaces to likelihood functions written in Python, Fortran, C, or C++.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package [https://github.com/PolyChord/PolyChordLite available on GitHub]. PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911 |doi-access=free |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref> It has interfaces to likelihood functions written in Python, Fortran, C, or C++.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl, a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is [https://github.com/TuringLang/NestedSamplers.jl on GitHub].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl, a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is [https://github.com/TuringLang/NestedSamplers.jl on GitHub].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 66:</td>
<td colspan="2" class="diff-lineno">Line 66:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee"<del style="font-weight: bold; text-decoration: none;">><</del>/<del style="font-weight: bold; text-decoration: none;">ref</del>> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz"<del style="font-weight: bold; text-decoration: none;">>{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http:</del>/<del style="font-weight: bold; text-decoration: none;">/adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref</del>> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties.<del style="font-weight: bold; text-decoration: none;"> </del><ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee"<ins style="font-weight: bold; text-decoration: none;"> </ins>/> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz"/> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties.<ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
</tr>
</table>
BattyBot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1265746409&oldid=prev
MinervaKizyna: /* Implementations */ fixed link text
2024-12-28T12:55:36Z
<p><span class="autocomment">Implementations: </span> fixed link text</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:55, 28 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 55:</td>
<td colspan="2" class="diff-lineno">Line 55:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Simple examples in [[C (programming language)|C]], [[R (programming language)|R]], or [[Python (programming language)|Python]] are on [http://www.inference.phy.cam.ac.uk/bayesys/ John Skilling's website].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Simple examples in [[C (programming language)|C]], [[R (programming language)|R]], or [[Python (programming language)|Python]] are on [http://www.inference.phy.cam.ac.uk/bayesys/ John Skilling's website].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of [http://hackage.haskell.org/package/NestedSampling the above simple codes is on Hackage].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of [http://hackage.haskell.org/package/NestedSampling the above simple codes is on Hackage].</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described on [http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html<del style="font-weight: bold; text-decoration: none;"> Nested sampling algorithm in R on</del> Bojan Nikolic's website] and is [https://github.com/bnikolic/ available on GitHub].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described on [http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Bojan Nikolic's website] and is [https://github.com/bnikolic/ available on GitHub].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the [[Python (programming language)|Python]] toolbox BayesicFitting<ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976 |bibcode= 2021A&C....3700503K }}</ref> for generic model fitting and evidence calculation. It is [https://github.com/dokester/BayesicFitting available on GitHub].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the [[Python (programming language)|Python]] toolbox BayesicFitting<ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976 |bibcode= 2021A&C....3700503K }}</ref> for generic model fitting and evidence calculation. It is [https://github.com/dokester/BayesicFitting available on GitHub].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An implementation in [[C++]], named DIAMONDS, [https://github.com/JorisDeRidder/ is on GitHub].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An implementation in [[C++]], named DIAMONDS, [https://github.com/JorisDeRidder/ is on GitHub].</div></td>
</tr>
<!-- diff cache key enwiki:diff:1.41:old-1265746130:rev-1265746409:wikidiff2=table:1.14.1:ff290eae -->
</table>
MinervaKizyna
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1265746130&oldid=prev
MinervaKizyna: turned refs that were just external links into inline external links
2024-12-28T12:53:20Z
<p>turned refs that were just external links into inline external links</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:53, 28 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 53:</td>
<td colspan="2" class="diff-lineno">Line 53:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Example implementations demonstrating the nested sampling algorithm are publicly available for download, written in several [[programming language]]s.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Example implementations demonstrating the nested sampling algorithm are publicly available for download, written in several [[programming language]]s.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Simple examples in [[C (programming language)|C]], [[R (programming language)|R]], or [[Python (programming language)|Python]] are on <del style="font-weight: bold; text-decoration: none;">John Skilling's website.<ref></del>[http://www.inference.phy.cam.ac.uk/bayesys/ John Skilling website]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Simple examples in [[C (programming language)|C]], [[R (programming language)|R]], or [[Python (programming language)|Python]] are on [http://www.inference.phy.cam.ac.uk/bayesys/ John Skilling<ins style="font-weight: bold; text-decoration: none;">'s</ins> website]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of <del style="font-weight: bold; text-decoration: none;">the above simple codes is on Hackage.<ref></del>[http://hackage.haskell.org/package/NestedSampling <del style="font-weight: bold; text-decoration: none;">Nested</del> <del style="font-weight: bold; text-decoration: none;">sampling</del> <del style="font-weight: bold; text-decoration: none;">algorithm</del> <del style="font-weight: bold; text-decoration: none;">in</del> <del style="font-weight: bold; text-decoration: none;">Haskell</del> <del style="font-weight: bold; text-decoration: none;">at</del> Hackage]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of [http://hackage.haskell.org/package/NestedSampling <ins style="font-weight: bold; text-decoration: none;">the</ins> <ins style="font-weight: bold; text-decoration: none;">above</ins> <ins style="font-weight: bold; text-decoration: none;">simple</ins> <ins style="font-weight: bold; text-decoration: none;">codes</ins> <ins style="font-weight: bold; text-decoration: none;">is</ins> <ins style="font-weight: bold; text-decoration: none;">on</ins> Hackage]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described <del style="font-weight: bold; text-decoration: none;">at</del> <del style="font-weight: bold; text-decoration: none;"><ref></del>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]<del style="font-weight: bold; text-decoration: none;"></ref></del> and is <del style="font-weight: bold; text-decoration: none;">on GitHub.<ref></del>[https://github.com/bnikolic/<del style="font-weight: bold; text-decoration: none;">RNested</del> <del style="font-weight: bold; text-decoration: none;">Nested sampling algorithm in R</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described <ins style="font-weight: bold; text-decoration: none;">on</ins> [http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic<ins style="font-weight: bold; text-decoration: none;">'s</ins> website] and is [https://github.com/bnikolic/ <ins style="font-weight: bold; text-decoration: none;">available</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting<del style="font-weight: bold; text-decoration: none;"> </del><ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976 |bibcode= 2021A&C....3700503K }}</ref> for generic model fitting and evidence calculation. It is <del style="font-weight: bold; text-decoration: none;">on Github <ref></del>[https://github.com/dokester/BayesicFitting <del style="font-weight: bold; text-decoration: none;">Python toolbox containing a Nested sampling algorithm</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the <ins style="font-weight: bold; text-decoration: none;">[[</ins>Python<ins style="font-weight: bold; text-decoration: none;"> (programming language)|Python]]</ins> toolbox BayesicFitting<ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976 |bibcode= 2021A&C....3700503K }}</ref> for generic model fitting and evidence calculation. It is [https://github.com/dokester/BayesicFitting <ins style="font-weight: bold; text-decoration: none;">available</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An <del style="font-weight: bold; text-decoration: none;">example</del> in [[C++]], named <del style="font-weight: bold; text-decoration: none;">Diamonds</del>, <del style="font-weight: bold; text-decoration: none;">is on GitHub.<ref></del>[https://github.com/JorisDeRidder/<del style="font-weight: bold; text-decoration: none;">DIAMONDS</del> <del style="font-weight: bold; text-decoration: none;">Nested sampling algorithm in C++</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An <ins style="font-weight: bold; text-decoration: none;">implementation</ins> in [[C++]], named <ins style="font-weight: bold; text-decoration: none;">DIAMONDS</ins>, [https://github.com/JorisDeRidder/ <ins style="font-weight: bold; text-decoration: none;">is</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is <del style="font-weight: bold; text-decoration: none;">on GitHub.<ref></del>[https://github.com/js850/nested_sampling<del style="font-weight: bold; text-decoration: none;"> Nested sampling algorithm in Python</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is [https://github.com/js850/nested_sampling on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a<del style="font-weight: bold; text-decoration: none;"> [[Python (programming language)|Python]]</del> package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is <del style="font-weight: bold; text-decoration: none;">on GitHub.<ref></del>[https://github.com/libAtoms/pymatnest<del style="font-weight: bold; text-decoration: none;"> Nested sampling algorithm for materials simulation</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is [https://github.com/libAtoms/pymatnest on GitHub]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, Fortran and Python inputs, and is <del style="font-weight: bold; text-decoration: none;">available on GitHub.<ref></del>[https://github.com/farhanferoz/MultiNest <del style="font-weight: bold; text-decoration: none;">The MultiNest nested sampling software package</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ins style="font-weight: bold; text-decoration: none;"><ref name="multinest"></ref></ins><ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, <ins style="font-weight: bold; text-decoration: none;">[[</ins>Fortran<ins style="font-weight: bold; text-decoration: none;">]]</ins> and Python inputs, and is [https://github.com/farhanferoz/MultiNest <ins style="font-weight: bold; text-decoration: none;">available</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package <del style="font-weight: bold; text-decoration: none;">available on GitHub.<ref></del>[https://github.com/PolyChord/PolyChordLite <del style="font-weight: bold; text-decoration: none;">The PolyChord nested sampling software package</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del> PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911 |doi-access=free |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package [https://github.com/PolyChord/PolyChordLite <ins style="font-weight: bold; text-decoration: none;">available</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins> PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911 |doi-access=free |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref><ins style="font-weight: bold; text-decoration: none;"> It has interfaces to likelihood functions written in Python, Fortran, C, or C++.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is <del style="font-weight: bold; text-decoration: none;">on GitHub.<ref></del>[https://github.com/TuringLang/NestedSamplers.jl<del style="font-weight: bold; text-decoration: none;"> Implementations of single and multi-ellipsoid nested sampling in Julia</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl<ins style="font-weight: bold; text-decoration: none;">,</ins> a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is [https://github.com/TuringLang/NestedSamplers.jl on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.cse-lab.ethz.ch/korali/ Korali] is a high-performance framework for uncertainty quantification, optimization, and deep reinforcement learning, which also implements nested sampling.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.cse-lab.ethz.ch/korali/ Korali] is a high-performance framework for uncertainty quantification, optimization, and deep reinforcement learning, which also implements nested sampling.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 73:</td>
<td colspan="2" class="diff-lineno">Line 73:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Publicly available dynamic nested sampling software packages include:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Publicly available dynamic nested sampling software packages include:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{Proper name|dynesty}} - a Python implementation of dynamic nested sampling which can be <del style="font-weight: bold; text-decoration: none;">downloaded from GitHub.<ref></del>[https://github.com/joshspeagle/dynesty <del style="font-weight: bold; text-decoration: none;">The</del> <del style="font-weight: bold; text-decoration: none;">dynesty nested sampling software package on</del> GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del><ref>{{cite journal |last=Speagle |first=Joshua |title=dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences |journal=Monthly Notices of the Royal Astronomical Society |year=2020 |volume=493 |issue=3 |pages=3132–3158 |doi=10.1093/mnras/staa278 |doi-access=free |arxiv=1904.02180|s2cid=102354337 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{Proper name|dynesty}} - a Python implementation of dynamic nested sampling which can be [https://github.com/joshspeagle/dynesty <ins style="font-weight: bold; text-decoration: none;">downloaded</ins> <ins style="font-weight: bold; text-decoration: none;">from</ins> GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{cite journal |last=Speagle |first=Joshua |title=dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences |journal=Monthly Notices of the Royal Astronomical Society |year=2020 |volume=493 |issue=3 |pages=3132–3158 |doi=10.1093/mnras/staa278 |doi-access=free |arxiv=1904.02180|s2cid=102354337 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is <del style="font-weight: bold; text-decoration: none;">available on GitHub.<ref></del>[https://github.com/ejhigson/dyPolyChord <del style="font-weight: bold; text-decoration: none;">The dyPolyChord dynamic nested sampling software package</del> on GitHub]<del style="font-weight: bold; text-decoration: none;"></ref></del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is [https://github.com/ejhigson/dyPolyChord <ins style="font-weight: bold; text-decoration: none;">available</ins> on GitHub]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dynamic nested sampling has been applied to a variety of scientific problems, including analysis of gravitational waves,<ref>{{cite journal |last1=Ashton |first1=Gregory |title=Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy |journal=The Astrophysical Journal Supplement Series |date=2019 |volume=241 |issue=2 |page=13 |doi=10.3847/1538-4365/ab06fc |display-authors=etal|bibcode=2019ApJS..241...27A |arxiv=1811.02042 |s2cid=118677076 |doi-access=free }}</ref> mapping distances in space<ref>{{cite journal |last1=Zucker |first1=Catherine |title=Mapping Distances across the Perseus Molecular Cloud Using {CO} Observations, Stellar Photometry, and Gaia {DR}2 Parallax Measurements |journal=The Astrophysical Journal |date=2018 |volume=869 |issue=1 |page=83 |doi=10.3847/1538-4357/aae97c |display-authors=etal|arxiv=1803.08931 |s2cid=119446622 |doi-access=free }}</ref> and exoplanet detection.<ref>{{cite journal |last1=Günther |first1=Maximilian |title=A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 |journal=Nature Astronomy |date=2019 |volume=3 |issue=12 |pages=1099–1108 |doi=10.1038/s41550-019-0845-5 |display-authors=etal|bibcode=2019NatAs...3.1099G |arxiv=1903.06107 |s2cid=119286334 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dynamic nested sampling has been applied to a variety of scientific problems, including analysis of gravitational waves,<ref>{{cite journal |last1=Ashton |first1=Gregory |title=Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy |journal=The Astrophysical Journal Supplement Series |date=2019 |volume=241 |issue=2 |page=13 |doi=10.3847/1538-4365/ab06fc |display-authors=etal|bibcode=2019ApJS..241...27A |arxiv=1811.02042 |s2cid=118677076 |doi-access=free }}</ref> mapping distances in space<ref>{{cite journal |last1=Zucker |first1=Catherine |title=Mapping Distances across the Perseus Molecular Cloud Using {CO} Observations, Stellar Photometry, and Gaia {DR}2 Parallax Measurements |journal=The Astrophysical Journal |date=2018 |volume=869 |issue=1 |page=83 |doi=10.3847/1538-4357/aae97c |display-authors=etal|arxiv=1803.08931 |s2cid=119446622 |doi-access=free }}</ref> and exoplanet detection.<ref>{{cite journal |last1=Günther |first1=Maximilian |title=A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 |journal=Nature Astronomy |date=2019 |volume=3 |issue=12 |pages=1099–1108 |doi=10.1038/s41550-019-0845-5 |display-authors=etal|bibcode=2019NatAs...3.1099G |arxiv=1903.06107 |s2cid=119286334 }}</ref></div></td>
</tr>
</table>
MinervaKizyna
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1265744754&oldid=prev
MinervaKizyna: added section on how to choose new nested sampling points
2024-12-28T12:42:28Z
<p>added section on how to choose new nested sampling points</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:42, 28 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 45:</td>
<td colspan="2" class="diff-lineno">Line 45:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea is to subdivide the range of <math>f(\theta) = P(D\mid\theta,M)</math> and estimate, for each interval <math>[f(\theta_{i-1}), f(\theta_i)]</math>, how likely it is a priori that a randomly chosen <math>\theta</math> would map to this interval. This can be thought of as a Bayesian's way to numerically implement [[Lebesgue integration]].<ref name="Jasa">{{cite journal |last1= Jasa|first1= Tomislav |last2= Xiang |first2= Ning|title= Nested sampling applied in Bayesian room-acoustics decay analysis |journal= Journal of the Acoustical Society of America |pages= 3251–3262 |year= 2012 |volume= 132 |issue= 5 |doi=10.1121/1.4754550|pmid= 23145609 |bibcode= 2012ASAJ..132.3251J|s2cid= 20876510 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The idea is to subdivide the range of <math>f(\theta) = P(D\mid\theta,M)</math> and estimate, for each interval <math>[f(\theta_{i-1}), f(\theta_i)]</math>, how likely it is a priori that a randomly chosen <math>\theta</math> would map to this interval. This can be thought of as a Bayesian's way to numerically implement [[Lebesgue integration]].<ref name="Jasa">{{cite journal |last1= Jasa|first1= Tomislav |last2= Xiang |first2= Ning|title= Nested sampling applied in Bayesian room-acoustics decay analysis |journal= Journal of the Acoustical Society of America |pages= 3251–3262 |year= 2012 |volume= 132 |issue= 5 |doi=10.1121/1.4754550|pmid= 23145609 |bibcode= 2012ASAJ..132.3251J|s2cid= 20876510 }}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Choice of MCMC algorithm ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The original procedure outlined by Skilling (given above in pseudocode) does not specify what specific Markov chain Monte Carlo algorithm should be used to choose new points with better likelihood. </div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Skilling's own code examples (such as one in Sivia and Skilling (2006)<ref>{{cite book | last=Sivia | first=Devinderjit | last2=Skilling | first2=John | title=Data Analysis: A Bayesian Tutorial | publisher=Oxford University Press, USA | publication-place=Oxford | date=2006-06 | isbn=978-0-19-856832-2 | page=}}</ref>, [https://www.inference.org.uk/bayesys/sivia/lighthouse.c available on Skilling's website]) chooses a random existing point and selects a nearby point chosen by a random distance from the existing point; if the likelihood is better, then the point is accepted, else it is rejected and the process repeated. Mukherjee et al. (2006)<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> found higher acceptance rates by selecting points randomly within an ellipsoid drawn around the existing points; this idea was refined into the MultiNest algorithm<ref name="multinest">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. | last3=Bridges|first3=M.|title= MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics |journal= MNRAS |volume= 398 |issue= 4 |year= 2008 |url= https://arxiv.org/abs/0809.3437 |doi= 10.1111/j.1365-2966.2009.14548.x}}</ref> which handles multimodal posteriors better by grouping points into likelihood contours and drawing an ellipsoid for each contour.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 61:</td>
<td colspan="2" class="diff-lineno">Line 66:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee"><del style="font-weight: bold; text-decoration: none;">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</del></ref> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties. <ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee"></ref> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |doi-access= free |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties. <ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
</tr>
</table>
MinervaKizyna
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1263192380&oldid=prev
Citation bot: Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Randomized algorithms | #UCB_Category 3/44
2024-12-15T06:26:01Z
<p>Added bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Randomized_algorithms" title="Category:Randomized algorithms">Category:Randomized algorithms</a> | #UCB_Category 3/44</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:26, 15 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 51:</td>
<td colspan="2" class="diff-lineno">Line 51:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976 }}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free |arxiv= 2109.11976<ins style="font-weight: bold; text-decoration: none;"> |bibcode= 2021A&C....3700503K</ins> }}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1246528482&oldid=prev
Citation bot: Added doi-access. | Use this bot. Report bugs. | Suggested by GoingBatty | Category:CS1 maint: unflagged free DOI | #UCB_Category 28/31
2024-09-19T14:08:15Z
<p>Added doi-access. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by GoingBatty | <a href="/wiki/Category:CS1_maint:_unflagged_free_DOI" title="Category:CS1 maint: unflagged free DOI">Category:CS1 maint: unflagged free DOI</a> | #UCB_Category 28/31</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:08, 19 September 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 55:</td>
<td colspan="2" class="diff-lineno">Line 55:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a [[Python (programming language)|Python]] package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is on GitHub.<ref>[https://github.com/libAtoms/pymatnest Nested sampling algorithm for materials simulation on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* pymatnest is a [[Python (programming language)|Python]] package designed for exploring the [[energy landscape]] of different materials, calculating thermodynamic variables at arbitrary temperatures and locating [[phase transitions]] is on GitHub.<ref>[https://github.com/libAtoms/pymatnest Nested sampling algorithm for materials simulation on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, Fortran and Python inputs, and is available on GitHub.<ref>[https://github.com/farhanferoz/MultiNest The MultiNest nested sampling software package on GitHub]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The MultiNest software package is capable of performing nested sampling on multi-modal posterior distributions.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x<ins style="font-weight: bold; text-decoration: none;"> |doi-access= free</ins> |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> It has interfaces for C++, Fortran and Python inputs, and is available on GitHub.<ref>[https://github.com/farhanferoz/MultiNest The MultiNest nested sampling software package on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package available on GitHub.<ref>[https://github.com/PolyChord/PolyChordLite The PolyChord nested sampling software package on GitHub]</ref> PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911 |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* PolyChord is another nested sampling software package available on GitHub.<ref>[https://github.com/PolyChord/PolyChordLite The PolyChord nested sampling software package on GitHub]</ref> PolyChord's computational efficiency scales better with an increase in the number of parameters than MultiNest, meaning PolyChord can be more efficient for high dimensional problems.<ref>{{cite journal |last1=Handley |first1=Will |first2=Mike |last2=Hobson |first3=Anthony |last3=Lasenby |title=polychord: next-generation nested sampling |journal=Monthly Notices of the Royal Astronomical Society |date=2015 |volume=453 |issue=4 |pages=4384–4398 |doi=10.1093/mnras/stv1911<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> |bibcode=2015MNRAS.453.4384H |arxiv=1506.00171 |s2cid=118882763 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is on GitHub.<ref>[https://github.com/TuringLang/NestedSamplers.jl Implementations of single and multi-ellipsoid nested sampling in Julia on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* NestedSamplers.jl a [[Julia (programming language)|Julia]] package for implementing single- and multi-ellipsoidal nested sampling algorithms is on GitHub.<ref>[https://github.com/TuringLang/NestedSamplers.jl Implementations of single and multi-ellipsoid nested sampling in Julia on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.cse-lab.ethz.ch/korali/ Korali] is a high-performance framework for uncertainty quantification, optimization, and deep reinforcement learning, which also implements nested sampling.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://www.cse-lab.ethz.ch/korali/ Korali] is a high-performance framework for uncertainty quantification, optimization, and deep reinforcement learning, which also implements nested sampling.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties. <ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since nested sampling was proposed in 2004, it has been used in many aspects of the field of [[astronomy]]. One paper suggested using nested sampling for [[cosmology|cosmological]] [[model selection]] and object detection, as it "uniquely combines accuracy, general applicability and computational feasibility."<ref name="mukherjee">{{cite journal |last1= Mukherjee |first1= P. |last2= Parkinson |first2= D. |last3= Liddle |first3= A.R. |title= A Nested Sampling Algorithm for Cosmological Model Selection |journal= Astrophysical Journal |volume= 638 |issue= 2 |pages= 51–54 |year= 2006 |bibcode= 2006ApJ...638L..51M |doi= 10.1086/501068|arxiv= astro-ph/0508461|s2cid= 6208051 }}</ref> A refinement of the algorithm to handle multimodal posteriors has been suggested as a means to detect astronomical objects in extant datasets.<ref name="feroz">{{cite journal |last1= Feroz |first1= F. |last2= Hobson |first2= M.P. |title= Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses |journal= MNRAS |volume= 384 |issue= 2 |pages= 449–463 |year= 2008 |url= http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0704.3704 |doi= 10.1111/j.1365-2966.2007.12353.x<ins style="font-weight: bold; text-decoration: none;"> |doi-access= free</ins> |bibcode=2008MNRAS.384..449F |arxiv= 0704.3704|s2cid= 14226032 }}</ref> Other applications of nested sampling are in the field of [[finite element updating]] where the algorithm is used to choose an optimal [[finite element]] model, and this was applied to [[structural dynamics]].<ref>{{cite journal |last1= Mthembu |first1= L. |last2= Marwala |first2= T. |last3= Friswell |first3= M.I. |last4= Adhikari |first4= S. |title= Model selection in finite element model updating using the Bayesian evidence statistic |journal= Mechanical Systems and Signal Processing |volume= 25 |issue= 7 |pages= 2399–2412 |year= 2011 |doi=10.1016/j.ymssp.2011.04.001|bibcode= 2011MSSP...25.2399M }}</ref> This sampling method has also been used in the field of materials modeling. It can be used to learn the [[Partition function (statistical mechanics)|partition function]] from [[statistical mechanics]] and derive [[thermodynamics|thermodynamic]] properties. <ref name="partay">{{cite journal|last1=Partay|first1=Livia B.|year=2010|title=Efficient Sampling of Atomic Configurational Spaces|journal=The Journal of Physical Chemistry B|volume=114|issue=32|pages=10502–10512|doi=10.1021/jp1012973|pmid=20701382|arxiv=0906.3544|s2cid=16834142}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Dynamic nested sampling==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 68:</td>
<td colspan="2" class="diff-lineno">Line 68:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Publicly available dynamic nested sampling software packages include:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Publicly available dynamic nested sampling software packages include:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{Proper name|dynesty}} - a Python implementation of dynamic nested sampling which can be downloaded from GitHub.<ref>[https://github.com/joshspeagle/dynesty The dynesty nested sampling software package on GitHub]</ref><ref>{{cite journal |last=Speagle |first=Joshua |title=dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences |journal=Monthly Notices of the Royal Astronomical Society |year=2020 |volume=493 |issue=3 |pages=3132–3158 |doi=10.1093/mnras/staa278 |arxiv=1904.02180|s2cid=102354337 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{Proper name|dynesty}} - a Python implementation of dynamic nested sampling which can be downloaded from GitHub.<ref>[https://github.com/joshspeagle/dynesty The dynesty nested sampling software package on GitHub]</ref><ref>{{cite journal |last=Speagle |first=Joshua |title=dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences |journal=Monthly Notices of the Royal Astronomical Society |year=2020 |volume=493 |issue=3 |pages=3132–3158 |doi=10.1093/mnras/staa278<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> |arxiv=1904.02180|s2cid=102354337 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is available on GitHub.<ref>[https://github.com/ejhigson/dyPolyChord The dyPolyChord dynamic nested sampling software package on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is available on GitHub.<ref>[https://github.com/ejhigson/dyPolyChord The dyPolyChord dynamic nested sampling software package on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1193503565&oldid=prev
OAbot: Open access bot: arxiv updated in citation with #oabot.
2024-01-04T04:16:32Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: arxiv updated in citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:16, 4 January 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 51:</td>
<td colspan="2" class="diff-lineno">Line 51:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free }}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503|doi-access= free<ins style="font-weight: bold; text-decoration: none;"> |arxiv= 2109.11976</ins> }}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
</tr>
</table>
OAbot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1183941845&oldid=prev
OAbot: Open access bot: doi updated in citation with #oabot.
2023-11-07T12:04:50Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi updated in citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:04, 7 November 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 51:</td>
<td colspan="2" class="diff-lineno">Line 51:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A [[Haskell (programming language)|Haskell]] port of the above simple codes is on Hackage.<ref>[http://hackage.haskell.org/package/NestedSampling Nested sampling algorithm in Haskell at Hackage]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[R (programming language)|R]] originally designed for [[Curve fitting|fitting]] [[Spectrum|spectra]] is described at <ref>[http://www.mrao.cam.ac.uk/~bn204/galevol/speca/rnested.html Nested sampling algorithm in R on Bojan Nikolic website]</ref> and is on GitHub.<ref>[https://github.com/bnikolic/RNested Nested sampling algorithm in R on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503}}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A NestedSampler is part of the Python toolbox BayesicFitting <ref name="kester">{{cite journal |last1= Kester |first1= D. |last2= Mueller |first2= M. |title= BayesicFitting, a PYTHON toolbox for Bayesian fitting and evidence calculation.: Including a Nested Sampling implementation. |journal= Astronomy and Computing |volume= 37 |pages= 100503 |year= 2021 | doi= 10.1016/j.ascom.2021.100503<ins style="font-weight: bold; text-decoration: none;">|doi-access= free </ins>}}</ref> for generic model fitting and evidence calculation. It is on Github <ref>[https://github.com/dokester/BayesicFitting Python toolbox containing a Nested sampling algorithm on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An example in [[C++]], named Diamonds, is on GitHub.<ref>[https://github.com/JorisDeRidder/DIAMONDS Nested sampling algorithm in C++ on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A highly modular [[Python (programming language)|Python]] parallel example for [[statistical physics]] and [[condensed matter physics]] uses is on GitHub.<ref>[https://github.com/js850/nested_sampling Nested sampling algorithm in Python on GitHub]</ref></div></td>
</tr>
</table>
OAbot
https://en.wikipedia.org/w/index.php?title=Nested_sampling_algorithm&diff=1181813903&oldid=prev
Citation bot: Add: doi-access. Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine
2023-10-25T11:05:09Z
<p>Add: doi-access. Removed proxy/dead URL that duplicated identifier. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_CommandLine</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:05, 25 October 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 44:</td>
<td colspan="2" class="diff-lineno">Line 44:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the limit <math>j \to \infty</math>, this estimator has a positive bias of order <math> 1 / N</math><ref>{{cite journal |last= Walter |first= Clement| title=Point-process based Monte Carlo estimation| journal=Statistics and Computing|pages=219–236 |year=2017| volume=27|doi=10.1007/s11222-015-9617-y |arxiv=1412.6368|s2cid= 14639080}}</ref> which can be removed by using <math>(1 - 1/N)</math> instead of the <math>\exp (-1/N)</math> in the above algorithm.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the limit <math>j \to \infty</math>, this estimator has a positive bias of order <math> 1 / N</math><ref>{{cite journal |last= Walter |first= Clement| title=Point-process based Monte Carlo estimation| journal=Statistics and Computing|pages=219–236 |year=2017| volume=27|doi=10.1007/s11222-015-9617-y |arxiv=1412.6368|s2cid= 14639080}}</ref> which can be removed by using <math>(1 - 1/N)</math> instead of the <math>\exp (-1/N)</math> in the above algorithm.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The idea is to subdivide the range of <math>f(\theta) = P(D\mid\theta,M)</math> and estimate, for each interval <math>[f(\theta_{i-1}), f(\theta_i)]</math>, how likely it is a priori that a randomly chosen <math>\theta</math> would map to this interval. This can be thought of as a Bayesian's way to numerically implement [[Lebesgue integration]].<ref name="Jasa">{{cite journal |last1= Jasa|first1= Tomislav |last2= Xiang |first2= Ning|title= Nested sampling applied in Bayesian room-acoustics decay analysis |journal= Journal of the Acoustical Society of America |pages= 3251–3262 |year= 2012 |volume= 132 |issue= 5 |doi=10.1121/1.4754550|pmid= 23145609 |bibcode= 2012ASAJ..132.3251J|s2cid= 20876510<del style="font-weight: bold; text-decoration: none;"> |url= https://semanticscholar.org/paper/8225853110831e251aff26fc9b6431d0f2cc6e6c</del> }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The idea is to subdivide the range of <math>f(\theta) = P(D\mid\theta,M)</math> and estimate, for each interval <math>[f(\theta_{i-1}), f(\theta_i)]</math>, how likely it is a priori that a randomly chosen <math>\theta</math> would map to this interval. This can be thought of as a Bayesian's way to numerically implement [[Lebesgue integration]].<ref name="Jasa">{{cite journal |last1= Jasa|first1= Tomislav |last2= Xiang |first2= Ning|title= Nested sampling applied in Bayesian room-acoustics decay analysis |journal= Journal of the Acoustical Society of America |pages= 3251–3262 |year= 2012 |volume= 132 |issue= 5 |doi=10.1121/1.4754550|pmid= 23145609 |bibcode= 2012ASAJ..132.3251J|s2cid= 20876510 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementations==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 71:</td>
<td colspan="2" class="diff-lineno">Line 71:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is available on GitHub.<ref>[https://github.com/ejhigson/dyPolyChord The dyPolyChord dynamic nested sampling software package on GitHub]</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* dyPolyChord: a software package which can be used with Python, C++ and Fortran likelihood and prior distributions.<ref>{{cite journal |last1=Higson |first1=Edward |title=dyPolyChord: dynamic nested sampling with PolyChord |journal=Journal of Open Source Software |date=2018 |volume=3 |issue=29 |page=965 |doi=10.21105/joss.00965 |doi-access=free }}</ref> dyPolyChord is available on GitHub.<ref>[https://github.com/ejhigson/dyPolyChord The dyPolyChord dynamic nested sampling software package on GitHub]</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Dynamic nested sampling has been applied to a variety of scientific problems, including analysis of gravitational waves,<ref>{{cite journal |last1=Ashton |first1=Gregory |title=Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy |journal=The Astrophysical Journal Supplement Series |date=2019 |volume=241 |issue=2 |page=13 |doi=10.3847/1538-4365/ab06fc |display-authors=etal|bibcode=2019ApJS..241...27A |arxiv=1811.02042 |s2cid=118677076 }}</ref> mapping distances in space<ref>{{cite journal |last1=Zucker |first1=Catherine |title=Mapping Distances across the Perseus Molecular Cloud Using {CO} Observations, Stellar Photometry, and Gaia {DR}2 Parallax Measurements |journal=The Astrophysical Journal |date=2018 |volume=869 |issue=1 |page=83 |doi=10.3847/1538-4357/aae97c |display-authors=etal|arxiv=1803.08931 |s2cid=119446622 }}</ref> and exoplanet detection.<ref>{{cite journal |last1=Günther |first1=Maximilian |title=A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 |journal=Nature Astronomy |date=2019 |volume=3 |issue=12 |pages=1099–1108 |doi=10.1038/s41550-019-0845-5 |display-authors=etal|bibcode=2019NatAs...3.1099G |arxiv=1903.06107 |s2cid=119286334 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Dynamic nested sampling has been applied to a variety of scientific problems, including analysis of gravitational waves,<ref>{{cite journal |last1=Ashton |first1=Gregory |title=Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy |journal=The Astrophysical Journal Supplement Series |date=2019 |volume=241 |issue=2 |page=13 |doi=10.3847/1538-4365/ab06fc |display-authors=etal|bibcode=2019ApJS..241...27A |arxiv=1811.02042 |s2cid=118677076<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> }}</ref> mapping distances in space<ref>{{cite journal |last1=Zucker |first1=Catherine |title=Mapping Distances across the Perseus Molecular Cloud Using {CO} Observations, Stellar Photometry, and Gaia {DR}2 Parallax Measurements |journal=The Astrophysical Journal |date=2018 |volume=869 |issue=1 |page=83 |doi=10.3847/1538-4357/aae97c |display-authors=etal|arxiv=1803.08931 |s2cid=119446622<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> }}</ref> and exoplanet detection.<ref>{{cite journal |last1=Günther |first1=Maximilian |title=A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 |journal=Nature Astronomy |date=2019 |volume=3 |issue=12 |pages=1099–1108 |doi=10.1038/s41550-019-0845-5 |display-authors=etal|bibcode=2019NatAs...3.1099G |arxiv=1903.06107 |s2cid=119286334 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>
Citation bot