https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Non-constructive_algorithm_existence_proofsNon-constructive algorithm existence proofs - Revision history2025-05-30T10:01:45ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1288851203&oldid=prevCitationNeededLOL: /* growthexperiments-addlink-summary-summary:2|0|0 */2025-05-05T02:23:50Z<p>Link suggestions feature: 2 links added.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:23, 5 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 6:</td>
<td colspan="2" class="diff-lineno">Line 6:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In combinatorial game theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In combinatorial game theory===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A simple example of a non-constructive algorithm was published in 1982 by [[Elwyn R. Berlekamp]], [[John H. Conway]], and [[Richard K. Guy]], in their book ''[[Winning Ways for Your Mathematical Plays]]''. It concerns the game of [[Sylver Coinage]], in which players take turns specifying a positive integer that cannot be expressed as a sum of previously specified values, with a player losing when they are forced to specify the number&nbsp;1. There exists an algorithm (given in the book as a flow chart) for determining whether a given first move is winning or losing: if it is a [[prime number]] greater than three, or one of a finite set of [[smooth number|3-smooth numbers]], then it is a winning first move, and otherwise it is losing. However, the finite set is not known.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A simple example of a non-constructive algorithm was published in 1982 by [[Elwyn R. Berlekamp]], [[John H. Conway]], and [[Richard K. Guy]], in their book ''[[Winning Ways for Your Mathematical Plays]]''. It concerns the game of [[Sylver Coinage]], in which players take turns specifying a positive <ins style="font-weight: bold; text-decoration: none;">[[</ins>integer<ins style="font-weight: bold; text-decoration: none;">]]</ins> that cannot be expressed as a sum of previously specified values, with a player losing when they are forced to specify the number&nbsp;1. There exists an algorithm (given in the book as a flow chart) for determining whether a given first move is winning or losing: if it is a [[prime number]] greater than three, or one of a <ins style="font-weight: bold; text-decoration: none;">[[</ins>finite set<ins style="font-weight: bold; text-decoration: none;">]]</ins> of [[smooth number|3-smooth numbers]], then it is a winning first move, and otherwise it is losing. However, the finite set is not known.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
</tr>
</table>CitationNeededLOLhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1282405644&oldid=prevDavid Eppstein: dab2025-03-26T06:06:38Z<p>dab</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:06, 26 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 61:</td>
<td colspan="2" class="diff-lineno">Line 61:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Additional examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Additional examples ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Some computational problems can be shown to be decidable by using the [[Law of Excluded Middle#Use in computer science proofs|Law of Excluded Middle]]. Such proofs are usually not very useful in practice, since the problems involved are quite artificial.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Some computational problems can be shown to be decidable by using the [[Law of Excluded Middle#Use in computer science proofs|Law of Excluded Middle]]. Such proofs are usually not very useful in practice, since the problems involved are quite artificial.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An example from [[Quantum complexity theory]] (related to [[Quantum query complexity]]) is given in.<ref>{{Cite journal | doi = 10.4086/cjtcs.2013.004| year = 2013| last1 = Kimmel | first1 = S.| title = Quantum Adversary (Upper) Bound| journal = Chicago Journal of Theoretical Computer Science| volume = 19| pages = 1–14| arxiv = 1101.0797| s2cid = 119264518}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An example from [[Quantum complexity theory]] (related to [[<ins style="font-weight: bold; text-decoration: none;">Quantum complexity theory#Quantum query complexity|</ins>Quantum query complexity]]) is given in.<ref>{{Cite journal | doi = 10.4086/cjtcs.2013.004| year = 2013| last1 = Kimmel | first1 = S.| title = Quantum Adversary (Upper) Bound| journal = Chicago Journal of Theoretical Computer Science| volume = 19| pages = 1–14| arxiv = 1101.0797| s2cid = 119264518}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>David Eppsteinhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1253877606&oldid=prevTTWIDEE: Simplified link text2024-10-28T10:39:36Z<p>Simplified link text</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:39, 28 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The vast majority of positive results about [[computational problem]]s are [[constructive proof]]s, i.e., a computational problem is proved to be solvable by showing an [[algorithm]] that solves it; a computational problem is shown to be in [[P (complexity)]] by showing an algorithm that solves it in time that is polynomial in the size of the input; etc.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The vast majority of positive results about [[computational problem]]s are [[constructive proof]]s, i.e., a computational problem is proved to be solvable by showing an [[algorithm]] that solves it; a computational problem is shown to be in [[P (complexity)<ins style="font-weight: bold; text-decoration: none;">|P</ins>]] by showing an algorithm that solves it in time that is polynomial in the size of the input; etc.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, there are several [[non-constructive]] results, where an algorithm is proved to exist without showing the algorithm itself. Several techniques are used to provide such existence proofs.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, there are several [[non-constructive]] results, where an algorithm is proved to exist without showing the algorithm itself. Several techniques are used to provide such existence proofs.</div></td>
</tr>
</table>TTWIDEEhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1190597171&oldid=prevKaltenmeyer: an -> a2023-12-18T20:18:42Z<p>an -> a</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:18, 18 December 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>How many queries do you need? Obviously, ''n'' queries are always sufficient, because you can use ''n'' queries asking for the "sum" of a single element. But when ''d'' is sufficiently small, it is possible to do better. The general idea is as follows.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>How many queries do you need? Obviously, ''n'' queries are always sufficient, because you can use ''n'' queries asking for the "sum" of a single element. But when ''d'' is sufficiently small, it is possible to do better. The general idea is as follows.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the [[dot product]] of the query vector by ''v''. Every set of ''k'' queries can be represented by <del style="font-weight: bold; text-decoration: none;">an</del> ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the [[dot product]] of the query vector by ''v''. Every set of ''k'' queries can be represented by <ins style="font-weight: bold; text-decoration: none;">a</ins> ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is unique. A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is unique. A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
</tr>
</table>Kaltenmeyerhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1170336420&oldid=prevOAbot: Open access bot: doi updated in citation with #oabot.2023-08-14T13:05:31Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi updated in citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:05, 14 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Non-constructive algorithm proofs for problems in [[graph theory]] were studied beginning in 1988 by [[Michael Fellows]] and [[Michael Langston]].<ref name=FellowsLangston1988>{{Cite journal | doi = 10.1145/44483.44491| title = Nonconstructive tools for proving polynomial-time decidability| journal = Journal of the ACM| volume = 35| issue = 3| pages = 727| year = 1988| last1 = Fellows | first1 = M. R. | last2 = Langston | first2 = M. A. | s2cid = 16587284}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Non-constructive algorithm proofs for problems in [[graph theory]] were studied beginning in 1988 by [[Michael Fellows]] and [[Michael Langston]].<ref name=FellowsLangston1988>{{Cite journal | doi = 10.1145/44483.44491| title = Nonconstructive tools for proving polynomial-time decidability| journal = Journal of the ACM| volume = 35| issue = 3| pages = 727| year = 1988| last1 = Fellows | first1 = M. R. | last2 = Langston | first2 = M. A. | s2cid = 16587284<ins style="font-weight: bold; text-decoration: none;">| doi-access = free</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A common question in graph theory is whether a certain input graph has a certain property. For example:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A common question in graph theory is whether a certain input graph has a certain property. For example:</div></td>
</tr>
</table>OAbothttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1135736293&oldid=prevKku: link [dD]ot product2023-01-26T15:07:47Z<p>link [dD]ot product</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:07, 26 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>How many queries do you need? Obviously, ''n'' queries are always sufficient, because you can use ''n'' queries asking for the "sum" of a single element. But when ''d'' is sufficiently small, it is possible to do better. The general idea is as follows.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>How many queries do you need? Obviously, ''n'' queries are always sufficient, because you can use ''n'' queries asking for the "sum" of a single element. But when ''d'' is sufficiently small, it is possible to do better. The general idea is as follows.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the dot product of the query vector by ''v''. Every set of ''k'' queries can be represented by an ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the <ins style="font-weight: bold; text-decoration: none;">[[</ins>dot product<ins style="font-weight: bold; text-decoration: none;">]]</ins> of the query vector by ''v''. Every set of ''k'' queries can be represented by an ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is unique. A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is unique. A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
</tr>
</table>Kkuhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=1081305057&oldid=prevAltoStev: /* In combinatorial game theory */ Correct capitalization2022-04-06T16:43:36Z<p><span class="autocomment">In combinatorial game theory: </span> Correct capitalization</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:43, 6 April 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 6:</td>
<td colspan="2" class="diff-lineno">Line 6:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In combinatorial game theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In combinatorial game theory===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A simple example of a non-constructive algorithm was published in 1982 by [[Elwyn R. Berlekamp]], [[John H. Conway]], and [[Richard K. Guy]], in their book ''[[Winning Ways for <del style="font-weight: bold; text-decoration: none;">your</del> Mathematical Plays]]''. It concerns the game of [[Sylver Coinage]], in which players take turns specifying a positive integer that cannot be expressed as a sum of previously specified values, with a player losing when they are forced to specify the number&nbsp;1. There exists an algorithm (given in the book as a flow chart) for determining whether a given first move is winning or losing: if it is a [[prime number]] greater than three, or one of a finite set of [[smooth number|3-smooth numbers]], then it is a winning first move, and otherwise it is losing. However, the finite set is not known.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A simple example of a non-constructive algorithm was published in 1982 by [[Elwyn R. Berlekamp]], [[John H. Conway]], and [[Richard K. Guy]], in their book ''[[Winning Ways for <ins style="font-weight: bold; text-decoration: none;">Your</ins> Mathematical Plays]]''. It concerns the game of [[Sylver Coinage]], in which players take turns specifying a positive integer that cannot be expressed as a sum of previously specified values, with a player losing when they are forced to specify the number&nbsp;1. There exists an algorithm (given in the book as a flow chart) for determining whether a given first move is winning or losing: if it is a [[prime number]] greater than three, or one of a finite set of [[smooth number|3-smooth numbers]], then it is a winning first move, and otherwise it is losing. However, the finite set is not known.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
</tr>
</table>AltoStevhttps://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=992950035&oldid=prev93.85.185.151: /* Counting the algorithms */2020-12-08T00:12:00Z<p><span class="autocomment">Counting the algorithms</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:12, 8 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 51:</td>
<td colspan="2" class="diff-lineno">Line 51:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the dot product of the query vector by ''v''. Every set of ''k'' queries can be represented by an ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Every query can be represented as a 1-by-''n'' vector whose elements are all in the set {0,1}. The response to the query is just the dot product of the query vector by ''v''. Every set of ''k'' queries can be represented by an ''k''-by-''n'' matrix over {0,1}; the set of responses is the product of the matrix by ''v''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is <del style="font-weight: bold; text-decoration: none;">different</del>.<del style="font-weight: bold; text-decoration: none;"> </del> A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A matrix ''M'' is "good" if it enables us to uniquely identify ''v''. This means that, for every vector ''v'', the product ''M v'' is <ins style="font-weight: bold; text-decoration: none;">unique</ins>. A matrix ''M'' is "bad" if there are two different vectors, ''v'' and ''u'', such that ''M v'' = ''M u''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Using some algebra, it is possible to bound the number of "bad" matrices. The bound is a function of ''d'' and ''k''. Thus, for a sufficiently small ''d'', there must be a "good" matrix with a small ''k'', which corresponds to an efficient algorithm for solving the identification problem.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Using some algebra, it is possible to bound the number of "bad" matrices. The bound is a function of ''d'' and ''k''. Thus, for a sufficiently small ''d'', there must be a "good" matrix with a small ''k'', which corresponds to an efficient algorithm for solving the identification problem.</div></td>
</tr>
</table>93.85.185.151https://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=992949589&oldid=prev93.85.185.151: /* In graph theory */2020-12-08T00:08:38Z<p><span class="autocomment">In graph theory</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:08, 8 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 20:</td>
<td colspan="2" class="diff-lineno">Line 20:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, there is a non-constructive proof that shows that linkedness is decidable in polynomial time. The proof relies on the following facts:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, there is a non-constructive proof that shows that linkedness is decidable in polynomial time. The proof relies on the following facts:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The set of graphs for which the answer is "yes" is closed under taking [[minor (graph theory)|minors]]. I.e., if a graph G can be embedded linklessly in 3-d space, then every minor of G can also be embedded linklessly.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The set of graphs for which the answer is "yes" is closed under taking [[minor (graph theory)|minors]]. I.<ins style="font-weight: bold; text-decoration: none;"> </ins>e., if a graph G can be embedded linklessly in 3-d space, then every minor of G can also be embedded linklessly.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* For every two graphs G and H, it is possible to find in polynomial time whether H is a minor of G.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* For every two graphs <ins style="font-weight: bold; text-decoration: none;">''</ins>G<ins style="font-weight: bold; text-decoration: none;">''</ins> and <ins style="font-weight: bold; text-decoration: none;">''</ins>H<ins style="font-weight: bold; text-decoration: none;">''</ins>, it is possible to find in polynomial time whether <ins style="font-weight: bold; text-decoration: none;">''</ins>H<ins style="font-weight: bold; text-decoration: none;">''</ins> is a minor of <ins style="font-weight: bold; text-decoration: none;">''</ins>G<ins style="font-weight: bold; text-decoration: none;">''</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* By [[Robertson–Seymour theorem]], any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* By [[Robertson–Seymour theorem]], any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Given an input graph G, the following "algorithm" solves the above problem:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given an input graph <ins style="font-weight: bold; text-decoration: none;">''</ins>G<ins style="font-weight: bold; text-decoration: none;">''</ins>, the following "algorithm" solves the above problem:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:: For every minor-minimal element H:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:: For every minor-minimal element <ins style="font-weight: bold; text-decoration: none;">''</ins>H<ins style="font-weight: bold; text-decoration: none;">''</ins>:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:::: If H is a minor of G then return "yes".</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:::: If <ins style="font-weight: bold; text-decoration: none;">''</ins>H<ins style="font-weight: bold; text-decoration: none;">''</ins> is a minor of <ins style="font-weight: bold; text-decoration: none;">''</ins>G<ins style="font-weight: bold; text-decoration: none;">''</ins> then return "yes".</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:: return "no".</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:: return "no".</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>93.85.185.151https://en.wikipedia.org/w/index.php?title=Non-constructive_algorithm_existence_proofs&diff=976781023&oldid=prevCitation bot: Add: url, s2cid. | You can use this bot yourself. Report bugs here. | Suggested by SemperIocundus | via #UCB_webform2020-09-04T23:54:40Z<p>Add: url, s2cid. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | Suggested by SemperIocundus | via #UCB_webform</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:54, 4 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===In graph theory===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Non-constructive algorithm proofs for problems in [[graph theory]] were studied beginning in 1988 by [[Michael Fellows]] and [[Michael Langston]].<ref name=FellowsLangston1988>{{Cite journal | doi = 10.1145/44483.44491| title = Nonconstructive tools for proving polynomial-time decidability| journal = Journal of the ACM| volume = 35| issue = 3| pages = 727| year = 1988| last1 = Fellows | first1 = M. R. | last2 = Langston | first2 = M. A. }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Non-constructive algorithm proofs for problems in [[graph theory]] were studied beginning in 1988 by [[Michael Fellows]] and [[Michael Langston]].<ref name=FellowsLangston1988>{{Cite journal | doi = 10.1145/44483.44491| title = Nonconstructive tools for proving polynomial-time decidability| journal = Journal of the ACM| volume = 35| issue = 3| pages = 727| year = 1988| last1 = Fellows | first1 = M. R. | last2 = Langston | first2 = M. A. <ins style="font-weight: bold; text-decoration: none;">| s2cid = 16587284</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A common question in graph theory is whether a certain input graph has a certain property. For example:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A common question in graph theory is whether a certain input graph has a certain property. For example:</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 41:</td>
<td colspan="2" class="diff-lineno">Line 41:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Sometimes the number of potential algorithms for a given problem is finite. We can count the number of possible algorithms and prove that only a bounded number of them are "bad", so at least one algorithm must be "good".</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Sometimes the number of potential algorithms for a given problem is finite. We can count the number of possible algorithms and prove that only a bounded number of them are "bad", so at least one algorithm must be "good".</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>As an example, consider the following problem.<ref name=GrebinskyKucherov2000>{{Cite journal | doi = 10.1007/s004530010033| title = Optimal Reconstruction of Graphs under the Additive Model| journal = Algorithmica| volume = 28| pages = 104–124| year = 2000| last1 = Grebinski | first1 = V.| last2 = Kucherov | first2 = G.}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>As an example, consider the following problem.<ref name=GrebinskyKucherov2000>{{Cite journal | doi = 10.1007/s004530010033| title = Optimal Reconstruction of Graphs under the Additive Model| journal = Algorithmica| volume = 28| pages = 104–124| year = 2000| last1 = Grebinski | first1 = V.| last2 = Kucherov | first2 = G.<ins style="font-weight: bold; text-decoration: none;">| s2cid = 33176053| url = https://hal.inria.fr/inria-00073517/file/RR-3171.pdf</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>I select a vector ''v'' composed of ''n'' elements which are integers between 0 and a certain constant ''d''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>I select a vector ''v'' composed of ''n'' elements which are integers between 0 and a certain constant ''d''.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 61:</td>
<td colspan="2" class="diff-lineno">Line 61:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Additional examples ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Additional examples ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Some computational problems can be shown to be decidable by using the [[Law of Excluded Middle#Use in computer science proofs|Law of Excluded Middle]]. Such proofs are usually not very useful in practice, since the problems involved are quite artificial.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Some computational problems can be shown to be decidable by using the [[Law of Excluded Middle#Use in computer science proofs|Law of Excluded Middle]]. Such proofs are usually not very useful in practice, since the problems involved are quite artificial.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An example from [[Quantum complexity theory]] (related to [[Quantum query complexity]]) is given in.<ref>{{Cite journal | doi = 10.4086/cjtcs.2013.004| year = 2013| last1 = Kimmel | first1 = S.| title = Quantum Adversary (Upper) Bound| journal = Chicago Journal of Theoretical Computer Science| volume = 19| pages = 1–14| arxiv = 1101.0797}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An example from [[Quantum complexity theory]] (related to [[Quantum query complexity]]) is given in.<ref>{{Cite journal | doi = 10.4086/cjtcs.2013.004| year = 2013| last1 = Kimmel | first1 = S.| title = Quantum Adversary (Upper) Bound| journal = Chicago Journal of Theoretical Computer Science| volume = 19| pages = 1–14| arxiv = 1101.0797<ins style="font-weight: bold; text-decoration: none;">| s2cid = 119264518</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>Citation bot