https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Normalization_modelNormalization model - Revision history2025-06-04T00:12:53ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=Normalization_model&diff=1188090577&oldid=prevCitation bot: Add: doi-access. | Use this bot. Report bugs. | #UCB_CommandLine2023-12-03T08:00:10Z<p>Add: doi-access. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_CommandLine</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:00, 3 December 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027| s2cid = 22804285 }}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.<ref name="pmid22108672 "></ref> Divisive normalization reduces the redundancy in natural stimulus statistics<ref>{{cite journal |last1=Schwartz |first1=O |last2=Simoncelli |first2=EP |title=Natural signal statistics and sensory gain control. |journal=Nature Neuroscience |date=2001 |volume=4 |issue=8 |pages=819–25 |doi=10.1038/90526 |pmid=11477428| doi-access = free }}</ref> and is sometimes viewed as an implementation of the [[efficient coding hypothesis|efficient coding principle]]. Formally, divisive normalization is an [[Infomax|information-maximizing]] code for stimuli following a [[multivariate Pareto distribution]].<ref>{{cite journal |last1=Bucher |first1=SF |last2=Brandenburger |first2=AM |title=Divisive normalization is an efficient code for multivariate Pareto-distributed environments. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=2022 |volume=119 |issue=40 |pages=e2120581119 |doi=10.1073/pnas.2120581119 |pmid=36161961|pmc=9546555 |bibcode=2022PNAS..11920581B | doi-access = free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027| s2cid = 22804285 }}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031<ins style="font-weight: bold; text-decoration: none;">| doi-access=free</ins>}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.<ref name="pmid22108672 "></ref> Divisive normalization reduces the redundancy in natural stimulus statistics<ref>{{cite journal |last1=Schwartz |first1=O |last2=Simoncelli |first2=EP |title=Natural signal statistics and sensory gain control. |journal=Nature Neuroscience |date=2001 |volume=4 |issue=8 |pages=819–25 |doi=10.1038/90526 |pmid=11477428| doi-access = free }}</ref> and is sometimes viewed as an implementation of the [[efficient coding hypothesis|efficient coding principle]]. Formally, divisive normalization is an [[Infomax|information-maximizing]] code for stimuli following a [[multivariate Pareto distribution]].<ref>{{cite journal |last1=Bucher |first1=SF |last2=Brandenburger |first2=AM |title=Divisive normalization is an efficient code for multivariate Pareto-distributed environments. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=2022 |volume=119 |issue=40 |pages=e2120581119 |doi=10.1073/pnas.2120581119 |pmid=36161961|pmc=9546555 |bibcode=2022PNAS..11920581B | doi-access = free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=1135180369&oldid=prevCitation bot: Alter: journal, pages. Add: bibcode, pmc, s2cid. Formatted dashes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 333/5132023-01-23T03:08:55Z<p>Alter: journal, pages. Add: bibcode, pmc, s2cid. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 333/513</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:08, 23 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.<ref name="pmid22108672 "></ref> Divisive normalization reduces the redundancy in natural stimulus statistics<ref>{{cite journal |last1=Schwartz |first1=O |last2=Simoncelli |first2=EP |title=Natural signal statistics and sensory gain control. |journal=Nature <del style="font-weight: bold; text-decoration: none;">neuroscience</del> |date=2001 |volume=4 |issue=8 |pages=<del style="font-weight: bold; text-decoration: none;">819-25</del> |doi=10.1038/90526 |pmid=11477428| doi-access = free }}</ref> and is sometimes viewed as an implementation of the [[efficient coding hypothesis|efficient coding principle]]. Formally, divisive normalization is an [[Infomax|information-maximizing]] code for stimuli following a [[multivariate Pareto distribution]].<ref>{{cite journal |last1=Bucher |first1=SF |last2=Brandenburger |first2=AM |title=Divisive normalization is an efficient code for multivariate Pareto-distributed environments. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=2022 |volume=119 |issue=40 |pages=e2120581119 |doi=10.1073/pnas.2120581119 |pmid=36161961| doi-access = free}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027<ins style="font-weight: bold; text-decoration: none;">| s2cid = 22804285 </ins>}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.<ref name="pmid22108672 "></ref> Divisive normalization reduces the redundancy in natural stimulus statistics<ref>{{cite journal |last1=Schwartz |first1=O |last2=Simoncelli |first2=EP |title=Natural signal statistics and sensory gain control. |journal=Nature <ins style="font-weight: bold; text-decoration: none;">Neuroscience</ins> |date=2001 |volume=4 |issue=8 |pages=<ins style="font-weight: bold; text-decoration: none;">819–25</ins> |doi=10.1038/90526 |pmid=11477428| doi-access = free }}</ref> and is sometimes viewed as an implementation of the [[efficient coding hypothesis|efficient coding principle]]. Formally, divisive normalization is an [[Infomax|information-maximizing]] code for stimuli following a [[multivariate Pareto distribution]].<ref>{{cite journal |last1=Bucher |first1=SF |last2=Brandenburger |first2=AM |title=Divisive normalization is an efficient code for multivariate Pareto-distributed environments. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=2022 |volume=119 |issue=40 |pages=e2120581119 |doi=10.1073/pnas.2120581119 |pmid=36161961<ins style="font-weight: bold; text-decoration: none;">|pmc=9546555 |bibcode=2022PNAS..11920581B </ins>| doi-access = free}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=1131964210&oldid=prevRooftopology: added information on efficiency properties2023-01-06T16:44:08Z<p>added information on efficiency properties</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:44, 6 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual Neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| pmc = 6573724 | doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 | issue=2| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.<ins style="font-weight: bold; text-decoration: none;"><ref name="pmid22108672 "></ref> Divisive normalization reduces the redundancy in natural stimulus statistics<ref>{{cite journal |last1=Schwartz |first1=O |last2=Simoncelli |first2=EP |title=Natural signal statistics and sensory gain control. |journal=Nature neuroscience |date=2001 |volume=4 |issue=8 |pages=819-25 |doi=10.1038/90526 |pmid=11477428| doi-access = free }}</ref> and is sometimes viewed as an implementation of the [[efficient coding hypothesis|efficient coding principle]]. Formally, divisive normalization is an [[Infomax|information-maximizing]] code for stimuli following a [[multivariate Pareto distribution]].<ref>{{cite journal |last1=Bucher |first1=SF |last2=Brandenburger |first2=AM |title=Divisive normalization is an efficient code for multivariate Pareto-distributed environments. |journal=Proceedings of the National Academy of Sciences of the United States of America |date=2022 |volume=119 |issue=40 |pages=e2120581119 |doi=10.1073/pnas.2120581119 |pmid=36161961| doi-access = free}}</ref></ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Rooftopologyhttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=1024817669&oldid=prevCitation bot: Alter: journal, volume. Add: issue, pmc. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 345/5702021-05-24T07:23:30Z<p>Alter: journal, volume. Add: issue, pmc. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 345/570</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:23, 24 May 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual <del style="font-weight: bold; text-decoration: none;">neuroscience</del> | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66<del style="font-weight: bold; text-decoration: none;">(2)</del> | pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual <ins style="font-weight: bold; text-decoration: none;">Neuroscience</ins> | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997<ins style="font-weight: bold; text-decoration: none;">| pmc = 6573724 </ins>| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb,<ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66 <ins style="font-weight: bold; text-decoration: none;">| issue=2</ins>| pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus.<ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=996154177&oldid=prevWikiCleanerBot: v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)2020-12-24T21:14:42Z<p>v2.04b - <a href="/wiki/User:WikiCleanerBot#T20" title="User:WikiCleanerBot">Bot T20 CW#61</a> - Fix errors for <a href="/wiki/Wikipedia:WCW" class="mw-redirect" title="Wikipedia:WCW">CW project</a> (Reference before punctuation)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:14, 24 December 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb<del style="font-weight: bold; text-decoration: none;"> </del><ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66(2) | pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref><del style="font-weight: bold; text-decoration: none;">,</del> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus<del style="font-weight: bold; text-decoration: none;"> </del><ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors in the olfactory bulb<ins style="font-weight: bold; text-decoration: none;">,</ins><ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66(2) | pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref> the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. It has also been observed at subthreshold potentials in the hippocampus<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref> Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>WikiCleanerBothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=963917793&oldid=prev106.198.141.33 at 14:59, 22 June 20202020-06-22T14:59:43Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:59, 22 June 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997| doi-access = free }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors<ins style="font-weight: bold; text-decoration: none;"> in the olfactory bulb <ref name="pmid=20435004 "> {{cite journal | title=Divisive normalization in olfactory population codes | author=Olsen SR, Bhandawat V, Wilson R| journal=Neuron | year=2011 | volume=66(2) | pages = 287–299 | doi=10.1016/j.neuron.2010.04.009 | pmid=20435004 | pmc=2866644}}</ref></ins>, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information<ins style="font-weight: bold; text-decoration: none;">. It has also been observed at subthreshold potentials in the hippocampus <ref name="pmid31021319 "> {{cite journal | title=Precise excitation-inhibition balance controls gain and timing in the hippocampus | author=Bhatia A, Moza S, Bhalla US| journal=eLife | year=2019 | volume=8 | doi=10.7554/eLife.43415 | pmid=31021319 | pmc=6517031}}</ref></ins>. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>106.198.141.33https://en.wikipedia.org/w/index.php?title=Normalization_model&diff=951036335&oldid=prevOAbot: Open access bot: doi added to citation with #oabot.2020-04-15T04:22:44Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:22, 15 April 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997}}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433 | doi=10.1523/JNEUROSCI.17-21-08621.1997<ins style="font-weight: bold; text-decoration: none;">| doi-access = free </ins>}}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>OAbothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=927104097&oldid=prevRjwilmsi: /* top */Journal cites:, added 1 DOI2019-11-20T10:23:30Z<p><span class="autocomment">top: </span>Journal cites:, added 1 DOI</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:23, 20 November 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433}}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite journal | last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = 22108672 | pmc =3273486 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite journal | doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite journal | last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433<ins style="font-weight: bold; text-decoration: none;"> | doi=10.1523/JNEUROSCI.17-21-08621.1997</ins>}}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Rjwilmsihttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=676370515&oldid=prevDexbot: Bot: Deprecating Template:Cite pmid and some minor fixations2015-08-16T15:12:42Z<p>Bot: Deprecating <a href="/wiki/Template:Cite_pmid" title="Template:Cite pmid">Template:Cite pmid</a> and some minor fixations</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:12, 16 August 2015</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite <del style="font-weight: bold; text-decoration: none;">pmid</del>|22108672 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite <del style="font-weight: bold; text-decoration: none;">pmid</del>|<del style="font-weight: bold; text-decoration: none;">1504027</del> }}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite <del style="font-weight: bold; text-decoration: none;">pmid</del>|<del style="font-weight: bold; text-decoration: none;">9334433</del> }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite <ins style="font-weight: bold; text-decoration: none;">journal </ins>|<ins style="font-weight: bold; text-decoration: none;"> last1 = Carandini | first1 = M. | last2 = Heeger | first2 = D. J. | doi = 10.1038/nrn3136 | title = Normalization as a canonical neural computation | journal = Nature Reviews Neuroscience | volume = 13 | issue = 1 | pages = 51–62 | year = 2011 | pmid = </ins>22108672<ins style="font-weight: bold; text-decoration: none;"> | pmc =3273486</ins> }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite <ins style="font-weight: bold; text-decoration: none;">journal </ins>| <ins style="font-weight: bold; text-decoration: none;">doi = 10.1017/S0952523800009640 | last1 = Heeger | first1 = D. J. | title = Normalization of cell responses in cat striate cortex | journal = Visual neuroscience | volume = 9 | issue = 2 | pages = 181–197 | year = 1992 | pmid = 1504027</ins>}}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite <ins style="font-weight: bold; text-decoration: none;">journal </ins>| <ins style="font-weight: bold; text-decoration: none;">last1 = Carandini | first1 = M | last2 = Heeger | first2 = DJ | last3 = Movshon | first3 = JA | title = Linearity and normalization in simple cells of the macaque primary visual cortex | journal = Journal of Neuroscience | volume = 17 | issue = 21 | pages = 8621–44 | year = 1997 | pmid = 9334433</ins>}}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors, the modulatory effects of visual attention, the encoding of value, and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Dexbothttps://en.wikipedia.org/w/index.php?title=Normalization_model&diff=618789639&oldid=prevMagioladitis: Replace unicode entity nbsp for character [NBSP] (or space) per WP:NBSP + other fixes, replaced: → (6) using AWB (10331)2014-07-28T08:50:49Z<p>Replace unicode entity nbsp for character [NBSP] (or space) per <a href="/wiki/Wikipedia:NBSP" class="mw-redirect" title="Wikipedia:NBSP">WP:NBSP</a> + other fixes, replaced: → (6) using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a> (10331)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:50, 28 July 2014</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite pmid|22108672 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite pmid|1504027 }}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite pmid|9334433 }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate<del style="font-weight: bold; text-decoration: none;"> </del>throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors,<del style="font-weight: bold; text-decoration: none;"> </del>the modulatory effects of visual<del style="font-weight: bold; text-decoration: none;"> </del>attention, the encoding of value, and the integration of multisensory information.<del style="font-weight: bold; text-decoration: none;"> </del>Its presence in such a diversity of neural systems in multiple species, from invertebrates to<del style="font-weight: bold; text-decoration: none;"> </del>mammals, suggests that normalization serves as a canonical neural computation.<del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''normalization model'''<ref name="pmid22108672 ">{{Cite pmid|22108672 }}</ref> is an influential model of responses of [[neurons]] in [[primary visual cortex]]. [[David Heeger]] developed the model in the early 1990s,<ref name="pmid1504027 ">{{Cite pmid|1504027 }}</ref> and later refined it together with [[Matteo Carandini]] and [[J. Anthony Movshon]].<ref name="pmid9334433 ">{{Cite pmid|9334433 }}</ref> The model involves a divisive stage. In the numerator is the output of the classical [[receptive field]]. In the denominator, a constant plus a measure of local stimulus [[Contrast (vision)|contrast]]. Although the normalization model was initially developed to explain responses in the primary visual cortex, normalization is now thought to operate<ins style="font-weight: bold; text-decoration: none;"> </ins>throughout the visual system, and in many other sensory modalities and brain regions, including the representation of odors,<ins style="font-weight: bold; text-decoration: none;"> </ins>the modulatory effects of visual<ins style="font-weight: bold; text-decoration: none;"> </ins>attention, the encoding of value, and the integration of multisensory information.<ins style="font-weight: bold; text-decoration: none;"> </ins>Its presence in such a diversity of neural systems in multiple species, from invertebrates to<ins style="font-weight: bold; text-decoration: none;"> </ins>mammals, suggests that normalization serves as a canonical neural computation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Magioladitis