https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Odds_algorithm Odds algorithm - Revision history 2025-05-30T06:52:32Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1283931714&oldid=prev Cmglee: /* Applications */ Add secretary problem illustration 2025-04-04T15:08:12Z <p><span class="autocomment">Applications: </span> Add secretary problem illustration</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:08, 4 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 58:</td> <td colspan="2" class="diff-lineno">Line 58:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{secretary_problem.svg}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Applications reach from medical questions in [[clinical trial]]s over sales problems, [[secretary problems]], [[portfolio (finance)|portfolio]] selection, (one way) search strategies, trajectory problems and the [[parking problem]] to problems in online maintenance and others.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Applications reach from medical questions in [[clinical trial]]s over sales problems, [[secretary problems]], [[portfolio (finance)|portfolio]] selection, (one way) search strategies, trajectory problems and the [[parking problem]] to problems in online maintenance and others.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Cmglee https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1229264428&oldid=prev DuncanHill: sfn whitelist 2024-06-15T20:35:57Z <p>sfn whitelist</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:35, 15 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 99:</td> <td colspan="2" class="diff-lineno">Line 99:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*{{SfnRef inline|Ferguson|2008}}[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*{{SfnRef inline|Ferguson|2008}}[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)<ins style="font-weight: bold; text-decoration: none;">{{sfn whitelist|CITEREFFerguson2008}}</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> </tr> </table> DuncanHill https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1228357098&oldid=prev Olexa Riznyk: Fixing style/layout errors 2024-06-10T20:16:29Z <p>Fixing style/layout errors</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:16, 10 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 61:</td> <td colspan="2" class="diff-lineno">Line 61:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There exists, in the same spirit, an Odds Theorem for continuous-time arrival processes with [[independent increments]] such as the [[Poisson process]] ({{harvnb|Bruss|2000}}). In some cases, the odds are not necessarily known in advance (as in Example 2 above) so that the application of the odds algorithm is not directly possible. In this case each step can use [[sequential estimate]]s of the odds. This is meaningful, if the number of unknown parameters is not large compared with the number n of observations. The question of optimality is then more complicated, however, and requires additional studies. Generalizations of the odds algorithm allow for different rewards for failing to stop</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There exists, in the same spirit, an Odds Theorem for continuous-time arrival processes with [[independent increments]] such as the [[Poisson process]] ({{harvnb|Bruss|2000}}). In some cases, the odds are not necessarily known in advance (as in Example 2 above) so that the application of the odds algorithm is not directly possible. In this case each step can use [[sequential estimate]]s of the odds. This is meaningful, if the number of unknown parameters is not large compared with the number n of observations. The question of optimality is then more complicated, however, and requires additional studies. Generalizations of the odds algorithm allow for different rewards for failing to stop</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>and wrong stops as well as replacing independence assumptions by weaker ones <del style="font-weight: bold; text-decoration: none;">(</del>Ferguson<del style="font-weight: bold; text-decoration: none;"> (</del>2008<del style="font-weight: bold; text-decoration: none;">))</del>.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>and wrong stops as well as replacing independence assumptions by weaker ones <ins style="font-weight: bold; text-decoration: none;">{{harv|</ins>Ferguson<ins style="font-weight: bold; text-decoration: none;">|</ins>2008<ins style="font-weight: bold; text-decoration: none;">}}</ins>.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Variations ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Variations ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 99:</td> <td colspan="2" class="diff-lineno">Line 99:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>** "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*<ins style="font-weight: bold; text-decoration: none;">{{SfnRef inline|Ferguson|2008}}</ins>[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> </tr> </table> Olexa Riznyk https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1225955640&oldid=prev Olexa Riznyk: /* References */ Fixing style/layout errors 2024-05-27T18:42:32Z <p><span class="autocomment">References: </span> Fixing style/layout errors</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:42, 27 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 97:</td> <td colspan="2" class="diff-lineno">Line 97:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Ano |first1=K.|first2=H. |last2=Kakinuma |first3=N. |last3=Miyoshi |title=Odds theorem with multiple selection chances |journal=Journal of Applied Probability |volume=47 |year=2010 |issue=4|pages=1093–1104 |doi=10.1239/jap/1294170522|s2cid=17598431|doi-access=free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Ano |first1=K.|first2=H. |last2=Kakinuma |first3=N. |last3=Miyoshi |title=Odds theorem with multiple selection chances |journal=Journal of Applied Probability |volume=47 |year=2010 |issue=4|pages=1093–1104 |doi=10.1239/jap/1294170522|s2cid=17598431|doi-access=free }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Bruss | first=F. Thomas | authorlink=Franz Thomas Bruss | title=Sum the odds to one and stop | journal=The Annals of Probability | publisher=Institute of Mathematical Statistics | volume=28 | issue=3 | year=2000 | issn=0091-1798 | doi=10.1214/aop/1019160340 | pages=1384–1391 | doi-access=free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Bruss | first=F. Thomas | authorlink=Franz Thomas Bruss | title=Sum the odds to one and stop | journal=The Annals of Probability | publisher=Institute of Mathematical Statistics | volume=28 | issue=3 | year=2000 | issn=0091-1798 | doi=10.1214/aop/1019160340 | pages=1384–1391 | doi-access=free }}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*<del style="font-weight: bold; text-decoration: none;"> &amp;mdash;:</del> "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*<ins style="font-weight: bold; text-decoration: none;">*</ins> "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*<del style="font-weight: bold; text-decoration: none;"> &amp;mdash;:</del> "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*<ins style="font-weight: bold; text-decoration: none;">*</ins> "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Thomas S. Ferguson|T. S. Ferguson]]: (2008, unpublished)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |first1=F. T. |last1=Bruss |first2=D. |last2=Paindaveine |title=Selecting a sequence of last successes in independent trials |journal=Journal of Applied Probability |volume=37 |pages=389–399 |year=2000 |issue=2 |doi=10.1239/jap/1014842544 |url=https://mpra.ub.uni-muenchen.de/21166/1/MPRA_paper_21166.pdf}} </div></td> </tr> </table> Olexa Riznyk https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1225951291&oldid=prev Olexa Riznyk: /* References */ Adding a wikilink 2024-05-27T18:13:46Z <p><span class="autocomment">References: </span> Adding a wikilink</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:13, 27 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 96:</td> <td colspan="2" class="diff-lineno">Line 96:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Ano |first1=K.|first2=H. |last2=Kakinuma |first3=N. |last3=Miyoshi |title=Odds theorem with multiple selection chances |journal=Journal of Applied Probability |volume=47 |year=2010 |issue=4|pages=1093–1104 |doi=10.1239/jap/1294170522|s2cid=17598431|doi-access=free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Ano |first1=K.|first2=H. |last2=Kakinuma |first3=N. |last3=Miyoshi |title=Odds theorem with multiple selection chances |journal=Journal of Applied Probability |volume=47 |year=2010 |issue=4|pages=1093–1104 |doi=10.1239/jap/1294170522|s2cid=17598431|doi-access=free }}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Bruss | first=F. Thomas | title=Sum the odds to one and stop | journal=The Annals of Probability | publisher=Institute of Mathematical Statistics | volume=28 | issue=3 | year=2000 | issn=0091-1798 | doi=10.1214/aop/1019160340 | pages=1384–1391 | doi-access=free }}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Bruss | first=F. Thomas<ins style="font-weight: bold; text-decoration: none;"> | authorlink=Franz Thomas Bruss</ins> | title=Sum the odds to one and stop | journal=The Annals of Probability | publisher=Institute of Mathematical Statistics | volume=28 | issue=3 | year=2000 | issn=0091-1798 | doi=10.1214/aop/1019160340 | pages=1384–1391 | doi-access=free }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* &amp;mdash;: "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* &amp;mdash;: "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/note-on-a-lower-bound-for-the-multiplicative-odds-theorem-of-optimal-stopping/B759B6E4A9D83DB84D6EE1B4C827785B A note on Bounds for the Odds Theorem of Optimal Stopping]", ''[[Annals of Probability]]'' Vol. 31, 1859&amp;ndash;1862, (2003).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* &amp;mdash;: "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* &amp;mdash;: "[https://web.archive.org/web/20230409100437/https://www.ems-ph.org/journals/newsletter/pdf/2006-12-62.pdf The art of a right decision]", ''Newsletter of the [[European Mathematical Society]]'', Issue 62, 14&amp;ndash;20, (2005).</div></td> </tr> </table> Olexa Riznyk https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1214236780&oldid=prev Lmendo: /* Examples */ 2024-03-17T19:00:31Z <p><span class="autocomment">Examples</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:00, 17 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Two different situations exemplify the interest in maximizing the probability to stop on a last specific event.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Two different situations exemplify the interest in maximizing the probability to stop on a last specific event.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># Suppose a car is advertised for sale to the highest bidder (best "offer"). Let n potential buyers respond and ask to see the car. Each insists upon an immediate decision from the seller to accept the bid, or not. Define a bid as ''interesting'', and coded 1 if it is better than all preceding bids, and coded 0 otherwise. The bids will form a [[random sequence]] of 0s and 1s. Only 1s interest the seller, who may fear that each successive 1 might be the last. It follows from the definition that the very last 1 is the highest bid. Maximizing the probability of selling on the last 1 therefore means maximizing the probability of selling ''best''.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Suppose a car is advertised for sale to the highest bidder (best "offer"). Let <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;</ins>n<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins> potential buyers respond and ask to see the car. Each insists upon an immediate decision from the seller to accept the bid, or not. Define a bid as ''interesting'', and coded 1 if it is better than all preceding bids, and coded 0 otherwise. The bids will form a [[random sequence]] of 0s and 1s. Only 1s interest the seller, who may fear that each successive 1 might be the last. It follows from the definition that the very last 1 is the highest bid. Maximizing the probability of selling on the last 1 therefore means maximizing the probability of selling ''best''.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># A physician, using a special treatment, may use the code 1 for a successful treatment, 0 otherwise. The physician treats a sequence of n patients the same way, and wants to minimize any suffering, and to treat every responsive patient in the sequence. Stopping on the last 1 in such a random sequence of 0s and 1s would achieve this objective. Since the physician is no prophet, the objective is to maximize the probability of stopping on the last 1. (See [[Compassionate use]].)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># A physician, using a special treatment, may use the code 1 for a successful treatment, 0 otherwise. The physician treats a sequence of <ins style="font-weight: bold; text-decoration: none;">&lt;math&gt;</ins>n<ins style="font-weight: bold; text-decoration: none;">&lt;/math&gt;</ins> patients the same way, and wants to minimize any suffering, and to treat every responsive patient in the sequence. Stopping on the last 1 in such a random sequence of 0s and 1s would achieve this objective. Since the physician is no prophet, the objective is to maximize the probability of stopping on the last 1. (See [[Compassionate use]].)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definitions ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definitions ==</div></td> </tr> </table> Lmendo https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1189034966&oldid=prev TheMathCat: wikilink 2023-12-09T07:40:48Z <p>wikilink</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:40, 9 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 103:</td> <td colspan="2" class="diff-lineno">Line 103:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal|last1=Gilbert |first1=J |last2=Mosteller |first2=F |title= Recognizing the Maximum of a Sequence |journal=Journal of the American Statistical Association |volume=61 |pages=35–73 |year=1966 |issue=313 |doi=10.2307/2283044 |jstor=2283044 }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=A note on a lower bound for the multiplicative odds theorem of optimal stopping | journal=Journal of Applied Probability |volume=51 |pages=885–889 |year=2014 |issue=3 |doi=10.1239/jap/1409932681 |doi-access=free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=A note on a lower bound for the multiplicative odds theorem of optimal stopping | journal=Journal of Applied Probability |volume=51 |pages=885–889 |year=2014 |issue=3 |doi=10.1239/jap/1409932681 |doi-access=free }}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=Lower bounds for Bruss' odds problem with multiple stoppings |journal=Mathematics of Operations Research |volume=41 |pages=700–714 |year=2016 |issue=2 |doi=10.1287/moor.2015.0748 |arxiv=1204.5537 |s2cid=31778896 }}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=Lower bounds for Bruss' odds problem with multiple stoppings |journal=<ins style="font-weight: bold; text-decoration: none;">[[</ins>Mathematics of Operations Research<ins style="font-weight: bold; text-decoration: none;">]]</ins> |volume=41 |pages=700–714 |year=2016 |issue=2 |doi=10.1287/moor.2015.0748 |arxiv=1204.5537 |s2cid=31778896 }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=Compare the ratio of symmetric polynomials of odds to one and stop |journal=Journal of Applied Probability |volume=54 |pages=12–22 |year=2017 |doi=10.1017/jpr.2016.83 |s2cid=41639968 |url=http://t2r2.star.titech.ac.jp/cgi-bin/publicationinfo.cgi?q_publication_content_number=CTT100773751 }} </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |last1=Matsui |first1=T |last2=Ano | first2=K |title=Compare the ratio of symmetric polynomials of odds to one and stop |journal=Journal of Applied Probability |volume=54 |pages=12–22 |year=2017 |doi=10.1017/jpr.2016.83 |s2cid=41639968 |url=http://t2r2.star.titech.ac.jp/cgi-bin/publicationinfo.cgi?q_publication_content_number=CTT100773751 }} </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shoo-Ren Hsiao and Jiing-Ru. Yang: "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/selecting-the-last-success-in-markovdependent-trials/09D192C389B4BA5D4E2CA678E11B31CC Selecting the Last Success in Markov-Dependent Trials]", ''[[Journal of Applied Probability]]'', Vol. 93, 271&amp;ndash;281, (2002).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shoo-Ren Hsiao and Jiing-Ru. Yang: "[https://www.cambridge.org/core/journals/journal-of-applied-probability/article/selecting-the-last-success-in-markovdependent-trials/09D192C389B4BA5D4E2CA678E11B31CC Selecting the Last Success in Markov-Dependent Trials]", ''[[Journal of Applied Probability]]'', Vol. 93, 271&amp;ndash;281, (2002).</div></td> </tr> </table> TheMathCat https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1161948035&oldid=prev Cosmia Nebula: /* Multiple choice problem */ Pick the best, using multiple tries 2023-06-26T01:39:09Z <p><span class="autocomment">Multiple choice problem: </span> Pick the best, using multiple tries</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:39, 26 June 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 82:</td> <td colspan="2" class="diff-lineno">Line 82:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt;r=2 &lt;/math&gt;, {{harvnb|Ano|Kakinuma|Miyoshi|2010}} showed that the tight lower bound of win probability is equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}. &lt;/math&gt; </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt;r=2 &lt;/math&gt;, {{harvnb|Ano|Kakinuma|Miyoshi|2010}} showed that the tight lower bound of win probability is equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}. &lt;/math&gt; </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For general positive integer &lt;math&gt;r&lt;/math&gt;, {{harvnb|Matsui|Ano|2016}} <del style="font-weight: bold; text-decoration: none;">discussed</del> the tight lower bound of win probability.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For general positive integer &lt;math&gt;r&lt;/math&gt;, {{harvnb|Matsui|Ano|2016}} <ins style="font-weight: bold; text-decoration: none;">proved that</ins> the tight lower bound of win probability<ins style="font-weight: bold; text-decoration: none;"> is the win probability of the [[Secretary problem#Pick the best, using multiple tries|secretary problem variant where one must pick the top-k candidates using just k attempts]]</ins>.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; r=3,4,5 &lt;/math&gt;, tight lower bounds of win probabilities are equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} &lt;/math&gt;, &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} &lt;/math&gt; and &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}}+e^{-\frac{4162637}{1474560}}, &lt;/math&gt; respectively.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; r=3,4,5 &lt;/math&gt;, tight lower bounds of win probabilities are equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} &lt;/math&gt;, &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} &lt;/math&gt; and &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}}+e^{-\frac{4162637}{1474560}}, &lt;/math&gt; respectively.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Cosmia Nebula https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1161947888&oldid=prev Cosmia Nebula: /* Multiple choice problem */ and an algorithm 2023-06-26T01:37:30Z <p><span class="autocomment">Multiple choice problem: </span> and an algorithm</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:37, 26 June 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 84:</td> <td colspan="2" class="diff-lineno">Line 84:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For general positive integer &lt;math&gt;r&lt;/math&gt;, {{harvnb|Matsui|Ano|2016}} discussed the tight lower bound of win probability.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For general positive integer &lt;math&gt;r&lt;/math&gt;, {{harvnb|Matsui|Ano|2016}} discussed the tight lower bound of win probability.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; r=3,4,5 &lt;/math&gt;, tight lower bounds of win probabilities are equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} &lt;/math&gt;, &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} &lt;/math&gt; and &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}}+e^{-\frac{4162637}{1474560}}, &lt;/math&gt; respectively.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt; r=3,4,5 &lt;/math&gt;, tight lower bounds of win probabilities are equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} &lt;/math&gt;, &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} &lt;/math&gt; and &lt;math&gt; e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}}+e^{-\frac{4162637}{1474560}}, &lt;/math&gt; respectively.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For further cases <del style="font-weight: bold; text-decoration: none;">that</del> &lt;math&gt;r=6,...,10&lt;/math&gt;, see {{harvnb|Matsui|Ano|2016}}.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For further<ins style="font-weight: bold; text-decoration: none;"> numerical</ins> cases <ins style="font-weight: bold; text-decoration: none;">for</ins> &lt;math&gt;r=6,...,10&lt;/math&gt;<ins style="font-weight: bold; text-decoration: none;">, and an algorithm for general cases</ins>, see {{harvnb|Matsui|Ano|2016}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Cosmia Nebula https://en.wikipedia.org/w/index.php?title=Odds_algorithm&diff=1161947840&oldid=prev Cosmia Nebula: /* Multiple choice problem */ clearer language 2023-06-26T01:36:44Z <p><span class="autocomment">Multiple choice problem: </span> clearer language</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:36, 26 June 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 77:</td> <td colspan="2" class="diff-lineno">Line 77:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For further cases of odds problem, see {{harvnb|Matsui|Ano|2016}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For further cases of odds problem, see {{harvnb|Matsui|Ano|2016}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An optimal strategy belongs to the class of strategies defined by a set of threshold numbers &lt;math&gt;<del style="font-weight: bold; text-decoration: none;"> </del>(a_1, a_2, ...<del style="font-weight: bold; text-decoration: none;"> </del>, a_r)&lt;/math&gt;, where &lt;math&gt;<del style="font-weight: bold; text-decoration: none;"> </del>a_1<del style="font-weight: bold; text-decoration: none;">&lt;a_2&lt;</del> <del style="font-weight: bold; text-decoration: none;">\cdots</del> <del style="font-weight: bold; text-decoration: none;">&lt;a_r</del> <del style="font-weight: bold; text-decoration: none;">&lt;/math</del>&gt;<del style="font-weight: bold; text-decoration: none;">.</del> <del style="font-weight: bold; text-decoration: none;">The</del> <del style="font-weight: bold; text-decoration: none;">first choice is to be used on the first candidates starting with &lt;math</del>&gt;<del style="font-weight: bold; text-decoration: none;">a_1&lt;/math&gt;th applicant, and once the first choice is used, second choice is to be used on the first candidate starting with</del> <del style="font-weight: bold; text-decoration: none;">&lt;math&gt;a_2</del>&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;">th applicant, and so on</del>.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An optimal strategy<ins style="font-weight: bold; text-decoration: none;"> for this problem</ins> belongs to the class of strategies defined by a set of threshold numbers &lt;math&gt;(a_1, a_2, ..., a_r)&lt;/math&gt;, where &lt;math&gt;a_1 <ins style="font-weight: bold; text-decoration: none;">&gt;</ins> <ins style="font-weight: bold; text-decoration: none;">a_2</ins> &gt; <ins style="font-weight: bold; text-decoration: none;">\cdots</ins> &gt; <ins style="font-weight: bold; text-decoration: none;">a_r</ins>&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Specifically, imagine that you have &lt;math&gt;r&lt;/math&gt; letters of acceptance labelled from &lt;math&gt;1&lt;/math&gt; to &lt;math&gt;r&lt;/math&gt;. You would have &lt;math&gt;r&lt;/math&gt; application officers, each holding one letter. You keep interviewing the candidates and rank them on a chart that every application officer can see. Now officer &lt;math&gt;i&lt;/math&gt; would send their letter of acceptance to the first candidate that is better than all candidates &lt;math&gt;1&lt;/math&gt; to &lt;math&gt;a_i&lt;/math&gt;. (Unsent letters of acceptance are by default given to the last applicants, the same as in the standard secretary problem.)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt;r=2 &lt;/math&gt;, {{harvnb|Ano|Kakinuma|Miyoshi|2010}} showed that the tight lower bound of win probability is equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}. &lt;/math&gt; </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When &lt;math&gt;r=2 &lt;/math&gt;, {{harvnb|Ano|Kakinuma|Miyoshi|2010}} showed that the tight lower bound of win probability is equal to &lt;math&gt; e^{-1}+ e^{-\frac{3}{2}}. &lt;/math&gt; </div></td> </tr> </table> Cosmia Nebula