https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Primitive_recursive_set_function Primitive recursive set function - Revision history 2025-06-26T22:33:38Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.7 https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=1129230719&oldid=prev Hellacioussatyr: /* Primitive recursive closure */ 2022-12-24T06:34:06Z <p><span class="autocomment">Primitive recursive closure</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:34, 24 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 35:</td> <td colspan="2" class="diff-lineno">Line 35:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Primitive recursive closure==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Primitive recursive closure==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;f_0:\textrm{Ord}^2\to\textrm{Ord}&lt;/math&gt; be the function &lt;math&gt;f(\alpha,\beta)=\alpha+\beta&lt;/math&gt;, and for all &lt;math&gt;i&lt;\omega&lt;/math&gt;, &lt;math&gt;\tilde{f}_i(\alpha)=f_i(\alpha,\alpha)&lt;/math&gt; and &lt;math&gt;f_{i+1}(\alpha,\beta)=(\tilde{f}_i)^\beta(\alpha)&lt;/math&gt;. Let L&lt;sub&gt;α&lt;/sub&gt; denote the αth stage of [[Constructible universe|Godel's constructible universe]]. L&lt;sub&gt;α&lt;/sub&gt; is closed under primitive recursive set functions iff α is closed under each &lt;math&gt;f_i&lt;/math&gt; for all &lt;math&gt;i&lt;\omega&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;<del style="font-weight: bold; text-decoration: none;">&lt;sup&gt;</del>p<del style="font-weight: bold; text-decoration: none;">.</del>31<del style="font-weight: bold; text-decoration: none;">&lt;/sup&gt;</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;f_0:\textrm{Ord}^2\to\textrm{Ord}&lt;/math&gt; be the function &lt;math&gt;f(\alpha,\beta)<ins style="font-weight: bold; text-decoration: none;"> </ins>=\alpha+\beta&lt;/math&gt;, and for all &lt;math&gt;i&lt;\omega&lt;/math&gt;, &lt;math&gt;\tilde{f}_i(\alpha)<ins style="font-weight: bold; text-decoration: none;"> </ins>=<ins style="font-weight: bold; text-decoration: none;"> </ins>f_i(\alpha,\alpha)&lt;/math&gt; and &lt;math&gt;f_{i+1}(\alpha,\beta)<ins style="font-weight: bold; text-decoration: none;"> </ins>=<ins style="font-weight: bold; text-decoration: none;"> </ins>(\tilde{f}_i)^\beta(\alpha)&lt;/math&gt;. Let L&lt;sub&gt;α&lt;/sub&gt; denote the αth stage of [[Constructible universe|Godel's constructible universe]]. L&lt;sub&gt;α&lt;/sub&gt; is closed under primitive recursive set functions iff α is closed under each &lt;math&gt;f_i&lt;/math&gt; for all &lt;math&gt;i&lt;\omega&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;<ins style="font-weight: bold; text-decoration: none;">{{rp|</ins>p<ins style="font-weight: bold; text-decoration: none;">=</ins>31<ins style="font-weight: bold; text-decoration: none;">}}</ins></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Hellacioussatyr https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=1129230360&oldid=prev Hellacioussatyr: /* Definition */ 2022-12-24T06:30:29Z <p><span class="autocomment">Definition</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:30, 24 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 22:</td> <td colspan="2" class="diff-lineno">Line 22:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples of primitive recursive set functions:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples of primitive recursive set functions:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[[<del style="font-weight: bold; text-decoration: none;">Transitive_set</del>#<del style="font-weight: bold; text-decoration: none;">Transitive_closure</del>|TC]], the function assigning to a set its transitive closure.&lt;ref name="JensenManuscript"&gt;R. B. Jensen, [http://www-irm.mathematik.hu-berlin.de/~raesch/org/jensen/pdf/book_sec_1_2.pdf Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal] (pp. 22--31). Accessed 2022-12-07&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;">&lt;sup&gt;</del>p<del style="font-weight: bold; text-decoration: none;">.</del>26<del style="font-weight: bold; text-decoration: none;">&lt;/sup&gt;</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[<ins style="font-weight: bold; text-decoration: none;">Transitive set</ins>#<ins style="font-weight: bold; text-decoration: none;">Transitive closure</ins>|TC]], the function assigning to a set its transitive closure.&lt;ref name="JensenManuscript"&gt;R. B. Jensen, [http://www-irm.mathematik.hu-berlin.de/~raesch/org/jensen/pdf/book_sec_1_2.pdf Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal] (pp. 22--31). Accessed 2022-12-07&lt;/ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{rp|</ins>p<ins style="font-weight: bold; text-decoration: none;">=</ins>26<ins style="font-weight: bold; text-decoration: none;">}}</ins></div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Given [[hereditarily finite set|hereditarily finite]] &lt;math&gt;c&lt;/math&gt;, the constant function &lt;math&gt;f(x)=c&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;<del style="font-weight: bold; text-decoration: none;">&lt;sup&gt;</del>p<del style="font-weight: bold; text-decoration: none;">.</del>28<del style="font-weight: bold; text-decoration: none;">&lt;/sup&gt;</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Given [[hereditarily finite set|hereditarily finite]] &lt;math&gt;c&lt;/math&gt;, the constant function &lt;math&gt;f(x)=c&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;<ins style="font-weight: bold; text-decoration: none;">{{rp|</ins>p<ins style="font-weight: bold; text-decoration: none;">=</ins>28<ins style="font-weight: bold; text-decoration: none;">}}</ins></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Extensions==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Extensions==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger [[Class (set theory)|class]] of functions. For example, the ordinal function &lt;math&gt;\alpha\mapsto\omega^\alpha&lt;/math&gt; is not primitive recursive, because the constant function with value ω (or any other [[infinite set]]) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger [[Class (set theory)|class]] of functions. For example, the ordinal function &lt;math&gt;\alpha\mapsto\omega^\alpha&lt;/math&gt; is not primitive recursive, because the constant function with value ω (or any other [[infinite set]]) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> </tr> </table> Hellacioussatyr https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=1127165066&oldid=prev C7XWiki: /* Extensions */ 2022-12-13T07:03:52Z <p><span class="autocomment">Extensions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:03, 13 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The notion of a set function being ''primitive recursive in ω'' has the same definition as that of primitive recursion, except with ω as a parameter kept fixed, not altered by the primitive recursion schemata.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The notion of a set function being ''primitive recursive in ω'' has the same definition as that of primitive recursion, except with ω as a parameter kept fixed, not altered by the primitive recursion schemata.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Examples of functions primitive recursive in ω:&lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;pp.28--29&lt;/sup&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Examples of functions primitive recursive in ω:&lt;ref name="JensenManuscript" /&gt;<ins style="font-weight: bold; text-decoration: none;"> </ins>&lt;sup&gt;pp.28--29&lt;/sup&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*&lt;math&gt;\mathbb P_\omega(x)=\bigcup_{n&lt;\omega}x^n&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*&lt;math&gt;\mathbb P_\omega(x)=\bigcup_{n&lt;\omega}x^n&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*The function assigning to &lt;math&gt;\alpha&lt;/math&gt; the &lt;math&gt;\alpha&lt;/math&gt;th level &lt;math&gt;L_\alpha&lt;/math&gt; of [[Constructible universe|Godel's constructible hierarchy]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The function assigning to &lt;math&gt;\alpha&lt;/math&gt; the &lt;math&gt;\alpha&lt;/math&gt;th level &lt;math&gt;L_\alpha&lt;/math&gt; of [[Constructible universe|Godel's constructible hierarchy]]<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Primitive recursive closure==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Primitive recursive closure==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;f_0:\textrm{Ord}^2\to\textrm{Ord}&lt;/math&gt; be the function &lt;math&gt;f(\alpha,\beta)=\alpha+\beta&lt;/math&gt;, and for all &lt;math&gt;i&lt;\omega&lt;/math&gt;, &lt;math&gt;\tilde{f}_i(\alpha)=f_i(\alpha,\alpha)&lt;/math&gt; and &lt;math&gt;f_{i+1}(\alpha,\beta)=(\tilde{f}_i)^\beta(\alpha)&lt;/math&gt;. Let L&lt;sub&gt;α&lt;/sub&gt; denote the αth stage of [[Constructible universe|Godel's constructible universe]]. L&lt;sub&gt;α&lt;/sub&gt; is closed under primitive recursive set functions iff α is closed under each &lt;math&gt;f_i&lt;/math&gt; for all &lt;math&gt;i&lt;\omega&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;p.31&lt;/sup&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;f_0:\textrm{Ord}^2\to\textrm{Ord}&lt;/math&gt; be the function &lt;math&gt;f(\alpha,\beta)=\alpha+\beta&lt;/math&gt;, and for all &lt;math&gt;i&lt;\omega&lt;/math&gt;, &lt;math&gt;\tilde{f}_i(\alpha)=f_i(\alpha,\alpha)&lt;/math&gt; and &lt;math&gt;f_{i+1}(\alpha,\beta)=(\tilde{f}_i)^\beta(\alpha)&lt;/math&gt;. Let L&lt;sub&gt;α&lt;/sub&gt; denote the αth stage of [[Constructible universe|Godel's constructible universe]]. L&lt;sub&gt;α&lt;/sub&gt; is closed under primitive recursive set functions iff α is closed under each &lt;math&gt;f_i&lt;/math&gt; for all &lt;math&gt;i&lt;\omega&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;p.31&lt;/sup&gt;</div></td> </tr> </table> C7XWiki https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=1127165010&oldid=prev C7XWiki at 07:03, 13 December 2022 2022-12-13T07:03:23Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:03, 13 December 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 21:</td> <td colspan="2" class="diff-lineno">Line 21:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',&amp;thinsp;''y'') = ''x''&amp;thinsp;∪&amp;thinsp;{''y''} is replaced by ''F''(''x'') = ''x''&amp;thinsp;∪&amp;thinsp;{''x''} (the [[Successor ordinal|successor]] of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',&amp;thinsp;''y'') = ''x''&amp;thinsp;∪&amp;thinsp;{''y''} is replaced by ''F''(''x'') = ''x''&amp;thinsp;∪&amp;thinsp;{''x''} (the [[Successor ordinal|successor]] of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Examples of primitive recursive set functions:</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_3_3_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_0_lhs"></a>One can also add more initial functions to obtain a larger [[Class (set theory)|class]] of functions. For example, the ordinal function <del style="font-weight: bold; text-decoration: none;">ω</del>&lt;<del style="font-weight: bold; text-decoration: none;">sup</del>&gt;<del style="font-weight: bold; text-decoration: none;">α</del>&lt;/<del style="font-weight: bold; text-decoration: none;">sup</del>&gt; is not primitive recursive, because the constant function with value ω (or any other [[infinite set]]) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[Transitive_set#Transitive_closure|TC]], the function assigning to a set its transitive closure.&lt;ref name="JensenManuscript"&gt;R. B. Jensen, [http://www-irm.mathematik.hu-berlin.de/~raesch/org/jensen/pdf/book_sec_1_2.pdf Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal] (pp. 22--31). Accessed 2022-12-07&lt;/ref&gt;&lt;sup&gt;p.26&lt;/sup&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Given [[hereditarily finite set|hereditarily finite]] &lt;math&gt;c&lt;/math&gt;, the constant function &lt;math&gt;f(x)=c&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;p.28&lt;/sup&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Extensions==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_3_rhs"></a>One can also add more initial functions to obtain a larger [[Class (set theory)|class]] of functions. For example, the ordinal function &lt;<ins style="font-weight: bold; text-decoration: none;">math</ins>&gt;<ins style="font-weight: bold; text-decoration: none;">\alpha\mapsto\omega^\alpha</ins>&lt;/<ins style="font-weight: bold; text-decoration: none;">math</ins>&gt; is not primitive recursive, because the constant function with value ω (or any other [[infinite set]]) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The notion of a set function being ''primitive recursive in ω'' has the same definition as that of primitive recursion, except with ω as a parameter kept fixed, not altered by the primitive recursion schemata.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Examples of functions primitive recursive in ω:&lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;pp.28--29&lt;/sup&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*&lt;math&gt;\mathbb P_\omega(x)=\bigcup_{n&lt;\omega}x^n&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The function assigning to &lt;math&gt;\alpha&lt;/math&gt; the &lt;math&gt;\alpha&lt;/math&gt;th level &lt;math&gt;L_\alpha&lt;/math&gt; of [[Constructible universe|Godel's constructible hierarchy]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Primitive recursive closure==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let &lt;math&gt;f_0:\textrm{Ord}^2\to\textrm{Ord}&lt;/math&gt; be the function &lt;math&gt;f(\alpha,\beta)=\alpha+\beta&lt;/math&gt;, and for all &lt;math&gt;i&lt;\omega&lt;/math&gt;, &lt;math&gt;\tilde{f}_i(\alpha)=f_i(\alpha,\alpha)&lt;/math&gt; and &lt;math&gt;f_{i+1}(\alpha,\beta)=(\tilde{f}_i)^\beta(\alpha)&lt;/math&gt;. Let L&lt;sub&gt;α&lt;/sub&gt; denote the αth stage of [[Constructible universe|Godel's constructible universe]]. L&lt;sub&gt;α&lt;/sub&gt; is closed under primitive recursive set functions iff α is closed under each &lt;math&gt;f_i&lt;/math&gt; for all &lt;math&gt;i&lt;\omega&lt;/math&gt;. &lt;ref name="JensenManuscript" /&gt;&lt;sup&gt;p.31&lt;/sup&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 39:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.|place= Providence, R.I.|isbn=9780821802458}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.|place= Providence, R.I.|isbn=9780821802458}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>===Inline===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theory of computation]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theory of computation]]</div></td> </tr> </table> C7XWiki https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=972979838&oldid=prev Joel Brennan: added wikilinks and removed the "underlinked" tag 2020-08-14T19:27:39Z <p>added wikilinks and removed the &quot;underlinked&quot; tag</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:27, 14 August 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_1_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_0_0_rhs"></a>In <ins style="font-weight: bold; text-decoration: none;">[[</ins>mathematics<ins style="font-weight: bold; text-decoration: none;">]]</ins>, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for <ins style="font-weight: bold; text-decoration: none;">[[Set (mathematics)|</ins>sets<ins style="font-weight: bold; text-decoration: none;">]]</ins> or <ins style="font-weight: bold; text-decoration: none;">[[Ordinal number|</ins>ordinals<ins style="font-weight: bold; text-decoration: none;">]]</ins> rather than <ins style="font-weight: bold; text-decoration: none;">[[</ins>natural <ins style="font-weight: bold; text-decoration: none;">number]]s</ins>. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Underlinked|date=January 2019}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_0_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_1_lhs"></a>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural <del style="font-weight: bold; text-decoration: none;">numbers</del>. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive set function is a function from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive set function is a <ins style="font-weight: bold; text-decoration: none;">[[Function (mathematics)|</ins>function<ins style="font-weight: bold; text-decoration: none;">]]</ins> from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic functions are:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic functions are:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,...,''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''<ins style="font-weight: bold; text-decoration: none;">{{space|hair}}</ins>&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>...,<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;<ins style="font-weight: bold; text-decoration: none;"> for 0&amp;thinsp;≤&amp;thinsp;''m''&amp;thinsp;≤&amp;thinsp;''n''</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'') = 0</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'') = 0</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[[Axiom of adjunction|Adjoining an element to a set]]: ''F''(''x'',''y'') = ''x''<del style="font-weight: bold; text-decoration: none;"> </del>∪<del style="font-weight: bold; text-decoration: none;"> </del>{''y''}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[Axiom of adjunction|Adjoining an element to a set]]: ''F''(''x'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''y'') = ''x''<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>∪<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>{''y''}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Testing membership: ''C''(''x'',''y'',''u'',''v'') = ''x'' if ''u''<del style="font-weight: bold; text-decoration: none;"> </del>∈<del style="font-weight: bold; text-decoration: none;"> </del>''v'', ''y'' otherwise.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Testing <ins style="font-weight: bold; text-decoration: none;">[[Element (mathematics)|</ins>membership<ins style="font-weight: bold; text-decoration: none;">]]</ins>: ''C''(''x'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''y'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''u'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''v'') = ''x'' if ''u''<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>∈<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''v'',<ins style="font-weight: bold; text-decoration: none;"> and ''C''(''x'',&amp;thinsp;''y'',&amp;thinsp;''u'',&amp;thinsp;''v'') =</ins> ''y'' otherwise.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''('''x''',''H''('''x'''),'''y''')</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>'''y''') = ''G''('''x''',<ins style="font-weight: bold; text-decoration: none;"> </ins>''H''('''x'''),<ins style="font-weight: bold; text-decoration: none;"> </ins>'''y''')</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''(''H''('''x'''),'''y''')</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>'''y''') = ''G''(''H''('''x'''),<ins style="font-weight: bold; text-decoration: none;"> </ins>'''y''')</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where '''x''' and '''y''' are finite sequences of variables.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where '''x''' and '''y''' are finite sequences of variables.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rule for generating new functions by recursion is</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rule for generating new functions by recursion is</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*''F''(''z'','''x''') = ''G''(∪&lt;sub&gt;''u''∈''z''&lt;/sub&gt;''F''(''u'','''x'''),''z'','''x''')</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*''F''(''z'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>'''x''') = ''G''(∪&lt;sub&gt;''u''<ins style="font-weight: bold; text-decoration: none;">{{space|hair}}</ins>∈<ins style="font-weight: bold; text-decoration: none;">{{space|hair}}</ins>''z''&lt;/sub&gt;<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''F''(''u'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>'''x'''),<ins style="font-weight: bold; text-decoration: none;"> </ins>''z'',<ins style="font-weight: bold; text-decoration: none;"> </ins>'''x''')</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',''y'') = ''x''∪{''y''} is replaced by ''F''(''x'') = ''x''∪{''x''} (the successor of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>''y'') = ''x''<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>∪<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>{''y''} is replaced by ''F''(''x'') = ''x''<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>∪<ins style="font-weight: bold; text-decoration: none;">&amp;thinsp;</ins>{''x''} (the <ins style="font-weight: bold; text-decoration: none;">[[Successor ordinal|</ins>successor<ins style="font-weight: bold; text-decoration: none;">]]</ins> of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger class of functions. For example, the ordinal function ω&lt;sup&gt;α&lt;/sup&gt; is not primitive recursive, because the constant function with value ω (or any other infinite set) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger <ins style="font-weight: bold; text-decoration: none;">[[Class (set theory)|</ins>class<ins style="font-weight: bold; text-decoration: none;">]]</ins> of functions. For example, the ordinal function ω&lt;sup&gt;α&lt;/sup&gt; is not primitive recursive, because the constant function with value ω (or any other <ins style="font-weight: bold; text-decoration: none;">[[</ins>infinite set<ins style="font-weight: bold; text-decoration: none;">]]</ins>) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> </table> Joel Brennan https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=877819862&oldid=prev CitationCleanerBot: stray comma cleanup + WP:GENFIXES, replaced: publisher=Amer. Math. Soc.,| → publisher=Amer. Math. Soc.|, added underlinked tag 2019-01-11T03:03:58Z <p>stray comma cleanup + <a href="/wiki/Wikipedia:GENFIXES" class="mw-redirect" title="Wikipedia:GENFIXES">WP:GENFIXES</a>, replaced: publisher=Amer. Math. Soc.,| → publisher=Amer. Math. Soc.|, added <a href="/wiki/CAT:UL" class="mw-redirect" title="CAT:UL">underlinked</a> tag</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:03, 11 January 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Underlinked|date=January 2019}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 27:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{citation|mr=0281602 </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{citation|mr=0281602 </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.<del style="font-weight: bold; text-decoration: none;">,</del>|place= Providence, R.I.|isbn=9780821802458}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.|place= Providence, R.I.|isbn=9780821802458}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> </tr> </table> CitationCleanerBot https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=621081734&oldid=prev R.e.b.: Adding/removing wikilink(s) 2014-08-13T16:29:25Z <p>Adding/removing wikilink(s)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:29, 13 August 2014</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Underlinked|date=July 2014}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,...,''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,...,''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'') = 0</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'') = 0</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*<del style="font-weight: bold; text-decoration: none;">Adding</del> an element to a set: ''F''(''x'',''y'') = ''x'' ∪ {''y''}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*<ins style="font-weight: bold; text-decoration: none;">[[Axiom of adjunction|Adjoining</ins> an element to a set<ins style="font-weight: bold; text-decoration: none;">]]</ins>: ''F''(''x'',''y'') = ''x'' ∪ {''y''}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Testing membership: ''C''(''x'',''y'',''u'',''v'') = ''x'' if ''u'' ∈ ''v'', ''y'' otherwise.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Testing membership: ''C''(''x'',''y'',''u'',''v'') = ''x'' if ''u'' ∈ ''v'', ''y'' otherwise.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> R.e.b. https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=617837923&oldid=prev Michael Hardy: /* Definition */ 2014-07-21T12:24:36Z <p><span class="autocomment">Definition</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:24, 21 July 2014</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 9:</td> <td colspan="2" class="diff-lineno">Line 9:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic functions are:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The basic functions are:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,...,''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Projection: ''P''&lt;sub&gt;''n'',''m''&lt;/sub&gt;(''x''&lt;sub&gt;1&lt;/sub&gt;,...,''x''&lt;sub&gt;''n''&lt;/sub&gt;) = ''x''&lt;sub&gt;''m''&lt;/sub&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'')=0</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Zero: ''F''(''x'')<ins style="font-weight: bold; text-decoration: none;"> </ins>=<ins style="font-weight: bold; text-decoration: none;"> </ins>0</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Adding an element to a set: ''F''(''x'',''y'') = ''x''∪{''y''}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Adding an element to a set: ''F''(''x'',''y'') = ''x''<ins style="font-weight: bold; text-decoration: none;"> </ins>∪<ins style="font-weight: bold; text-decoration: none;"> </ins>{''y''}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*Testing membership: ''C''(''x'',''y'',''u'',''v'') = ''x'' if ''u''∈''v'', ''y'' otherwise.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*Testing membership: ''C''(''x'',''y'',''u'',''v'') = ''x'' if ''u''<ins style="font-weight: bold; text-decoration: none;"> </ins>∈<ins style="font-weight: bold; text-decoration: none;"> </ins>''v'', ''y'' otherwise.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> </tr> </table> Michael Hardy https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=617547956&oldid=prev JRSpriggs: /* Definition */ change italic to bold for a sequence of variables 2014-07-19T06:31:49Z <p><span class="autocomment">Definition: </span> change italic to bold for a sequence of variables</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:31, 19 July 2014</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 14:</td> <td colspan="2" class="diff-lineno">Line 14:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rules for generating new functions by substitution are</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''(''x'',''H''('''x'''),'''y''')</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''(<ins style="font-weight: bold; text-decoration: none;">'</ins>''x<ins style="font-weight: bold; text-decoration: none;">'</ins>'',''H''('''x'''),'''y''')</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''(''H''('''x'''),'''y''')</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*''F''('''x''','''y''') = ''G''(''H''('''x'''),'''y''')</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where '''x''' and '''y''' are finite sequences of variables.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where '''x''' and '''y''' are finite sequences of variables.</div></td> </tr> </table> JRSpriggs https://en.wikipedia.org/w/index.php?title=Primitive_recursive_set_function&diff=617539341&oldid=prev Solarra: various clean up and reference fixes, added underlinked tag using AWB 2014-07-19T04:28:19Z <p>various clean up and reference fixes, added <a href="/wiki/CAT:UL" class="mw-redirect" title="CAT:UL">underlinked</a> tag using <a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">AWB</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:28, 19 July 2014</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Underlinked|date=July 2014}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In mathematics, '''primitive recursive set functions''' or '''primitive recursive ordinal functions''' are analogs of [[primitive recursive function]]s, defined for sets or ordinals rather than natural numbers. They were introduced by {{harvtxt|Jensen|Karp|1971}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 19:</td> <td colspan="2" class="diff-lineno">Line 21:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*''F''(''z'','''x''') = ''G''(∪&lt;sub&gt;''u''∈''z''&lt;/sub&gt;''F''(''u'','''x'''),''z'','''x''')</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*''F''(''z'','''x''') = ''G''(∪&lt;sub&gt;''u''∈''z''&lt;/sub&gt;''F''(''u'','''x'''),''z'','''x''')</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',''y'') = ''x''∪{''y''} is replaced by ''F''(''x'') = ''x''∪{''x''} (the successor of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A primitive recursive ordinal function is defined in the same way, except that the initial function ''F''(''x'',''y'') = ''x''∪{''y''} is replaced by ''F''(''x'') = ''x''∪{''x''} (the successor of ''x''). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger class of functions. For example, the ordinal function ω&lt;sup&gt;α&lt;/sup&gt; is not primitive recursive, because the constant function with value ω (or any other infinite set) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One can also add more initial functions to obtain a larger class of functions. For example, the ordinal function ω&lt;sup&gt;α&lt;/sup&gt; is not primitive recursive, because the constant function with value ω (or any other infinite set) is not primitive recursive, so one might want to add this constant function to the initial functions.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 30:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|last=Jensen|first= Ronald B.|last2= Karp|first2= Carol</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.,|place= Providence, R.I.|isbn=9780821802458}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|chapter=Primitive recursive set functions|year= 1971 |title=Axiomatic Set Theory |series=Proc. Sympos. Pure Math.|volume= XIII, Part I|pages= 143–176 |publisher=Amer. Math. Soc.,|place= Providence, R.I.|isbn=9780821802458}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> </div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computability theory]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theory of computation]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Theory of computation]]</div></td> </tr> </table> Solarra