https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=QR_algorithm
QR algorithm - Revision history
2025-05-25T17:16:35Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.2
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1287127118&oldid=prev
BattyBot: Fixed CS1 errors: extra text: edition and general fixes
2025-04-24T04:59:45Z
<p>Fixed <a href="/wiki/Category:CS1_errors:_extra_text:_edition" title="Category:CS1 errors: extra text: edition">CS1 errors: extra text: edition</a> and <a href="/wiki/Wikipedia:AWB/GF" class="mw-redirect" title="Wikipedia:AWB/GF">general fixes</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:59, 24 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Under certain conditions,<ref name="golubvanloan">{{cite book |last1=Golub |first1=G. H. |last2=Van Loan |first2=C. F. |title=Matrix Computations |edition=3rd |publisher=Johns Hopkins University Press |location=Baltimore |year=1996 |isbn=0-8018-5414-8 }}</ref> the matrices ''A''<sub>''k''</sub> converge to a triangular matrix, the [[Schur form]] of ''A''. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros,{{citation needed|date=July 2020}} but the [[Gershgorin circle theorem]] provides a bound on the error.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Under certain conditions,<ref name="golubvanloan">{{cite book |last1=Golub |first1=G. H. |last2=Van Loan |first2=C. F. |title=Matrix Computations |edition=3rd |publisher=Johns Hopkins University Press |location=Baltimore |year=1996 |isbn=0-8018-5414-8 }}</ref> the matrices ''A''<sub>''k''</sub> converge to a triangular matrix, the [[Schur form]] of ''A''. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros,{{citation needed|date=July 2020}} but the [[Gershgorin circle theorem]] provides a bound on the error.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the matrices converge, then the eigenvalues along the diagonal will appear according to their geometric multiplicity. To guarantee convergence, A must be a symmetric matrix, and for all non zero eigenvalues <math>\lambda</math> there must not be a corresponding eigenvalue <math>-\lambda</math><del style="font-weight: bold; text-decoration: none;"> </del><ref>{{Cite book |last=Holmes |first=Mark H. |title=Introduction to scientific computing and data analysis |date=2023 |publisher=Springer |isbn=978-3-031-22429-4 |edition=Second<del style="font-weight: bold; text-decoration: none;"> Edition</del> |series=Texts in computational science and engineering |location=Cham}}</ref><del style="font-weight: bold; text-decoration: none;">.</del> Due to the fact that a single QR iteration has a cost of <math>\mathcal{O}(n^3)</math> and the convergence is linear, the standard QR algorithm is extremely expensive to compute, especially considering it is not guaranteed to converge<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{Cite book |last=Golub |first=Gene H. |title=Matrix computations |last2=Van Loan |first2=Charles F. |date=2013 |publisher=The Johns Hopkins University Press |isbn=978-1-4214-0794-4 |edition=Fourth<del style="font-weight: bold; text-decoration: none;"> edition</del> |series=Johns Hopkins studies in the mathematical sciences |location=Baltimore}}</ref><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the matrices converge, then the eigenvalues along the diagonal will appear according to their geometric multiplicity. To guarantee convergence, A must be a symmetric matrix, and for all non zero eigenvalues <math>\lambda</math> there must not be a corresponding eigenvalue <math>-\lambda</math><ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{Cite book |last=Holmes |first=Mark H. |title=Introduction to scientific computing and data analysis |date=2023 |publisher=Springer |isbn=978-3-031-22429-4 |edition=Second |series=Texts in computational science and engineering |location=Cham}}</ref> Due to the fact that a single QR iteration has a cost of <math>\mathcal{O}(n^3)</math> and the convergence is linear, the standard QR algorithm is extremely expensive to compute, especially considering it is not guaranteed to converge<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{Cite book |last=Golub |first=Gene H. |title=Matrix computations |last2=Van Loan |first2=Charles F. |date=2013 |publisher=The Johns Hopkins University Press |isbn=978-1-4214-0794-4 |edition=Fourth |series=Johns Hopkins studies in the mathematical sciences |location=Baltimore}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Using Hessenberg form===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Using Hessenberg form===</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 26:</td>
<td colspan="2" class="diff-lineno">Line 26:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Pick a shift <math>\mu</math> and subtract it from all diagonal elements, producing the matrix <math> A - \mu I </math>. A basic strategy is to use <math> \mu = a_{n,n} </math>, but there are more refined strategies that would further accelerate convergence. The idea is that <math> \mu </math> should be close to an eigenvalue, since making this shift will accelerate convergence to that eigenvalue.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Pick a shift <math>\mu</math> and subtract it from all diagonal elements, producing the matrix <math> A - \mu I </math>. A basic strategy is to use <math> \mu = a_{n,n} </math>, but there are more refined strategies that would further accelerate convergence. The idea is that <math> \mu </math> should be close to an eigenvalue, since making this shift will accelerate convergence to that eigenvalue.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Perform a sequence of [[Givens rotation]]s <math> G_1, G_2, \dots, G_{n-1} </math> on <math> A - \mu I </math>, where <math> G_i </math> acts on rows <math>i</math> and <math>i+1</math>, and <math> G_i </math> is chosen to zero out position <math>(i+1,i)</math> of <math> G_{i-1} \dotsb G_1 (A - \mu I) </math>. This produces the upper triangular matrix <math> R = G_{n-1} \dotsb G_1 (A - \mu I) </math>. The orthogonal factor <math> Q </math> would be <math> G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, but it is neither necessary nor efficient to produce that explicitly.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Perform a sequence of [[Givens rotation]]s <math> G_1, G_2, \dots, G_{n-1} </math> on <math> A - \mu I </math>, where <math> G_i </math> acts on rows <math>i</math> and <math>i+1</math>, and <math> G_i </math> is chosen to zero out position <math>(i+1,i)</math> of <math> G_{i-1} \dotsb G_1 (A - \mu I) </math>. This produces the upper triangular matrix <math> R = G_{n-1} \dotsb G_1 (A - \mu I) </math>. The orthogonal factor <math> Q </math> would be <math> G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, but it is neither necessary nor efficient to produce that explicitly.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># Now multiply <math> R </math> by the Givens matrices <math> G_1^\mathrm{T} </math>, <math> G_2^\mathrm{T} </math>, <del style="font-weight: bold; text-decoration: none;">…</del>, <math> G_{n-1}^\mathrm{T} </math> on the right, where <math> G_i^\mathrm{T} </math> instead acts on columns <math>i</math> and <math> i+1 </math>. This produces the matrix <math> RQ = R G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, which is again on Hessenberg form.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Now multiply <math> R </math> by the Givens matrices <math> G_1^\mathrm{T} </math>, <math> G_2^\mathrm{T} </math>, <ins style="font-weight: bold; text-decoration: none;">...</ins>, <math> G_{n-1}^\mathrm{T} </math> on the right, where <math> G_i^\mathrm{T} </math> instead acts on columns <math>i</math> and <math> i+1 </math>. This produces the matrix <math> RQ = R G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, which is again on Hessenberg form.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Finally undo the shift by adding <math> \mu </math> to all diagonal entries. The result is <math> A' = RQ + \mu I </math>. Since <math>Q</math> commutes with <math>I</math>, we have that <math> A' = Q^\mathrm{T} (A-\mu I) Q + \mu I = Q^\mathrm{T} A Q </math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Finally undo the shift by adding <math> \mu </math> to all diagonal entries. The result is <math> A' = RQ + \mu I </math>. Since <math>Q</math> commutes with <math>I</math>, we have that <math> A' = Q^\mathrm{T} (A-\mu I) Q + \mu I = Q^\mathrm{T} A Q </math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The purpose of the shift is to change which Givens rotations are chosen.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The purpose of the shift is to change which Givens rotations are chosen.</div></td>
</tr>
</table>
BattyBot
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1287002267&oldid=prev
Daurum: Added a paragraph explaining some properties of the convergence of the standard form of the QR algorithm
2025-04-23T11:07:53Z
<p>Added a paragraph explaining some properties of the convergence of the standard form of the QR algorithm</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:07, 23 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 9:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Under certain conditions,<ref name="golubvanloan">{{cite book |last1=Golub |first1=G. H. |last2=Van Loan |first2=C. F. |title=Matrix Computations |edition=3rd |publisher=Johns Hopkins University Press |location=Baltimore |year=1996 |isbn=0-8018-5414-8 }}</ref> the matrices ''A''<sub>''k''</sub> converge to a triangular matrix, the [[Schur form]] of ''A''. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros,{{citation needed|date=July 2020}} but the [[Gershgorin circle theorem]] provides a bound on the error.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Under certain conditions,<ref name="golubvanloan">{{cite book |last1=Golub |first1=G. H. |last2=Van Loan |first2=C. F. |title=Matrix Computations |edition=3rd |publisher=Johns Hopkins University Press |location=Baltimore |year=1996 |isbn=0-8018-5414-8 }}</ref> the matrices ''A''<sub>''k''</sub> converge to a triangular matrix, the [[Schur form]] of ''A''. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros,{{citation needed|date=July 2020}} but the [[Gershgorin circle theorem]] provides a bound on the error.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the matrices converge, then the eigenvalues along the diagonal will appear according to their geometric multiplicity. To guarantee convergence, A must be a symmetric matrix, and for all non zero eigenvalues <math>\lambda</math> there must not be a corresponding eigenvalue <math>-\lambda</math> <ref>{{Cite book |last=Holmes |first=Mark H. |title=Introduction to scientific computing and data analysis |date=2023 |publisher=Springer |isbn=978-3-031-22429-4 |edition=Second Edition |series=Texts in computational science and engineering |location=Cham}}</ref>. Due to the fact that a single QR iteration has a cost of <math>\mathcal{O}(n^3)</math> and the convergence is linear, the standard QR algorithm is extremely expensive to compute, especially considering it is not guaranteed to converge <ref>{{Cite book |last=Golub |first=Gene H. |title=Matrix computations |last2=Van Loan |first2=Charles F. |date=2013 |publisher=The Johns Hopkins University Press |isbn=978-1-4214-0794-4 |edition=Fourth edition |series=Johns Hopkins studies in the mathematical sciences |location=Baltimore}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Using Hessenberg form===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Using Hessenberg form===</div></td>
</tr>
</table>
Daurum
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1286344540&oldid=prev
Ophyrius: Reverted 1 edit by 210.212.2.165 (talk) to last revision by Ererer333
2025-04-19T08:42:10Z
<p>Reverted 1 edit by <a href="/wiki/Special:Contributions/210.212.2.165" title="Special:Contributions/210.212.2.165">210.212.2.165</a> (<a href="/wiki/User_talk:210.212.2.165" title="User talk:210.212.2.165">talk</a>) to last revision by Ererer333</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:42, 19 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 129:</td>
<td colspan="2" class="diff-lineno">Line 129:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Renaming proposal===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Renaming proposal===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since in the modern implicit version of the procedure no [[QR decomposition]]s are explicitly performed, some authors, for instance Watkins,<ref>{{cite book |last=Watkins |first=David S. |title=The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods |publisher=SIAM |location=Philadelphia, PA |year=2007 |isbn=978-0-89871-641-2 }}</ref> suggested changing its name to ''Francis <del style="font-weight: bold; text-decoration: none;">algorithmhe</del> term ''Francis QR step''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since in the modern implicit version of the procedure no [[QR decomposition]]s are explicitly performed, some authors, for instance Watkins,<ref>{{cite book |last=Watkins |first=David S. |title=The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods |publisher=SIAM |location=Philadelphia, PA |year=2007 |isbn=978-0-89871-641-2 }}</ref> suggested changing its name to ''Francis <ins style="font-weight: bold; text-decoration: none;">algorithm''. [[Gene H. Golub|Golub]] and [[Charles F. Van Loan|Van Loan]] use the</ins> term ''Francis QR step''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
</tr>
</table>
Ophyrius
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1286342905&oldid=prev
210.212.2.165: /* The implicit QR algorithm */
2025-04-19T08:25:46Z
<p><span class="autocomment">The implicit QR algorithm</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:25, 19 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 129:</td>
<td colspan="2" class="diff-lineno">Line 129:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Renaming proposal===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Renaming proposal===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Since in the modern implicit version of the procedure no [[QR decomposition]]s are explicitly performed, some authors, for instance Watkins,<ref>{{cite book |last=Watkins |first=David S. |title=The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods |publisher=SIAM |location=Philadelphia, PA |year=2007 |isbn=978-0-89871-641-2 }}</ref> suggested changing its name to ''Francis <del style="font-weight: bold; text-decoration: none;">algorithm''. [[Gene H. Golub|Golub]] and [[Charles F. Van Loan|Van Loan]] use the</del> term ''Francis QR step''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Since in the modern implicit version of the procedure no [[QR decomposition]]s are explicitly performed, some authors, for instance Watkins,<ref>{{cite book |last=Watkins |first=David S. |title=The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods |publisher=SIAM |location=Philadelphia, PA |year=2007 |isbn=978-0-89871-641-2 }}</ref> suggested changing its name to ''Francis <ins style="font-weight: bold; text-decoration: none;">algorithmhe</ins> term ''Francis QR step''.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
</tr>
</table>
210.212.2.165
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1274608839&oldid=prev
Ererer333: /* growthexperiments-addlink-summary-summary:3|0|0 */
2025-02-08T09:43:39Z
<p>Link suggestions feature: 3 links added.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:43, 8 February 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a Hessenberg matrix <math>A</math> has element <math> a_{k,k-1} = 0 </math> for some <math>k</math>, i.e., if one of the elements just below the diagonal is in fact zero, then it decomposes into blocks whose eigenproblems may be solved separately; an eigenvalue is either an eigenvalue of the submatrix of the first <math>k-1</math> rows and columns, or an eigenvalue of the submatrix of remaining rows and columns. The purpose of the QR iteration step is to shrink one of these <math>a_{k,k-1}</math> elements so that effectively a small block along the diagonal is split off from the bulk of the matrix. In the case of a real eigenvalue that is usually the <math> 1 \times 1 </math> block in the lower right corner (in which case element <math> a_{nn} </math> holds that eigenvalue), whereas in the case of a pair of conjugate complex eigenvalues it is the <math> 2 \times 2 </math> block in the lower right corner.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If a Hessenberg matrix <math>A</math> has element <math> a_{k,k-1} = 0 </math> for some <math>k</math>, i.e., if one of the elements just below the diagonal is in fact zero, then it decomposes into blocks whose eigenproblems may be solved separately; an eigenvalue is either an eigenvalue of the submatrix of the first <math>k-1</math> rows and columns, or an eigenvalue of the submatrix of remaining rows and columns. The purpose of the QR iteration step is to shrink one of these <math>a_{k,k-1}</math> elements so that effectively a small block along the diagonal is split off from the bulk of the matrix. In the case of a real eigenvalue that is usually the <math> 1 \times 1 </math> block in the lower right corner (in which case element <math> a_{nn} </math> holds that eigenvalue), whereas in the case of a pair of conjugate complex eigenvalues it is the <math> 2 \times 2 </math> block in the lower right corner.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The <ins style="font-weight: bold; text-decoration: none;">[[</ins>rate of convergence<ins style="font-weight: bold; text-decoration: none;">]]</ins> depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====A single iteration with explicit shift====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====A single iteration with explicit shift====</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 132:</td>
<td colspan="2" class="diff-lineno">Line 132:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Interpretation and convergence ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The QR algorithm can be seen as a more sophisticated variation of the basic [[Power iteration|"power" eigenvalue algorithm]]. Recall that the power algorithm repeatedly multiplies ''A'' times a single vector, normalizing after each iteration. The vector converges to an eigenvector of the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix ''A'', upon convergence, ''AQ'' = ''Q&Lambda;'', where ''&Lambda;'' is the diagonal matrix of eigenvalues to which ''A'' converged, and where ''Q'' is a composite of all the orthogonal similarity transforms required to get there. Thus the columns of ''Q'' are the eigenvectors.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The QR algorithm can be seen as a more sophisticated variation of the basic [[Power iteration|"power" eigenvalue algorithm]]. Recall that the power algorithm repeatedly multiplies ''A'' times a single vector, normalizing after each iteration. The vector converges to an eigenvector of the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix ''A'', upon convergence, ''AQ'' = ''Q&Lambda;'', where ''&Lambda;'' is the <ins style="font-weight: bold; text-decoration: none;">[[</ins>diagonal matrix<ins style="font-weight: bold; text-decoration: none;">]]</ins> of eigenvalues to which ''A'' converged, and where ''Q'' is a composite of all the orthogonal similarity transforms required to get there. Thus the columns of ''Q'' are the eigenvectors.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 140:</td>
<td colspan="2" class="diff-lineno">Line 140:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Other variants ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Other variants ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One variant of the ''QR algorithm'', ''the Golub-Kahan-Reinsch'' algorithm starts with reducing a general matrix into a bidiagonal one.<ref>Bochkanov Sergey Anatolyevich. ALGLIB User Guide - General Matrix operations - Singular value decomposition . ALGLIB Project. 2010-12-11. URL:[http://www.alglib.net/matrixops/general/svd.php] Accessed: 2010-12-11. (Archived by WebCite at https://www.webcitation.org/5utO4iSnR?url=http://www.alglib.net/matrixops/general/svd.php</ref> This variant of the ''QR algorithm'' for the computation of [[singular values]] was first described by {{harvtxt|Golub|Kahan|1965}}. The [[LAPACK]] subroutine [http://www.netlib.org/lapack/double/dbdsqr.f DBDSQR] implements this iterative method, with some modifications to cover the case where the singular values are very small {{harv|Demmel|Kahan|1990}}. Together with a first step using Householder reflections and, if appropriate, [[QR decomposition]], this forms the [http://www.netlib.org/lapack/double/dgesvd.f DGESVD] routine for the computation of the [[singular value decomposition]]. The QR algorithm can also be implemented in infinite dimensions with corresponding convergence results.<ref>{{cite journal |first1=Percy |last1=Deift |first2=Luenchau C. |last2=Li |first3=Carlos |last3=Tomei|title=Toda flows with infinitely many variables |journal=Journal of Functional Analysis |volume=64 | number=3| pages=358–402 |year=1985 |doi=10.1016/0022-1236(85)90065-5|doi-access=free }}</ref><ref>{{cite journal |first1=Matthew J. |last1=Colbrook |first2=Anders C.|last2=Hansen|title=On the infinite-dimensional QR algorithm |journal=Numerische Mathematik |volume=143 | number=1| pages=17–83 |year=2019 |doi=10.1007/s00211-019-01047-5|arxiv=2011.08172|doi-access=free }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One variant of the ''QR algorithm'', ''the Golub-Kahan-Reinsch'' algorithm starts with reducing a general matrix into a bidiagonal one.<ref>Bochkanov Sergey Anatolyevich. ALGLIB User Guide - General Matrix operations - Singular value decomposition . ALGLIB Project. 2010-12-11. URL:[http://www.alglib.net/matrixops/general/svd.php] Accessed: 2010-12-11. (Archived by WebCite at https://www.webcitation.org/5utO4iSnR?url=http://www.alglib.net/matrixops/general/svd.php</ref> This variant of the ''QR algorithm'' for the computation of [[singular values]] was first described by {{harvtxt|Golub|Kahan|1965}}. The [[LAPACK]] subroutine [http://www.netlib.org/lapack/double/dbdsqr.f DBDSQR] implements this <ins style="font-weight: bold; text-decoration: none;">[[</ins>iterative method<ins style="font-weight: bold; text-decoration: none;">]]</ins>, with some modifications to cover the case where the singular values are very small {{harv|Demmel|Kahan|1990}}. Together with a first step using Householder reflections and, if appropriate, [[QR decomposition]], this forms the [http://www.netlib.org/lapack/double/dgesvd.f DGESVD] routine for the computation of the [[singular value decomposition]]. The QR algorithm can also be implemented in infinite dimensions with corresponding convergence results.<ref>{{cite journal |first1=Percy |last1=Deift |first2=Luenchau C. |last2=Li |first3=Carlos |last3=Tomei|title=Toda flows with infinitely many variables |journal=Journal of Functional Analysis |volume=64 | number=3| pages=358–402 |year=1985 |doi=10.1016/0022-1236(85)90065-5|doi-access=free }}</ref><ref>{{cite journal |first1=Matthew J. |last1=Colbrook |first2=Anders C.|last2=Hansen|title=On the infinite-dimensional QR algorithm |journal=Numerische Mathematik |volume=143 | number=1| pages=17–83 |year=2019 |doi=10.1007/s00211-019-01047-5|arxiv=2011.08172|doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
Ererer333
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1260758881&oldid=prev
Arjayay: Duplicate word reworded
2024-12-02T13:55:46Z
<p>Duplicate word reworded</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:55, 2 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 37:</td>
<td colspan="2" class="diff-lineno">Line 37:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{bmatrix}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{bmatrix}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where the <math>I</math> in the upper left corner is an <math> (n-1) \times (n-1) </math> identity matrix, and the two scalars <math> c = \cos\theta </math> and <math> s = \sin\theta </math> are determined by what rotation angle <math> \theta </math> is appropriate for zeroing out position <math>(i+1,i)</math>. It is not necessary to exhibit <math> \theta </math>; the factors <math> c </math> and <math> s </math> can be determined directly from elements in the matrix <math> G_i </math> should act on. Nor is it necessary to produce the whole matrix; multiplication (from the left) by <math> G_i </math> only affects rows <math> i </math> and <math> i+1 </math>, so it <del style="font-weight: bold; text-decoration: none;">it</del> easier to just update those two rows in place. Likewise, for the Step 3 multiplication by <math> G_i^\mathrm{T} </math> from the right, it is sufficient to remember <math>i</math>, <math>c</math>, and <math>s</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where the <math>I</math> in the upper left corner is an <math> (n-1) \times (n-1) </math> identity matrix, and the two scalars <math> c = \cos\theta </math> and <math> s = \sin\theta </math> are determined by what rotation angle <math> \theta </math> is appropriate for zeroing out position <math>(i+1,i)</math>. It is not necessary to exhibit <math> \theta </math>; the factors <math> c </math> and <math> s </math> can be determined directly from elements in the matrix <math> G_i </math> should act on. Nor is it necessary to produce the whole matrix; multiplication (from the left) by <math> G_i </math> only affects rows <math> i </math> and <math> i+1 </math>, so it <ins style="font-weight: bold; text-decoration: none;">is</ins> easier to just update those two rows in place. Likewise, for the Step 3 multiplication by <math> G_i^\mathrm{T} </math> from the right, it is sufficient to remember <math>i</math>, <math>c</math>, and <math>s</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If using the simple <math> \mu = a_{n,n} </math> strategy, then at the beginning of Step 2 we have a matrix</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If using the simple <math> \mu = a_{n,n} </math> strategy, then at the beginning of Step 2 we have a matrix</div></td>
</tr>
</table>
Arjayay
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1260742432&oldid=prev
37.198.120.181: /* A single iteration with explicit shift */ Typo.
2024-12-02T10:55:01Z
<p><span class="autocomment">A single iteration with explicit shift: </span> Typo.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:55, 2 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 99:</td>
<td colspan="2" class="diff-lineno">Line 99:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & <del style="font-weight: bold; text-decoration: none;">c h_{n-1,n}</del> \\</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & <ins style="font-weight: bold; text-decoration: none;">\times</ins> \\</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & -s^2 h_{n-1,n} & cs h_{n-1,n}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & -s^2 h_{n-1,n} & cs h_{n-1,n}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
</table>
37.198.120.181
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1260742165&oldid=prev
37.198.120.181: /* A single iteration with explicit shift */ Showing how steps affect the matrix form.
2024-12-02T10:52:38Z
<p><span class="autocomment">A single iteration with explicit shift: </span> Showing how steps affect the matrix form.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:52, 2 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 21:</td>
<td colspan="2" class="diff-lineno">Line 21:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====A single iteration with explicit shift====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====A single iteration with explicit shift====</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The steps of a QR iteration on a real Hessenberg matrix <math>A</math><del style="font-weight: bold; text-decoration: none;"> with explicit shift</del> are:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The steps of a QR iteration<ins style="font-weight: bold; text-decoration: none;"> with explicit shift</ins> on a real Hessenberg matrix <math>A</math> are:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Pick a shift <math>\mu</math> and subtract it from all diagonal elements, producing the matrix <math> A - \mu I </math>. A basic strategy is to use <math> \mu = a_{n,n} </math>, but there are more refined strategies that would further accelerate convergence. The idea is that <math> \mu </math> should be close to an eigenvalue, since making this shift will accelerate convergence to that eigenvalue.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Pick a shift <math>\mu</math> and subtract it from all diagonal elements, producing the matrix <math> A - \mu I </math>. A basic strategy is to use <math> \mu = a_{n,n} </math>, but there are more refined strategies that would further accelerate convergence. The idea is that <math> \mu </math> should be close to an eigenvalue, since making this shift will accelerate convergence to that eigenvalue.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Perform a sequence of [[Givens rotation]]s <math> G_1, G_2, \dots, G_{n-1} </math> on <math> A - \mu I </math>, where <math> G_i </math> acts on rows <math>i</math> and <math>i+1</math>, and <math> G_i </math> is chosen to zero out position <math>(i+1,i)</math> of <math> G_{i-1} \dotsb G_1 (A - \mu I) </math>. This produces the upper triangular matrix <math> R = G_{n-1} \dotsb G_1 (A - \mu I) </math>. The orthogonal factor <math> Q </math> would be <math> G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, but it is neither necessary nor efficient to produce that explicitly.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Perform a sequence of [[Givens rotation]]s <math> G_1, G_2, \dots, G_{n-1} </math> on <math> A - \mu I </math>, where <math> G_i </math> acts on rows <math>i</math> and <math>i+1</math>, and <math> G_i </math> is chosen to zero out position <math>(i+1,i)</math> of <math> G_{i-1} \dotsb G_1 (A - \mu I) </math>. This produces the upper triangular matrix <math> R = G_{n-1} \dotsb G_1 (A - \mu I) </math>. The orthogonal factor <math> Q </math> would be <math> G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, but it is neither necessary nor efficient to produce that explicitly.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Now multiply <math> R </math> by the Givens matrices <math> G_1^\mathrm{T} </math>, <math> G_2^\mathrm{T} </math>, …, <math> G_{n-1}^\mathrm{T} </math> on the right, where <math> G_i^\mathrm{T} </math> instead acts on columns <math>i</math> and <math> i+1 </math>. This produces the matrix <math> RQ = R G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, which is again on Hessenberg form.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Now multiply <math> R </math> by the Givens matrices <math> G_1^\mathrm{T} </math>, <math> G_2^\mathrm{T} </math>, …, <math> G_{n-1}^\mathrm{T} </math> on the right, where <math> G_i^\mathrm{T} </math> instead acts on columns <math>i</math> and <math> i+1 </math>. This produces the matrix <math> RQ = R G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, which is again on Hessenberg form.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Finally undo the shift by adding <math> \mu </math> to all diagonal entries. The result is <math> A' = RQ + \mu I </math>. Since <math>Q</math> commutes with <math>I</math>, we have that <math> A' = Q^\mathrm{T} (A-\mu I) Q + \mu I = Q^\mathrm{T} A Q </math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Finally undo the shift by adding <math> \mu </math> to all diagonal entries. The result is <math> A' = RQ + \mu I </math>. Since <math>Q</math> commutes with <math>I</math>, we have that <math> A' = Q^\mathrm{T} (A-\mu I) Q + \mu I = Q^\mathrm{T} A Q </math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The purpose of the shift is to change which Givens rotations are chosen.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In more detail, the structure of one of these <math> G_i </math> matrices are</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> G_i = \begin{bmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> I & 0 & 0 & 0 \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & c & -s & 0 \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & s & c & 0 \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & I</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{bmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where the <math>I</math> in the upper left corner is an <math> (n-1) \times (n-1) </math> identity matrix, and the two scalars <math> c = \cos\theta </math> and <math> s = \sin\theta </math> are determined by what rotation angle <math> \theta </math> is appropriate for zeroing out position <math>(i+1,i)</math>. It is not necessary to exhibit <math> \theta </math>; the factors <math> c </math> and <math> s </math> can be determined directly from elements in the matrix <math> G_i </math> should act on. Nor is it necessary to produce the whole matrix; multiplication (from the left) by <math> G_i </math> only affects rows <math> i </math> and <math> i+1 </math>, so it it easier to just update those two rows in place. Likewise, for the Step 3 multiplication by <math> G_i^\mathrm{T} </math> from the right, it is sufficient to remember <math>i</math>, <math>c</math>, and <math>s</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If using the simple <math> \mu = a_{n,n} </math> strategy, then at the beginning of Step 2 we have a matrix</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> A - a_{n,n} I = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & \times & 0</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where the <math>\times</math> denotes “could be whatever”. The first Givens rotation <math> G_1 </math> zeroes out the <math> (i+1,i) </math> position of this, producing</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> G_1 (A - a_{n,n} I) = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & \times & 0</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{.}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Each new rotation zeroes out another subdiagonal element, thus increasing the number of known zeroes until we are at</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> H = G_{n-2} \dotsb G_1 (A - a_{n,n} I) = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & h_{n-1,n-1} & h_{n-1,n} \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & h_{n,n-1} & 0</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{.}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The final rotation <math>G_{n-1}</math> has <math>(c,s)</math> chosen so that <math> s h_{n-1,n-1} + c h_{n,n-1} = 0 </math>. If <math> |h_{n-1,n-1}| \gg |h_{n,n-1}| </math>, as is typically the case when we approach convergence, then <math> c \approx 1 </math> and <math> |s| \ll 1 </math>. Making this rotation produces</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> R = G_{n-1} G_{n-2} \dotsb G_1 (A - a_{n,n} I) = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & \times & c h_{n-1,n} \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & 0 & s h_{n-1,n}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{,}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>which is our upper triangular matrix. But now we reach Step 3, and need to start rotating data between columns. The first rotation acts on columns <math>1</math> and <math>2</math>, producing</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> R G_1^\mathrm{T} = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & \times & c h_{n-1,n} \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & 0 & s h_{n-1,n}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{.}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The expected pattern is that each rotation moves some nonzero value from the diagonal out to the subdiagonal, returning the matrix to Hessenberg form. This ends at</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> R G_1^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} = \begin{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \times & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & \times & \times & \times & \times \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & \times & \times & c h_{n-1,n} \\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> 0 & 0 & 0 & -s^2 h_{n-1,n} & cs h_{n-1,n}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \end{pmatrix}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> \text{.}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Algebraically the form is unchanged, but numerically the element in position <math> (n,n-1) </math> has gotten a lot closer to zero: there used to be a factor <math> s </math> gap between it and the diagonal element above, but now the gap is more like a factor <math> s^2 </math>, and another iteration would make it factor <math> s^4 </math>; we have quadratic convergence. Practically that means <math>O(1)</math> iterations per eigenvalue suffice for convergence, and thus overall we can complete in <math> O(n) </math> QR steps, each of which does a mere <math> O(n^2) </math> arithmetic operations (or as little as <math> O(n) </math> operations, in the case that <math> A </math> is symmetric).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Visualization ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Visualization ==</div></td>
</tr>
</table>
37.198.120.181
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1260729830&oldid=prev
37.198.120.181: /* Iteration phase */ New subsection "A single iteration with explicit shift"
2024-12-02T08:33:28Z
<p><span class="autocomment">Iteration phase: </span> New subsection "A single iteration with explicit shift"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:33, 2 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>====A single iteration with explicit shift====</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The steps of a QR iteration on a real Hessenberg matrix <math>A</math> with explicit shift are:</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Pick a shift <math>\mu</math> and subtract it from all diagonal elements, producing the matrix <math> A - \mu I </math>. A basic strategy is to use <math> \mu = a_{n,n} </math>, but there are more refined strategies that would further accelerate convergence. The idea is that <math> \mu </math> should be close to an eigenvalue, since making this shift will accelerate convergence to that eigenvalue.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Perform a sequence of [[Givens rotation]]s <math> G_1, G_2, \dots, G_{n-1} </math> on <math> A - \mu I </math>, where <math> G_i </math> acts on rows <math>i</math> and <math>i+1</math>, and <math> G_i </math> is chosen to zero out position <math>(i+1,i)</math> of <math> G_{i-1} \dotsb G_1 (A - \mu I) </math>. This produces the upper triangular matrix <math> R = G_{n-1} \dotsb G_1 (A - \mu I) </math>. The orthogonal factor <math> Q </math> would be <math> G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, but it is neither necessary nor efficient to produce that explicitly.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Now multiply <math> R </math> by the Givens matrices <math> G_1^\mathrm{T} </math>, <math> G_2^\mathrm{T} </math>, …, <math> G_{n-1}^\mathrm{T} </math> on the right, where <math> G_i^\mathrm{T} </math> instead acts on columns <math>i</math> and <math> i+1 </math>. This produces the matrix <math> RQ = R G_1^\mathrm{T} G_2^\mathrm{T} \dotsb G_{n-1}^\mathrm{T} </math>, which is again on Hessenberg form.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Finally undo the shift by adding <math> \mu </math> to all diagonal entries. The result is <math> A' = RQ + \mu I </math>. Since <math>Q</math> commutes with <math>I</math>, we have that <math> A' = Q^\mathrm{T} (A-\mu I) Q + \mu I = Q^\mathrm{T} A Q </math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Visualization ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Visualization ==</div></td>
</tr>
</table>
37.198.120.181
https://en.wikipedia.org/w/index.php?title=QR_algorithm&diff=1254105269&oldid=prev
130.243.94.123: /* Iteration phase */ Wrote lead-in to the iteration phase.
2024-10-29T12:49:32Z
<p><span class="autocomment">Iteration phase: </span> Wrote lead-in to the iteration phase.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:49, 29 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 16:</td>
<td colspan="2" class="diff-lineno">Line 16:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Iteration phase===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Iteration phase===</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If a Hessenberg matrix <math>A</math> has element <math> a_{k,k-1} = 0 </math> for some <math>k</math>, i.e., if one of the elements just below the diagonal is in fact zero, then it decomposes into blocks whose eigenproblems may be solved separately; an eigenvalue is either an eigenvalue of the submatrix of the first <math>k-1</math> rows and columns, or an eigenvalue of the submatrix of remaining rows and columns. The purpose of the QR iteration step is to shrink one of these <math>a_{k,k-1}</math> elements so that effectively a small block along the diagonal is split off from the bulk of the matrix. In the case of a real eigenvalue that is usually the <math> 1 \times 1 </math> block in the lower right corner (in which case element <math> a_{nn} </math> holds that eigenvalue), whereas in the case of a pair of conjugate complex eigenvalues it is the <math> 2 \times 2 </math> block in the lower right corner.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.{{clarify|date=June 2012}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
130.243.94.123