https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Quadratic_unconstrained_binary_optimization
Quadratic unconstrained binary optimization - Revision history
2025-06-28T04:53:12Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.7
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296973246&oldid=prev
Rich Smith: CheckWiki Fixes (and other AWB fixes)
2025-06-23T12:17:07Z
<p>CheckWiki Fixes (and other AWB fixes)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:17, 23 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=https://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=https://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Embeddings for machine learning models include [[support-vector machine<del style="font-weight: bold; text-decoration: none;">|support-vector machines</del>]], [[cluster analysis|clustering]] and [[probabilistic graphical model<del style="font-weight: bold; text-decoration: none;">|probabilistic graphical models</del>]].<ref>{{cite journal |last1=Mücke |first1=Sascha |last2=Piatkowski |first2=Nico |last3=Morik |first3=Katharina |author3-link=Katharina Morik|title=Learning Bit by Bit: Extracting the Essence of Machine Learning |journal=LWDA |date=2019 |s2cid=202760166 |url=https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |archive-url=https://web.archive.org/web/20200227143739/https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |url-status=dead |archive-date=2020-02-27 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Embeddings for machine learning models include [[support-vector machine]]<ins style="font-weight: bold; text-decoration: none;">s</ins>, [[cluster analysis|clustering]] and [[probabilistic graphical model]]<ins style="font-weight: bold; text-decoration: none;">s</ins>.<ref>{{cite journal |last1=Mücke |first1=Sascha |last2=Piatkowski |first2=Nico |last3=Morik |first3=Katharina |author3-link=Katharina Morik|title=Learning Bit by Bit: Extracting the Essence of Machine Learning |journal=LWDA |date=2019 |s2cid=202760166 |url=https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |archive-url=https://web.archive.org/web/20200227143739/https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |url-status=dead |archive-date=2020-02-27 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Moreover, due to its close connection to [[Ising model<del style="font-weight: bold; text-decoration: none;">|Ising models</del>]], QUBO constitutes a central problem class for [[adiabatic quantum computing|adiabatic quantum computation]], where it is solved through a physical process called [[quantum annealing]].<ref>{{cite web</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Moreover, due to its close connection to [[Ising model]]<ins style="font-weight: bold; text-decoration: none;">s</ins>, QUBO constitutes a central problem class for [[adiabatic quantum computing|adiabatic quantum computation]], where it is solved through a physical process called [[quantum annealing]].<ref>{{cite web</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> |url = http://www.technologyreview.com/view/514686/d-waves-quantum-computer-goes-to-the-races-wins/</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> |url = http://www.technologyreview.com/view/514686/d-waves-quantum-computer-goes-to-the-races-wins/</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> |title = D-Wave's Quantum Computer Goes to the Races, Wins</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> |title = D-Wave's Quantum Computer Goes to the Races, Wins</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 17:</td>
<td colspan="2" class="diff-lineno">Line 17:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <del style="font-weight: bold; text-decoration: none;"><i></del>bits<del style="font-weight: bold; text-decoration: none;"></i></del>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <ins style="font-weight: bold; text-decoration: none;">''</ins>bits<ins style="font-weight: bold; text-decoration: none;">''</ins>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]] or upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]] or upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 59:</td>
<td colspan="2" class="diff-lineno">Line 59:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a graph <math>G=(V,E)</math> with vertex set <math>V=\lbrace 1,\dots,n\rbrace</math> and edges <math>E\subseteq V\times V</math>, the [[maximum cut]] (max-cut) problem consists of finding two subsets <math>S,T\subseteq V</math> with <math>T=V\setminus S</math>, such that the number of edges between <math>S</math> and <math>T</math> is maximized.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a graph <math>G=(V,E)</math> with vertex set <math>V=\lbrace 1,\dots,n\rbrace</math> and edges <math>E\subseteq V\times V</math>, the [[maximum cut]] (max-cut) problem consists of finding two subsets <math>S,T\subseteq V</math> with <math>T=V\setminus S</math>, such that the number of edges between <math>S</math> and <math>T</math> is maximized.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The more general <del style="font-weight: bold; text-decoration: none;"><i></del>weighted max-cut<del style="font-weight: bold; text-decoration: none;"></i></del> problem assumes edge weights <math>w_{ij}\geq 0~\forall i,j\in V</math>, with <math>e\notin E\Rightarrow w_{ij}=0</math>, and asks for a [[partition of a set|partition]] <math>S,T\subseteq V</math> that maximizes the sum of edge weights between <math>S</math> and <math>T</math>, i.e.,</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The more general <ins style="font-weight: bold; text-decoration: none;">''</ins>weighted max-cut<ins style="font-weight: bold; text-decoration: none;">''</ins> problem assumes edge weights <math>w_{ij}\geq 0~\forall i,j\in V</math>, with <math>e\notin E\Rightarrow w_{ij}=0</math>, and asks for a [[partition of a set|partition]] <math>S,T\subseteq V</math> that maximizes the sum of edge weights between <math>S</math> and <math>T</math>, i.e.,</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>\max_{S,T}\sum_{i\in S, j\in T}w_{ij}.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>\max_{S,T}\sum_{i\in S, j\in T}w_{ij}.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By setting <math>w_{ij}=1</math> for all <math>(i,j)\in E</math> this becomes equivalent to the original max-cut problem above, which is why we focus on this more general form in the following.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By setting <math>w_{ij}=1</math> for all <math>(i,j)\in E</math> this becomes equivalent to the original max-cut problem above, which is why we focus on this more general form in the following.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 153:</td>
<td colspan="2" class="diff-lineno">Line 153:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://plato.asu.edu/ftp/qubo.html QUBO Benchmark] (Benchmark of software packages for the exact solution of QUBOs; part of the well-known Mittelmann benchmark collection)</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://plato.asu.edu/ftp/qubo.html QUBO Benchmark] (Benchmark of software packages for the exact solution of QUBOs; part of the well-known Mittelmann benchmark collection)</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url = http://portal.acm.org/citation.cfm?id=1231283</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url = http://portal.acm.org/citation.cfm?id=1231283</div></td>
</tr>
</table>
Rich Smith
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296953656&oldid=prev
Smuecke1: added def with separate linear and quadratic terms
2025-06-23T09:20:43Z
<p>added def with separate linear and quadratic terms</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:20, 23 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <i>bits</i>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <i>bits</i>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]] upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]]<ins style="font-weight: bold; text-decoration: none;"> or</ins> upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Alternatively, the linear and quadratic parts can be separated as</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q',\boldsymbol q}(\boldsymbol x)=\boldsymbol x^\intercal\boldsymbol Q'\boldsymbol x+\boldsymbol q^\intercal\boldsymbol x,</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\boldsymbol Q'\in\mathbb{R}^{n\times n}</math> and <math>\boldsymbol q\in\mathbb{R}^n</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>This is equivalent to the previous definition through <math>\boldsymbol Q=\boldsymbol Q'+\operatorname{diag}[\boldsymbol q]</math> using the [[Diagonal matrix#Vector-to-matrix diag operator|diag]] operator, exploiting that <math>x=x\cdot x</math> for all binary values <math>x</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Intuitively, the weight <math>Q_{ij}</math> is added if both <math>x_i=1</math> and <math>x_j=1</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Intuitively, the weight <math>Q_{ij}</math> is added if both <math>x_i=1</math> and <math>x_j=1</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The QUBO problem consists of finding a binary vector <math>\boldsymbol{x}^*</math> that minimizes <math>f_{\boldsymbol Q}</math>, i.e., <math>\forall\boldsymbol x\in\mathbb{B}^n: ~f_{\boldsymbol Q}(\boldsymbol{x}^*)\leq f_{\boldsymbol Q}(\boldsymbol x)</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The QUBO problem consists of finding a binary vector <math>\boldsymbol{x}^*</math> that minimizes <math>f_{\boldsymbol Q}</math>, i.e., <math>\forall\boldsymbol x\in\mathbb{B}^n: ~f_{\boldsymbol Q}(\boldsymbol{x}^*)\leq f_{\boldsymbol Q}(\boldsymbol x)</math>.</div></td>
</tr>
</table>
Smuecke1
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296952191&oldid=prev
Smuecke1: Simplified notation for Max-Cut
2025-06-23T09:09:06Z
<p>Simplified notation for Max-Cut</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:09, 23 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 52:</td>
<td colspan="2" class="diff-lineno">Line 52:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Maximum Cut===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Maximum Cut===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Given a graph <math>G=(V,E)</math> with vertex set <math>V=\lbrace 1,\dots,n\rbrace</math> and edges <math>E\subseteq V\times V</math>, the [[maximum cut]] (max-cut) problem consists of finding two subsets <math>S,T\subseteq V</math> with <math><del style="font-weight: bold; text-decoration: none;">S\cap </del>T=\<del style="font-weight: bold; text-decoration: none;">emptyset</math></del> <del style="font-weight: bold; text-decoration: none;">and <math></del>S<del style="font-weight: bold; text-decoration: none;">\cup T=V</del></math>, such that the number of edges between <math>S</math> and <math>T</math> is maximized.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given a graph <math>G=(V,E)</math> with vertex set <math>V=\lbrace 1,\dots,n\rbrace</math> and edges <math>E\subseteq V\times V</math>, the [[maximum cut]] (max-cut) problem consists of finding two subsets <math>S,T\subseteq V</math> with <math>T=<ins style="font-weight: bold; text-decoration: none;">V</ins>\<ins style="font-weight: bold; text-decoration: none;">setminus</ins> S</math>, such that the number of edges between <math>S</math> and <math>T</math> is maximized.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The more general <i>weighted max-cut</i> problem assumes <del style="font-weight: bold; text-decoration: none;">a</del> <del style="font-weight: bold; text-decoration: none;">weight function</del> <math><del style="font-weight: bold; text-decoration: none;">w:V^2\rightarrow\mathbb</del>{<del style="font-weight: bold; text-decoration: none;">R</del>}<del style="font-weight: bold; text-decoration: none;">_+</del></math> with <math><del style="font-weight: bold; text-decoration: none;">w(e)=0\text{ if }</del>e\notin E</math>, and asks for a [[partition of a set|partition]] <math>S,T\subseteq V</math> that maximizes the sum of edge weights between <math>S</math> and <math>T</math>, i.e.,</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The more general <i>weighted max-cut</i> problem assumes <ins style="font-weight: bold; text-decoration: none;">edge</ins> <ins style="font-weight: bold; text-decoration: none;">weights</ins> <math><ins style="font-weight: bold; text-decoration: none;">w_</ins>{<ins style="font-weight: bold; text-decoration: none;">ij</ins>}<ins style="font-weight: bold; text-decoration: none;">\geq 0~\forall i,j\in V</ins></math><ins style="font-weight: bold; text-decoration: none;">,</ins> with <math>e\notin E<ins style="font-weight: bold; text-decoration: none;">\Rightarrow w_{ij}=0</ins></math>, and asks for a [[partition of a set|partition]] <math>S,T\subseteq V</math> that maximizes the sum of edge weights between <math>S</math> and <math>T</math>, i.e.,</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: <math>\max_{S,T}\sum_{<del style="font-weight: bold; text-decoration: none;">e</del>\in S\<del style="font-weight: bold; text-decoration: none;">times</del> T}<del style="font-weight: bold; text-decoration: none;">w(e)</del>.</math></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: <math>\max_{S,T}\sum_{<ins style="font-weight: bold; text-decoration: none;">i</ins>\in S<ins style="font-weight: bold; text-decoration: none;">, j</ins>\<ins style="font-weight: bold; text-decoration: none;">in</ins> T}<ins style="font-weight: bold; text-decoration: none;">w_{ij}</ins>.</math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>By setting <math><del style="font-weight: bold; text-decoration: none;">w(e)</del>=<del style="font-weight: bold; text-decoration: none;">[e\in E]</del></math> <del style="font-weight: bold; text-decoration: none;">where</del> <math><del style="font-weight: bold; text-decoration: none;">[</del>\<del style="font-weight: bold; text-decoration: none;">cdot]</del></math><del style="font-weight: bold; text-decoration: none;"> denotes the [[Iverson bracket]]</del> this becomes equivalent to the original max-cut problem above, which is why we focus on this more general form in the following.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>By setting <math><ins style="font-weight: bold; text-decoration: none;">w_{ij}</ins>=<ins style="font-weight: bold; text-decoration: none;">1</ins></math> <ins style="font-weight: bold; text-decoration: none;">for all</ins> <math><ins style="font-weight: bold; text-decoration: none;">(i,j)</ins>\<ins style="font-weight: bold; text-decoration: none;">in E</ins></math> this becomes equivalent to the original max-cut problem above, which is why we focus on this more general form in the following.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For every vertex in <math>i\in V</math> we introduce a binary variable <math>x_i</math> with the meaning ''<math>x_i=0</math> if <math>i\in S</math>'' and ''<math>x_i=1</math> if <math>i\in T</math>''.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For every vertex in <math>i\in V</math> we introduce a binary variable <math>x_i</math> with the meaning ''<math>x_i=0</math> if <math>i\in S</math>'' and ''<math>x_i=1</math> if <math>i\in T</math>''.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 62:</td>
<td colspan="2" class="diff-lineno">Line 62:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We observe that, for any <math>i,j\in V</math>, the expression <math>x_i(1-x_j)+(1-x_i)x_j</math> evaluates to 1 if and only if <math>i</math> and <math>j</math> are in different subsets.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>We observe that, for any <math>i,j\in V</math>, the expression <math>x_i(1-x_j)+(1-x_i)x_j</math> evaluates to 1 if and only if <math>i</math> and <math>j</math> are in different subsets.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\boldsymbol W\in\mathbb{R}^{n\times n}_+</math> with <math>W_{ij}=<del style="font-weight: bold; text-decoration: none;">w(i,j)</math></del> <del style="font-weight: bold; text-decoration: none;">(recall that <math>w(i,j)=0</math> if <math>(</del>i,j<del style="font-weight: bold; text-decoration: none;">)</del>\<del style="font-weight: bold; text-decoration: none;">notin</del> <del style="font-weight: bold; text-decoration: none;">E</del></math><del style="font-weight: bold; text-decoration: none;">)</del>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\boldsymbol W\in\mathbb{R}^{n\times n}_+</math> with <math>W_{ij}=<ins style="font-weight: bold; text-decoration: none;">w_{ij}~\forall</ins> i,j\<ins style="font-weight: bold; text-decoration: none;">in</ins> <ins style="font-weight: bold; text-decoration: none;">V</ins></math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By using above expression we find that</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>By using above expression we find that</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_9_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_7_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">: <math></ins>\boldsymbol x^\intercal\boldsymbol W(\boldsymbol 1-\boldsymbol x)+(\boldsymbol 1-\boldsymbol x)^\intercal\boldsymbol{Wx}<ins style="font-weight: bold; text-decoration: none;">=-2</ins>\<ins style="font-weight: bold; text-decoration: none;">boldsymbol x^</ins>\<ins style="font-weight: bold; text-decoration: none;">intercal\boldsymbol{Wx}+(\boldsymbol{W1}+\boldsymbol{W}^\intercal\boldsymbol 1)^\intercal\boldsymbol x</math></ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: <math>\begin{align}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_7_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_9_0_lhs"></a>\boldsymbol x^\intercal<del style="font-weight: bold; text-decoration: none;">&</del>\boldsymbol W(\boldsymbol 1-\boldsymbol x)+(\boldsymbol 1-\boldsymbol x)^\intercal\boldsymbol{Wx}\\</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&=-2\boldsymbol x^\intercal\boldsymbol{Wx}+(\boldsymbol{W1}+\boldsymbol{W}^\intercal\boldsymbol 1)^\intercal\boldsymbol x</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>is the sum of weights of all edges between <math>S</math> and <math>T</math>, where <math>\boldsymbol 1=(1,1,\dots,1)^\intercal\in\mathbb{R}^n</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>is the sum of weights of all edges between <math>S</math> and <math>T</math>, where <math>\boldsymbol 1=(1,1,\dots,1)^\intercal\in\mathbb{R}^n</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As this function is quadratic in <math>\boldsymbol x</math>, it is a QUBO problem whose parameter matrix we can read from above expression as</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As this function is quadratic in <math>\boldsymbol x</math>, it is a QUBO problem whose parameter matrix we can read from above expression as</div></td>
</tr>
</table>
Smuecke1
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296887113&oldid=prev
Smuecke1: added Max-Cut as Application
2025-06-22T23:11:25Z
<p>added Max-Cut as Application</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:11, 22 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 49:</td>
<td colspan="2" class="diff-lineno">Line 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>QUBO is a structurally simple, yet computationally hard optimization problem.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>QUBO is a structurally simple, yet computationally hard optimization problem.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It can be used to encode a wide range of optimization problems from various scientific areas.<ref>{{cite web |url=https://blog.xa0.de/post/List-of-QUBO-formulations/ |title=List of QUBO formulations |last=Ratke |first=Daniel |date=2021-06-10 |access-date=2022-12-16}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It can be used to encode a wide range of optimization problems from various scientific areas.<ref>{{cite web |url=https://blog.xa0.de/post/List-of-QUBO-formulations/ |title=List of QUBO formulations |last=Ratke |first=Daniel |date=2021-06-10 |access-date=2022-12-16}}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>===Maximum Cut===</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given a graph <math>G=(V,E)</math> with vertex set <math>V=\lbrace 1,\dots,n\rbrace</math> and edges <math>E\subseteq V\times V</math>, the [[maximum cut]] (max-cut) problem consists of finding two subsets <math>S,T\subseteq V</math> with <math>S\cap T=\emptyset</math> and <math>S\cup T=V</math>, such that the number of edges between <math>S</math> and <math>T</math> is maximized.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The more general <i>weighted max-cut</i> problem assumes a weight function <math>w:V^2\rightarrow\mathbb{R}_+</math> with <math>w(e)=0\text{ if }e\notin E</math>, and asks for a [[partition of a set|partition]] <math>S,T\subseteq V</math> that maximizes the sum of edge weights between <math>S</math> and <math>T</math>, i.e.,</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: <math>\max_{S,T}\sum_{e\in S\times T}w(e).</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>By setting <math>w(e)=[e\in E]</math> where <math>[\cdot]</math> denotes the [[Iverson bracket]] this becomes equivalent to the original max-cut problem above, which is why we focus on this more general form in the following.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For every vertex in <math>i\in V</math> we introduce a binary variable <math>x_i</math> with the meaning ''<math>x_i=0</math> if <math>i\in S</math>'' and ''<math>x_i=1</math> if <math>i\in T</math>''.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>As <math>S</math> and <math>T</math> partition <math>V</math>, every <math>i</math> is in exactly one set, meaning there is a 1:1 correspondence between binary vectors <math>\boldsymbol x\in\mathbb{B}^n</math> and partitions of <math>V</math> into two subsets.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>We observe that, for any <math>i,j\in V</math>, the expression <math>x_i(1-x_j)+(1-x_i)x_j</math> evaluates to 1 if and only if <math>i</math> and <math>j</math> are in different subsets.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\boldsymbol W\in\mathbb{R}^{n\times n}_+</math> with <math>W_{ij}=w(i,j)</math> (recall that <math>w(i,j)=0</math> if <math>(i,j)\notin E</math>).</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>By using above expression we find that</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: <math>\begin{align}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>\boldsymbol x^\intercal&\boldsymbol W(\boldsymbol 1-\boldsymbol x)+(\boldsymbol 1-\boldsymbol x)^\intercal\boldsymbol{Wx}\\</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&=-2\boldsymbol x^\intercal\boldsymbol{Wx}+(\boldsymbol{W1}+\boldsymbol{W}^\intercal\boldsymbol 1)^\intercal\boldsymbol x</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>is the sum of weights of all edges between <math>S</math> and <math>T</math>, where <math>\boldsymbol 1=(1,1,\dots,1)^\intercal\in\mathbb{R}^n</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>As this function is quadratic in <math>\boldsymbol x</math>, it is a QUBO problem whose parameter matrix we can read from above expression as</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: <math>\boldsymbol Q = 2\boldsymbol W-\operatorname{diag}[\boldsymbol{W1}+\boldsymbol{W}^\intercal\boldsymbol 1],</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>after flipping the sign to make it a minimization problem.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Cluster Analysis===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Cluster Analysis===</div></td>
</tr>
</table>
Smuecke1
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296174792&oldid=prev
Smuecke1: improved some wordings; clarified relation between Ising-QUBO and the physical Ising model
2025-06-18T09:24:43Z
<p>improved some wordings; clarified relation between Ising-QUBO and the physical Ising model</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:24, 18 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <i>bits</i>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Let <math>\mathbb{B}=\lbrace 0,1\rbrace</math> the set of [[binary data|binary]] digits (or <i>bits</i>), then <math>\mathbb{B}^n</math> is the set of binary vectors of fixed length <math>n\in\mathbb{N}</math>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]] upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math><del style="font-weight: bold; text-decoration: none;"> within the binary vector</del>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given a [[symmetric matrix|symmetric]] upper [[triangular matrix]] <math>\boldsymbol Q\in\mathbb{R}^{n\times n}</math>, whose entries <math>Q_{ij}</math> define a weight for each pair of indices <math>i,j\in\lbrace 1,\dots,n\rbrace</math>, we can define the function <math>f_{\boldsymbol Q}: \mathbb{B}^n\rightarrow\mathbb{R}</math> that assigns a value to each binary vector <math>\boldsymbol x</math> through</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f_{\boldsymbol Q}(\boldsymbol x) = \boldsymbol{x}^\intercal \boldsymbol{Qx} = \sum_{i=1}^n \sum_{j=1}^n Q_{ij} x_i x_j.</math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Intuitively, the weight <math>Q_{ij}</math> is added if both <math>x_i=1</math> and <math>x_j=1<del style="font-weight: bold; text-decoration: none;"></math> for all <math>i,j\in\lbrace 1,\dots,n\rbrace</del></math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Intuitively, the weight <math>Q_{ij}</math> is added if both <math>x_i=1</math> and <math>x_j=1</math>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The QUBO problem consists of finding a binary vector <math>\boldsymbol{x}^*</math> that <del style="font-weight: bold; text-decoration: none;">is</del> <del style="font-weight: bold; text-decoration: none;">minimal</del> <del style="font-weight: bold; text-decoration: none;">with</del> <del style="font-weight: bold; text-decoration: none;">respect to</del> <math>f_{\boldsymbol Q}</math><del style="font-weight: bold; text-decoration: none;">, namely</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The QUBO problem consists of finding a binary vector <math>\boldsymbol{x}^*</math> that <ins style="font-weight: bold; text-decoration: none;">minimizes</ins> <ins style="font-weight: bold; text-decoration: none;"><math>f_{\boldsymbol</ins> <ins style="font-weight: bold; text-decoration: none;">Q}</math>,</ins> <ins style="font-weight: bold; text-decoration: none;">i.e.,</ins> <math><ins style="font-weight: bold; text-decoration: none;">\forall\boldsymbol x\in\mathbb{B}^n: ~</ins>f_{\boldsymbol Q}<ins style="font-weight: bold; text-decoration: none;">(\boldsymbol{x}^*)\leq f_{\boldsymbol Q}(\boldsymbol x)</ins></math><ins style="font-weight: bold; text-decoration: none;">.</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: <math>\forall\boldsymbol x\in\mathbb{B}^n: ~f_{\boldsymbol Q}(\boldsymbol{x}^*)\leq f_{\boldsymbol Q}(\boldsymbol x)</math></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In general, <math>\boldsymbol{x}^*</math> is not unique, meaning there may be a set of minimizing vectors with equal value w.r.t. <math>f_{\boldsymbol Q}</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In general, <math>\boldsymbol{x}^*</math> is not unique, meaning there may be a set of minimizing vectors with equal value w.r.t. <math>f_{\boldsymbol Q}</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 99:</td>
<td colspan="2" class="diff-lineno">Line 98:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>QUBO is very closely related and computationally equivalent to the [[Ising model]], whose [[Hamiltonian function]] is defined as</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>QUBO is very closely related and computationally equivalent to the [[Ising model]], whose [[Hamiltonian function]] is defined as</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>H(\boldsymbol\sigma) =\boldsymbol\sigma^\intercal \boldsymbol J\boldsymbol\sigma+\boldsymbol h^\intercal\boldsymbol\sigma =\sum_{i,j} J_{ij} \sigma_i \sigma_j +\sum_j h_j \sigma_j</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>H(\boldsymbol\sigma) =\boldsymbol\sigma^\intercal \boldsymbol J\boldsymbol\sigma+\boldsymbol h^\intercal\boldsymbol\sigma =\sum_{i,j} J_{ij} \sigma_i \sigma_j +\sum_j h_j \sigma_j</math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>with real-valued parameters <math>h_j, J_{ij}<del style="font-weight: bold; text-decoration: none;">, \mu</del></math> for all <math>i,j</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>with real-valued parameters <math>h_j, J_{ij}</math> for all <math>i,j</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The ''spin variables'' <math>\sigma_j</math> are binary with values from <math>\lbrace -1,+1\rbrace</math> instead of <math>\mathbb{B}</math>.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The ''spin variables'' <math>\sigma_j</math> are binary with values from <math>\lbrace -1,+1\rbrace</math> instead of <math>\mathbb{B}</math>.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Note that this formulation is simplified, since, in a physics context, <math>\sigma_i</math> are typically [[Pauli matrix|Pauli operators]], which are complex-valued matrices of size <math>2^n\times 2^n</math>, whereas here we treat them as binary variables.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Moreover,</del> <del style="font-weight: bold; text-decoration: none;">in</del> the Ising model the variables are<del style="font-weight: bold; text-decoration: none;"> typically</del> arranged in a lattice where only neighboring pairs of variables <math>\langle i~j\rangle</math> can have non-zero coefficients.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Many</ins> <ins style="font-weight: bold; text-decoration: none;">formulations of</ins> the Ising model<ins style="font-weight: bold; text-decoration: none;"> Hamiltonian further assume that</ins> the variables are arranged in a lattice<ins style="font-weight: bold; text-decoration: none;">,</ins> where only neighboring pairs of variables <math>\langle i~j\rangle</math> can have non-zero coefficients<ins style="font-weight: bold; text-decoration: none;">; here, we simply assume that <math>J_{ij}=0</math> if <math>i</math> and <math>j</math> are not neighbors</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Applying the identity <math>\sigma = 1-2x</math> yields an equivalent QUBO problem <ref name="<del style="font-weight: bold; text-decoration: none;">tut</del>"/></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Applying the identity <math>\sigma = 1-2x</math> yields an equivalent QUBO problem <ref name="<ins style="font-weight: bold; text-decoration: none;">muecke2025</ins>"/></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>\begin{align}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>\begin{align}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&\boldsymbol\sigma^\intercal \boldsymbol J\boldsymbol\sigma+\boldsymbol h^\intercal\boldsymbol\sigma \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&\boldsymbol\sigma^\intercal \boldsymbol J\boldsymbol\sigma+\boldsymbol h^\intercal\boldsymbol\sigma \\</div></td>
</tr>
</table>
Smuecke1
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296125433&oldid=prev
Smuecke1: greatly simplified the notation for both the clustering example and the Ising conversion, using matrix vector notation
2025-06-18T00:14:06Z
<p>greatly simplified the notation for both the clustering example and the Ising conversion, using matrix vector notation</p>
<a href="//en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1296125433&oldid=1294483919">Show changes</a>
Smuecke1
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1294483919&oldid=prev
WikiOriginal-9: /* External links */
2025-06-08T00:22:24Z
<p><span class="autocomment">External links</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:22, 8 June 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 161:</td>
<td colspan="2" class="diff-lineno">Line 161:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Machine learning algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Machine learning algorithms]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{compu-AI-stub}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
</table>
WikiOriginal-9
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1264922204&oldid=prev
133.86.227.82: /* External links */
2024-12-24T05:16:31Z
<p><span class="autocomment">External links</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:16, 24 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 158:</td>
<td colspan="2" class="diff-lineno">Line 158:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| publisher = Elsevier</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| publisher = Elsevier</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [https://abs2.cs.hiroshima-u.ac.jp/ Hiroshima University and NTT DATA Group Corporation : "QUBO++ with ABS2 GPU QUBO Solver"] # Software.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Machine learning algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Machine learning algorithms]]</div></td>
</tr>
</table>
133.86.227.82
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1253304840&oldid=prev
Zechenhund: https supplied for ref. 1
2024-10-25T08:46:32Z
<p>https supplied for ref. 1</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:46, 25 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Combinatorial optimization problem}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Combinatorial optimization problem}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=<del style="font-weight: bold; text-decoration: none;">http</del>://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=<ins style="font-weight: bold; text-decoration: none;">https</ins>://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Embeddings for machine learning models include [[support-vector machine|support-vector machines]], [[cluster analysis|clustering]] and [[probabilistic graphical model|probabilistic graphical models]].<ref>{{cite journal |last1=Mücke |first1=Sascha |last2=Piatkowski |first2=Nico |last3=Morik |first3=Katharina |author3-link=Katharina Morik|title=Learning Bit by Bit: Extracting the Essence of Machine Learning |journal=LWDA |date=2019 |s2cid=202760166 |url=https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |archive-url=https://web.archive.org/web/20200227143739/https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |url-status=dead |archive-date=2020-02-27 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Embeddings for machine learning models include [[support-vector machine|support-vector machines]], [[cluster analysis|clustering]] and [[probabilistic graphical model|probabilistic graphical models]].<ref>{{cite journal |last1=Mücke |first1=Sascha |last2=Piatkowski |first2=Nico |last3=Morik |first3=Katharina |author3-link=Katharina Morik|title=Learning Bit by Bit: Extracting the Essence of Machine Learning |journal=LWDA |date=2019 |s2cid=202760166 |url=https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |archive-url=https://web.archive.org/web/20200227143739/https://pdfs.semanticscholar.org/f484/b4a789e1563b91a416a7cfabbf72f0aa3b2a.pdf |url-status=dead |archive-date=2020-02-27 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Moreover, due to its close connection to [[Ising model|Ising models]], QUBO constitutes a central problem class for [[adiabatic quantum computing|adiabatic quantum computation]], where it is solved through a physical process called [[quantum annealing]].<ref>{{cite web</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Moreover, due to its close connection to [[Ising model|Ising models]], QUBO constitutes a central problem class for [[adiabatic quantum computing|adiabatic quantum computation]], where it is solved through a physical process called [[quantum annealing]].<ref>{{cite web</div></td>
</tr>
</table>
Zechenhund
https://en.wikipedia.org/w/index.php?title=Quadratic_unconstrained_binary_optimization&diff=1221833336&oldid=prev
Uhai: Adding local short description: "Combinatorial optimization problem", overriding Wikidata description "combinatorial optimization problem"
2024-05-02T07:23:17Z
<p>Adding local <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Combinatorial optimization problem", overriding Wikidata description "combinatorial optimization problem"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:23, 2 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Combinatorial optimization problem}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><!-- {{refimprove|date=September 2014}} --></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=http://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Quadratic unconstrained binary optimization''' ('''QUBO'''), also known as '''unconstrained binary quadratic programming''' ('''UBQP'''), is a combinatorial [[optimization problem]] with a wide range of applications from [[finance]] and [[economics]] to [[machine learning]].<ref>{{cite journal |last1=Kochenberger |first1=Gary |last2=Hao |first2=Jin-Kao |first3=Fred |last3=Glover |first4=Mark |last4=Lewis |first5=Zhipeng|last5=Lu |first6=Haibo |last6=Wang |first7=Yang |last7=Wang |title=The unconstrained binary quadratic programming problem: a survey. |journal=Journal of Combinatorial Optimization |date=2014 |volume=28 |pages=58–81 |doi=10.1007/s10878-014-9734-0 |s2cid=16808394 |url=http://leeds-faculty.colorado.edu/glover/454%20-%20xQx%20survey%20article%20as%20published%202014.pdf}}</ref> QUBO is an [[NP hard]] problem, and for many classical problems from [[theoretical computer science]], like [[maximum cut]], [[graph coloring]] and the [[partition problem]], embeddings into QUBO have been formulated.<ref name="tut">{{cite arXiv |last1=Glover |first1=Fred |last2=Kochenberger|first2=Gary |eprint=1811.11538 |title=A Tutorial on Formulating and Using QUBO Models |class= cs.DS|date=2019 }}</ref><ref>{{cite journal |last1=Lucas |first1=Andrew |title=Ising formulations of many NP problems |journal=Frontiers in Physics |date=2014 |volume=2 |page=5 |doi=10.3389/fphy.2014.00005 |arxiv=1302.5843 |bibcode=2014FrP.....2....5L |doi-access=free }}</ref></div></td>
</tr>
</table>
Uhai