https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Quantum_complexity_theory Quantum complexity theory - Revision history 2025-06-28T19:48:53Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.7 https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1296543501&oldid=prev Éno Tallinavel: /* Simulation of quantum circuits */Clarified the sentence while preserving the same technical meaning. 2025-06-20T16:28:59Z <p><span class="autocomment">Simulation of quantum circuits: </span>Clarified the sentence while preserving the same technical meaning.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:28, 20 June 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. <del style="font-weight: bold; text-decoration: none;">Which</del> <del style="font-weight: bold; text-decoration: none;">entry</del> <del style="font-weight: bold; text-decoration: none;">each</del> <del style="font-weight: bold; text-decoration: none;">of</del> the <del style="font-weight: bold; text-decoration: none;">amplitudes</del> <del style="font-weight: bold; text-decoration: none;">are</del> correspond to <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">none</del>-zero component of the <del style="font-weight: bold; text-decoration: none;">component</del> vector<del style="font-weight: bold; text-decoration: none;"> which they are the coefficients of in the linear combination description</del>. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite book|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|title=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis |chapter=0.5 petabyte simulation of a 45-qubit quantum circuit |date=2017-11-12|chapter-url=http://dx.doi.org/10.1145/3126908.3126947|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the fact that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. <ins style="font-weight: bold; text-decoration: none;">The</ins> <ins style="font-weight: bold; text-decoration: none;">amplitudes,</ins> <ins style="font-weight: bold; text-decoration: none;">acting</ins> <ins style="font-weight: bold; text-decoration: none;">as coefficients in</ins> the <ins style="font-weight: bold; text-decoration: none;">linear</ins> <ins style="font-weight: bold; text-decoration: none;">combination description, each</ins> correspond to <ins style="font-weight: bold; text-decoration: none;">a</ins> <ins style="font-weight: bold; text-decoration: none;">non</ins>-zero component of the <ins style="font-weight: bold; text-decoration: none;">state</ins> vector. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite book|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|title=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis |chapter=0.5 petabyte simulation of a 45-qubit quantum circuit |date=2017-11-12|chapter-url=http://dx.doi.org/10.1145/3126908.3126947|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the fact that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> </tr> </table> Éno Tallinavel https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1263420144&oldid=prev Headbomb: Altered template type. Add: series, chapter, title. | Use this tool. Report bugs. | #UCB_Gadget 2024-12-16T15:27:47Z <p>Altered template type. Add: series, chapter, title. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this tool</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:27, 16 December 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[Quantum circuit|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[Quantum circuit|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last=Vazirani|first=Umesh V.|<del style="font-weight: bold; text-decoration: none;">date</del>=<del style="font-weight: bold; text-decoration: none;">2002</del>|<del style="font-weight: bold; text-decoration: none;">title</del>=A survey of quantum complexity theory|<del style="font-weight: bold; text-decoration: none;">url=http://dx.doi.org/10.1090/psapm/058/1922899|journal</del>=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last=Vazirani|first=Umesh V.|<ins style="font-weight: bold; text-decoration: none;">title</ins>=<ins style="font-weight: bold; text-decoration: none;">Quantum Computation </ins>|<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=A survey of quantum complexity theory<ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;">series</ins>=Proceedings of Symposia in Applied Mathematics<ins style="font-weight: bold; text-decoration: none;"> |date=2002 </ins>|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are &lt;math&gt;O(T(n))&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt;. &lt;math&gt;O(T(n))&lt;/math&gt; expresses that something is bounded above by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt; expresses that something is bounded below by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; expresses both &lt;math&gt;O(T(n))&lt;/math&gt; and &lt;math&gt;\Omega(T(n))&lt;/math&gt;.&lt;ref name=":12"&gt;{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}&lt;/ref&gt; These notations also have their own names. &lt;math&gt;O(T(n))&lt;/math&gt; is called [[Big O notation]], &lt;math&gt;\Omega(T(n))&lt;/math&gt; is called Big Omega notation, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; is called Big Theta notation.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are &lt;math&gt;O(T(n))&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt;. &lt;math&gt;O(T(n))&lt;/math&gt; expresses that something is bounded above by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt; expresses that something is bounded below by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; expresses both &lt;math&gt;O(T(n))&lt;/math&gt; and &lt;math&gt;\Omega(T(n))&lt;/math&gt;.&lt;ref name=":12"&gt;{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}&lt;/ref&gt; These notations also have their own names. &lt;math&gt;O(T(n))&lt;/math&gt; is called [[Big O notation]], &lt;math&gt;\Omega(T(n))&lt;/math&gt; is called Big Omega notation, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; is called Big Theta notation.</div></td> </tr> </table> Headbomb https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1181318945&oldid=prev Maxeto0910: no sentence 2023-10-22T08:41:18Z <p>no sentence</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:41, 22 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 55:</td> <td colspan="2" class="diff-lineno">Line 55:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:BQP complexity class diagram.svg|thumb|The suspected relationship of BQP to other complexity classes<del style="font-weight: bold; text-decoration: none;">.</del>&lt;ref&gt;Nielsen, p. 42&lt;/ref&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:BQP complexity class diagram.svg|thumb|The suspected relationship of BQP to other complexity classes&lt;ref&gt;Nielsen, p. 42&lt;/ref&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Basic definition of BQP --&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;!-- Basic definition of BQP --&gt;</div></td> </tr> </table> Maxeto0910 https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1170917268&oldid=prev 179.29.131.129: /* Background */typo 2023-08-18T00:02:54Z <p><span class="autocomment">Background: </span>typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:02, 18 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are &lt;math&gt;O(T(n))&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt;. &lt;math&gt;O(T(n))&lt;/math&gt; expresses that something is bounded above by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt; expresses that something is bounded below by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; expresses both &lt;math&gt;O(T(n))&lt;/math&gt; and &lt;math&gt;\Omega(T(n))&lt;/math&gt;.&lt;ref name=":12"&gt;{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}&lt;/ref&gt; These notations also their own names. &lt;math&gt;O(T(n))&lt;/math&gt; is called [[Big O notation]], &lt;math&gt;\Omega(T(n))&lt;/math&gt; is called Big Omega notation, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; is called Big Theta notation.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are &lt;math&gt;O(T(n))&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt;. &lt;math&gt;O(T(n))&lt;/math&gt; expresses that something is bounded above by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, &lt;math&gt;\Omega(T(n))&lt;/math&gt; expresses that something is bounded below by &lt;math&gt;cT(n)&lt;/math&gt; where &lt;math&gt;c&lt;/math&gt; is a constant such that &lt;math&gt;c&gt;0&lt;/math&gt; and &lt;math&gt;T(n)&lt;/math&gt; is a function of &lt;math&gt;n&lt;/math&gt;, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; expresses both &lt;math&gt;O(T(n))&lt;/math&gt; and &lt;math&gt;\Omega(T(n))&lt;/math&gt;.&lt;ref name=":12"&gt;{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}&lt;/ref&gt; These notations also<ins style="font-weight: bold; text-decoration: none;"> have</ins> their own names. &lt;math&gt;O(T(n))&lt;/math&gt; is called [[Big O notation]], &lt;math&gt;\Omega(T(n))&lt;/math&gt; is called Big Omega notation, and &lt;math&gt;\Theta(T(n))&lt;/math&gt; is called Big Theta notation.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> </tr> </table> 179.29.131.129 https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1169362734&oldid=prev Citation bot: Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 1635/2306 2023-08-08T17:03:49Z <p>Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 1635/2306</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:03, 8 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. Which entry each of the amplitudes are correspond to the none-zero component of the component vector which they are the coefficients of in the linear combination description. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|<del style="font-weight: bold; text-decoration: none;">date</del>=<del style="font-weight: bold; text-decoration: none;">2017-11-12</del>|<del style="font-weight: bold; text-decoration: none;">title</del>=0.5 petabyte simulation of a 45-qubit quantum circuit|url=http://dx.doi.org/10.1145/3126908.3126947<del style="font-weight: bold; text-decoration: none;">|journal=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</del>|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the fact that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. Which entry each of the amplitudes are correspond to the none-zero component of the component vector which they are the coefficients of in the linear combination description. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|<ins style="font-weight: bold; text-decoration: none;">title</ins>=<ins style="font-weight: bold; text-decoration: none;">Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis </ins>|<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=0.5 petabyte simulation of a 45-qubit quantum circuit<ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;">date=2017-11-12|chapter-</ins>url=http://dx.doi.org/10.1145/3126908.3126947|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the fact that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1166503621&oldid=prev RobinK: /* Overview of complexity classes */ typos 2023-07-22T00:39:24Z <p><span class="autocomment">Overview of complexity classes: </span> typos</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:39, 22 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The important complexity classes P, BPP, BQP, PP, and <del style="font-weight: bold; text-decoration: none;">P-Space</del> can be compared based on [[Promise problem|promise problems]]. A promise problem is a decision problem which has an input assumed to be selected from the set of all possible input strings. A promise problem is a pair &lt;math&gt;A=(A_\text{yes},A_\text{no})&lt;/math&gt;, where &lt;math&gt;A_\text{yes}&lt;/math&gt; is the set of yes instances and &lt;math&gt;A_\text{no}&lt;/math&gt; is the set of no instances, and the intersection of these sets is empty: &lt;math&gt;A_\text{yes} \cap A_\text{no} = \varnothing&lt;/math&gt;. All of the previous complexity classes contain promise problems.&lt;ref name=":27"&gt;{{cite arXiv| last=Watrous|first=John| date=2008-04-21| title=Quantum Computational Complexity| class=quant-ph|eprint=0804.3401}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The important complexity classes P, BPP, BQP, PP, and <ins style="font-weight: bold; text-decoration: none;">PSPACE</ins> can be compared based on [[Promise problem|promise problems]]. A promise problem is a decision problem which has an input assumed to be selected from the set of all possible input strings. A promise problem is a pair &lt;math&gt;A=(A_\text{yes},A_\text{no})&lt;/math&gt;, where &lt;math&gt;A_\text{yes}&lt;/math&gt; is the set of yes instances and &lt;math&gt;A_\text{no}&lt;/math&gt; is the set of no instances, and the intersection of these sets is empty: &lt;math&gt;A_\text{yes} \cap A_\text{no} = \varnothing&lt;/math&gt;. All of the previous complexity classes contain promise problems.&lt;ref name=":27"&gt;{{cite arXiv| last=Watrous|first=John| date=2008-04-21| title=Quantum Computational Complexity| class=quant-ph|eprint=0804.3401}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{| class="wikitable"</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{| class="wikitable"</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|+</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|+</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 33:</td> <td colspan="2" class="diff-lineno">Line 33:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in &lt;math&gt;A_\text{yes}&lt;/math&gt; with a probability greater than &lt;math&gt;\frac{1}{2}&lt;/math&gt;, and accepts every string in &lt;math&gt;A_\text{no}&lt;/math&gt; with a probability of at most &lt;math&gt;\frac{1}{2}&lt;/math&gt;&lt;ref name=":27"/&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in &lt;math&gt;A_\text{yes}&lt;/math&gt; with a probability greater than &lt;math&gt;\frac{1}{2}&lt;/math&gt;, and accepts every string in &lt;math&gt;A_\text{no}&lt;/math&gt; with a probability of at most &lt;math&gt;\frac{1}{2}&lt;/math&gt;&lt;ref name=":27"/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|-</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|-</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>|PSPACE</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>|P-SPACE</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|Promise problems for which a deterministic Turing machine, that runs in polynomial space, accepts every string in &lt;math&gt;A_\text{yes}&lt;/math&gt; and rejects all strings in &lt;math&gt;A_\text{no}&lt;/math&gt;&lt;ref name=":27"/&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|Promise problems for which a deterministic Turing machine, that runs in polynomial space, accepts every string in &lt;math&gt;A_\text{yes}&lt;/math&gt; and rejects all strings in &lt;math&gt;A_\text{no}&lt;/math&gt;&lt;ref name=":27"/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|}</div></td> </tr> </table> RobinK https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1165029454&oldid=prev Freoh: Copied content from quantum computing; see that page's history for attribution 2023-07-12T15:12:38Z <p>Copied content from <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a>; see that page&#039;s history for attribution</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:12, 12 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 125:</td> <td colspan="2" class="diff-lineno">Line 125:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Deutsch-Jozsa algorithm ====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==== Deutsch-Jozsa algorithm ====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[Deutsch-Jozsa algorithm]] is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function &lt;math&gt;f:\{0,1\}^n\rightarrow\{0,1\}&lt;/math&gt; is constant or balanced, those being the only two possibilities.&lt;ref name=":32"/&gt; The only way to evaluate the function &lt;math&gt;f&lt;/math&gt; is to consult a [[black box]] or [[Oracle machine|oracle]]. A classical [[deterministic algorithm]] will have to check more than half of the possible inputs to be sure of whether or not the function is constant or balanced. With &lt;math&gt;2^n&lt;/math&gt; possible inputs, the query complexity of the most efficient classical deterministic algorithm is &lt;math&gt;2^{n-1}+1&lt;/math&gt;.&lt;ref name=":32" /&gt; The Deutsch-Jozsa algorithm takes advantage of quantum parallelism to check all of the elements of the domain at once and only needs to query the oracle once, making its query complexity &lt;math&gt;1&lt;/math&gt;.&lt;ref name=":32" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[Deutsch-Jozsa algorithm]] is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function &lt;math&gt;f:\{0,1\}^n\rightarrow\{0,1\}&lt;/math&gt; is constant or balanced, those being the only two possibilities.&lt;ref name=":32"/&gt; The only way to evaluate the function &lt;math&gt;f&lt;/math&gt; is to consult a [[black box]] or [[Oracle machine|oracle]]. A classical [[deterministic algorithm]] will have to check more than half of the possible inputs to be sure of whether or not the function is constant or balanced. With &lt;math&gt;2^n&lt;/math&gt; possible inputs, the query complexity of the most efficient classical deterministic algorithm is &lt;math&gt;2^{n-1}+1&lt;/math&gt;.&lt;ref name=":32" /&gt; The Deutsch-Jozsa algorithm takes advantage of quantum parallelism to check all of the elements of the domain at once and only needs to query the oracle once, making its query complexity &lt;math&gt;1&lt;/math&gt;.&lt;ref name=":32" /&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Other theories of quantum physics==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It has been speculated that further advances in physics could lead to even faster computers. For instance, it has been shown that a non-local hidden variable quantum computer based on [[De Broglie–Bohm theory|Bohmian Mechanics]] could implement a search of an {{mvar|N}}-item database in at most &lt;math&gt;O(\sqrt[3]{N})&lt;/math&gt; steps, a slight speedup over [[Grover's algorithm]], which runs in &lt;math&gt;O(\sqrt{N})&lt;/math&gt; steps. Note, however, that neither search method would allow quantum computers to solve [[NP-complete]] problems in polynomial time.&lt;ref name="auto"&gt;{{cite web |title=Quantum Computing and Hidden Variables |last=Aaronson |first=Scott |url=http://www.scottaaronson.com/papers/qchvpra.pdf}}&lt;/ref&gt; Theories of [[quantum gravity]], such as [[M-theory]] and [[loop quantum gravity]], may allow even faster computers to be built. However, defining computation in these theories is an open problem due to the [[problem of time]]; that is, within these physical theories there is currently no obvious way to describe what it means for an observer to submit input to a computer at one point in time and then receive output at a later point in time.&lt;ref&gt;{{Cite journal |first=Scott |last=Aaronson |title=NP-complete Problems and Physical Reality |journal=ACM SIGACT News |volume=2005 |arxiv=quant-ph/0502072 |year=2005 |bibcode=2005quant.ph..2072A |author-link=Scott Aaronson}} See section 7 "Quantum Gravity": "[...] to anyone who wants a test or benchmark for a favorite quantum gravity theory,[author's footnote: That is, one without all the bother of making numerical predictions and comparing them to observation] let me humbly propose the following: ''can you define Quantum Gravity Polynomial-Time?'' [...] until we can say what it means for a 'user' to specify an 'input' and 'later' receive an 'output'—''there is no such thing as computation, not even theoretically.''" (emphasis in original)&lt;/ref&gt;&lt;ref&gt;{{cite web |url=http://www.dwavesys.com/en/pressreleases.html#lm_2011 |title=D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation |access-date=30 May 2011 |date=25 May 2011 |publisher=D-Wave |archive-date=22 December 2020 |archive-url=https://web.archive.org/web/20201222041457/https://www.dwavesys.com/en/pressreleases.html#lm_2011 |url-status=dead }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> </table> Freoh https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1163032007&oldid=prev Jessymilare: /* Simulation of quantum circuits */Fixed typo. 2023-07-02T15:03:11Z <p><span class="autocomment">Simulation of quantum circuits: </span>Fixed typo.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:03, 2 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Simulation of quantum circuits ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. Which entry each of the amplitudes are correspond to the none-zero component of the component vector which they are the coefficients of in the linear combination description. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite journal|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|date=2017-11-12|title=0.5 petabyte simulation of a 45-qubit quantum circuit|url=http://dx.doi.org/10.1145/3126908.3126947|journal=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the <del style="font-weight: bold; text-decoration: none;">belief</del> that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates can be simulated by a classical circuit with &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; [[Logic gate|classical gates]].&lt;ref name=":12"/&gt; This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the &lt;math&gt;S(n)&lt;/math&gt; qubits must be accounted for. Each of the states of the &lt;math&gt;S(n)&lt;/math&gt; qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.&lt;ref name=":12" /&gt; The entries of the state vector are these amplitudes. Which entry each of the amplitudes are correspond to the none-zero component of the component vector which they are the coefficients of in the linear combination description. As an equation this is described as &lt;math&gt;\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; or &lt;math&gt;\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}&lt;/math&gt; using [[Bra–ket notation|Dirac notation]]. The state of the entire &lt;math&gt;S(n)&lt;/math&gt; qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the &lt;math&gt;S(n)&lt;/math&gt; qubits is a single state vector which has &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, &lt;math&gt;2^{S(n)}&lt;/math&gt;amplitudes must be accounted for with a &lt;math&gt;2^{S(n)}&lt;/math&gt; dimensional complex vector which is the state vector for the &lt;math&gt;S(n)&lt;/math&gt; qubit system.&lt;ref&gt;{{Cite journal|last1=Häner|first1=Thomas|last2=Steiger|first2=Damian S.|date=2017-11-12|title=0.5 petabyte simulation of a 45-qubit quantum circuit|url=http://dx.doi.org/10.1145/3126908.3126947|journal=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis|pages=1–10|location=New York, NY, USA|publisher=ACM|doi=10.1145/3126908.3126947|arxiv=1704.01127|isbn=978-1-4503-5114-0|s2cid=3338733}}&lt;/ref&gt; In order to obtain an upper bound for the number of gates required to simulate a quantum circuit we need a sufficient upper bound for the amount data used to specify the information about each of the &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes. To do this &lt;math&gt;O(T(n))&lt;/math&gt; bits of precision are sufficient for encoding each amplitude.&lt;ref name=":12" /&gt; So it takes &lt;math&gt;O(2^{S(n)}T(n))&lt;/math&gt; classical bits to account for the state vector of the &lt;math&gt;S(n)&lt;/math&gt; qubit system. Next the application of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates on &lt;math&gt;2^{S(n)}&lt;/math&gt; amplitudes must be accounted for. The quantum gates can be represented as &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; [[Sparse matrix|sparse matrices]].&lt;ref name=":12" /&gt; So to account for the application of each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates, the state vector must be multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix for each of the &lt;math&gt;T(n)&lt;/math&gt; quantum gates. Every time the state vector is multiplied by a &lt;math&gt;2^{S(n)}\times2^{S(n)}&lt;/math&gt; sparse matrix, &lt;math&gt;O(2^{S(n)})&lt;/math&gt; arithmetic operations must be performed.&lt;ref name=":12" /&gt; Therefore, there are &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; bit operations for every quantum gate applied to the state vector. So &lt;math&gt;O(2^{S(n)}T(n)^2)&lt;/math&gt; classical gate are needed to simulate &lt;math&gt;S(n)&lt;/math&gt; qubit circuit with just one quantum gate. Therefore, &lt;math&gt;O(2^{S(n)}T(n)^3)&lt;/math&gt; classical gates are needed to simulate a quantum circuit of &lt;math&gt;S(n)&lt;/math&gt; qubits with &lt;math&gt;T(n)&lt;/math&gt; quantum gates.&lt;ref name=":12" /&gt; While there is no known way to efficiently simulate a quantum computer with a classical computer, it is possible to efficiently simulate a classical computer with a quantum computer. This is evident from the <ins style="font-weight: bold; text-decoration: none;">fact</ins> that &lt;math&gt;\mathsf{BPP\subseteq BQP}&lt;/math&gt;.&lt;ref name=":27"/&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum query complexity ==</div></td> </tr> </table> Jessymilare https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1154176411&oldid=prev Nuretok: /* Overview of complexity classes */ Wording 2023-05-10T19:03:24Z <p><span class="autocomment">Overview of complexity classes: </span> Wording</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:03, 10 May 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Overview of complexity classes ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Some</del> important complexity classes<del style="font-weight: bold; text-decoration: none;"> are</del> P, BPP, BQP, PP, and P-Space<del style="font-weight: bold; text-decoration: none;">.</del> <del style="font-weight: bold; text-decoration: none;">To</del> <del style="font-weight: bold; text-decoration: none;">define</del> <del style="font-weight: bold; text-decoration: none;">these</del> <del style="font-weight: bold; text-decoration: none;">we</del> <del style="font-weight: bold; text-decoration: none;">first</del> <del style="font-weight: bold; text-decoration: none;">define a</del> promise <del style="font-weight: bold; text-decoration: none;">problem</del>. A promise problem is a decision problem which has an input assumed to be selected from the set of all possible input strings. A promise problem is a pair &lt;math&gt;A=(A_\text{yes},A_\text{no})&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;">.</del> &lt;math&gt;A_\text{yes}&lt;/math&gt; is the set of yes instances<del style="font-weight: bold; text-decoration: none;">,</del> &lt;math&gt;A_\text{no}&lt;/math&gt; is the set of no instances, and the intersection of these sets is <del style="font-weight: bold; text-decoration: none;">such that</del> &lt;math&gt;A_\text{yes} \cap A_\text{no} = \varnothing&lt;/math&gt;. All of the previous complexity classes contain promise problems.&lt;ref name=":27"&gt;{{cite arXiv| last=Watrous|first=John| date=2008-04-21| title=Quantum Computational Complexity| class=quant-ph|eprint=0804.3401}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">The</ins> important complexity classes P, BPP, BQP, PP, and P-Space <ins style="font-weight: bold; text-decoration: none;">can</ins> <ins style="font-weight: bold; text-decoration: none;">be</ins> <ins style="font-weight: bold; text-decoration: none;">compared</ins> <ins style="font-weight: bold; text-decoration: none;">based</ins> <ins style="font-weight: bold; text-decoration: none;">on</ins> <ins style="font-weight: bold; text-decoration: none;">[[Promise</ins> <ins style="font-weight: bold; text-decoration: none;">problem|</ins>promise <ins style="font-weight: bold; text-decoration: none;">problems]]</ins>. A promise problem is a decision problem which has an input assumed to be selected from the set of all possible input strings. A promise problem is a pair &lt;math&gt;A=(A_\text{yes},A_\text{no})&lt;/math&gt;<ins style="font-weight: bold; text-decoration: none;">, where</ins> &lt;math&gt;A_\text{yes}&lt;/math&gt; is the set of yes instances<ins style="font-weight: bold; text-decoration: none;"> and</ins> &lt;math&gt;A_\text{no}&lt;/math&gt; is the set of no instances, and the intersection of these sets is <ins style="font-weight: bold; text-decoration: none;">empty:</ins> &lt;math&gt;A_\text{yes} \cap A_\text{no} = \varnothing&lt;/math&gt;. All of the previous complexity classes contain promise problems.&lt;ref name=":27"&gt;{{cite arXiv| last=Watrous|first=John| date=2008-04-21| title=Quantum Computational Complexity| class=quant-ph|eprint=0804.3401}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{| class="wikitable"</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{| class="wikitable"</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|+</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>|+</div></td> </tr> </table> Nuretok https://en.wikipedia.org/w/index.php?title=Quantum_complexity_theory&diff=1148337316&oldid=prev 198.168.103.76: changed the link for "quantum circuit model" to a more specific page 2023-04-05T15:22:29Z <p>changed the link for &quot;quantum circuit model&quot; to a more specific page</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:22, 5 April 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Background==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Background==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Computational complexity|Complexity class}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Computational complexity|Complexity class}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[<del style="font-weight: bold; text-decoration: none;">quantum</del> <del style="font-weight: bold; text-decoration: none;">computer</del>|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[<ins style="font-weight: bold; text-decoration: none;">Quantum</ins> <ins style="font-weight: bold; text-decoration: none;">circuit</ins>|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].&lt;ref name=":02"&gt;{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}&lt;/ref&gt;&lt;ref name=":32"&gt;{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|location=Cambridge|oclc=665137861}}&lt;/ref&gt; However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.&lt;ref name=":02" /&gt;</div></td> </tr> </table> 198.168.103.76