https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Quantum_optimization_algorithms Quantum optimization algorithms - Revision history 2025-05-29T02:47:46Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1282968888&oldid=prev Kvng: layout 2025-03-29T17:39:13Z <p>layout</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:39, 29 March 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 138:</td> <td colspan="2" class="diff-lineno">Line 138:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Adiabatic quantum computation]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Adiabatic quantum computation]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Quantum annealing]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Quantum annealing]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{clear}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Kvng https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1278546605&oldid=prev OAbot: Open access bot: arxiv updated in citation with #oabot. 2025-03-03T03:12:07Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: arxiv updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:12, 3 March 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 121:</td> <td colspan="2" class="diff-lineno">Line 121:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Multi-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Multi-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># Expressive QAOA (XQAOA)&lt;ref&gt;{{Cite journal |last=Vijendran |first=V |last2=Das |first2=Aritra |last3=Koh |first3=Dax Enshan |last4=Assad |first4=Syed M |last5=Lam |first5=Ping Koy |date=2024-04-01 |title=An expressive ansatz for low-depth quantum approximate optimisation |url=https://iopscience.iop.org/article/10.1088/2058-9565/ad200a |journal=Quantum Science and Technology |volume=9 |issue=2 |pages=025010 |doi=10.1088/2058-9565/ad200a |issn=2058-9565}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Expressive QAOA (XQAOA)&lt;ref&gt;{{Cite journal |last=Vijendran |first=V |last2=Das |first2=Aritra |last3=Koh |first3=Dax Enshan |last4=Assad |first4=Syed M |last5=Lam |first5=Ping Koy |date=2024-04-01 |title=An expressive ansatz for low-depth quantum approximate optimisation |url=https://iopscience.iop.org/article/10.1088/2058-9565/ad200a |journal=Quantum Science and Technology |volume=9 |issue=2 |pages=025010 |doi=10.1088/2058-9565/ad200a |issn=2058-9565<ins style="font-weight: bold; text-decoration: none;">|arxiv=2302.04479 </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1278046934&oldid=prev Quantumop at 05:08, 28 February 2025 2025-02-28T05:08:35Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:08, 28 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 121:</td> <td colspan="2" class="diff-lineno">Line 121:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Multi-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Multi-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Expressive QAOA (XQAOA)&lt;ref&gt;{{Cite journal |last=Vijendran |first=V |last2=Das |first2=Aritra |last3=Koh |first3=Dax Enshan |last4=Assad |first4=Syed M |last5=Lam |first5=Ping Koy |date=2024-04-01 |title=An expressive ansatz for low-depth quantum approximate optimisation |url=https://iopscience.iop.org/article/10.1088/2058-9565/ad200a |journal=Quantum Science and Technology |volume=9 |issue=2 |pages=025010 |doi=10.1088/2058-9565/ad200a |issn=2058-9565}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> </tr> </table> Quantumop https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1277419066&oldid=prev Kvng: improve recent contribution 2025-02-24T15:11:28Z <p>improve recent contribution</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:11, 24 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 130:</td> <td colspan="2" class="diff-lineno">Line 130:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==QAOA algorithm Qiskit implementation==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==QAOA algorithm Qiskit implementation==</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_3_1_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_0_lhs"></a>The quantum circuit shown here is from <del style="font-weight: bold; text-decoration: none;">[</del>https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm <del style="font-weight: bold; text-decoration: none;">a</del> <del style="font-weight: bold; text-decoration: none;">simple</del> <del style="font-weight: bold; text-decoration: none;">example</del> <del style="font-weight: bold; text-decoration: none;">of</del> <del style="font-weight: bold; text-decoration: none;">how the QAOA</del> <del style="font-weight: bold; text-decoration: none;">algorithm can be implemented in Python]</del> using [[Qiskit]], an open-source quantum computing software development framework by IBM.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOA quantum circuit.png|thumb|QAOA quantum circuit]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOA quantum circuit.png|thumb|QAOA quantum circuit]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_1_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_1_rhs"></a>The quantum circuit shown here is from <ins style="font-weight: bold; text-decoration: none;">a simple example of how the QAOA algorithm can be implemented in Python&lt;ref&gt;{{cite web |url=</ins>https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm <ins style="font-weight: bold; text-decoration: none;">|title=Solve</ins> <ins style="font-weight: bold; text-decoration: none;">utility-scale</ins> <ins style="font-weight: bold; text-decoration: none;">quantum</ins> <ins style="font-weight: bold; text-decoration: none;">optimization</ins> <ins style="font-weight: bold; text-decoration: none;">problems</ins> <ins style="font-weight: bold; text-decoration: none;">|access-date=2025-02-24}}&lt;/ref&gt;</ins> using [[Qiskit]], an open-source quantum computing software development framework by IBM.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 140:</td> <td colspan="2" class="diff-lineno">Line 140:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==External links==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://short.classiq.io/qaoa_knapsack Implementation of the QAOA algorithm for the knapsack problem with Classiq]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [https://short.classiq.io/qaoa_knapsack Implementation of the QAOA algorithm for the knapsack problem with Classiq]</div></td> </tr> </table> Kvng https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1276817687&oldid=prev JavaFXpert: Added short section entitled QAOA algorithm Qiskit implementation 2025-02-20T23:05:41Z <p>Added short section entitled QAOA algorithm Qiskit implementation</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:05, 20 February 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 128:</td> <td colspan="2" class="diff-lineno">Line 128:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finally, there has been significant research interest in leveraging specific hardware to enhance the performance of QAOA across various platforms, such as trapped ion, neutral atoms, superconducting qubits, and photonic quantum computers. The goals of these approaches include overcoming hardware connectivity limitations and mitigating noise-related issues to broaden the applicability of QAOA to a wide range of combinatorial optimization problems.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Finally, there has been significant research interest in leveraging specific hardware to enhance the performance of QAOA across various platforms, such as trapped ion, neutral atoms, superconducting qubits, and photonic quantum computers. The goals of these approaches include overcoming hardware connectivity limitations and mitigating noise-related issues to broaden the applicability of QAOA to a wide range of combinatorial optimization problems.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==QAOA algorithm Qiskit implementation==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The quantum circuit shown here is from [https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm a simple example of how the QAOA algorithm can be implemented in Python] using [[Qiskit]], an open-source quantum computing software development framework by IBM.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOA quantum circuit.png|thumb|QAOA quantum circuit]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> JavaFXpert https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1247287688&oldid=prev Kvng: WP:ADOPTYPO boolean -> Boolean 2024-09-23T17:14:35Z <p><a href="/wiki/Wikipedia:ADOPTYPO" class="mw-redirect" title="Wikipedia:ADOPTYPO">WP:ADOPTYPO</a> boolean -&gt; Boolean</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:14, 23 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum combinatorial optimization==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Quantum combinatorial optimization==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[combinatorial optimization]] problem is aimed at finding an optimal object from a [[finite set]] of objects. The problem can be phrased as a maximization of an [[objective function]] which is a sum of [[<del style="font-weight: bold; text-decoration: none;">boolean</del> function]]s. Each <del style="font-weight: bold; text-decoration: none;">boolean</del> function &lt;math&gt;\,C_\alpha \colon \lbrace {0,1 \rbrace}^n \rightarrow \lbrace {0,1} \rbrace &lt;/math&gt; gets as input the &lt;math&gt;n&lt;/math&gt;-bit string &lt;math&gt;z = z_1 z_2 \ldots z_n&lt;/math&gt; and gives as output one bit (0 or 1). The combinatorial optimization problem of &lt;math&gt;n&lt;/math&gt; bits and &lt;math&gt;m&lt;/math&gt; clauses is finding an &lt;math&gt;n&lt;/math&gt;-bit string &lt;math&gt;z&lt;/math&gt; that maximizes the function</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[combinatorial optimization]] problem is aimed at finding an optimal object from a [[finite set]] of objects. The problem can be phrased as a maximization of an [[objective function]] which is a sum of [[<ins style="font-weight: bold; text-decoration: none;">Boolean</ins> function]]s. Each <ins style="font-weight: bold; text-decoration: none;">Boolean</ins> function &lt;math&gt;\,C_\alpha \colon \lbrace {0,1 \rbrace}^n \rightarrow \lbrace {0,1} \rbrace &lt;/math&gt; gets as input the &lt;math&gt;n&lt;/math&gt;-bit string &lt;math&gt;z = z_1 z_2 \ldots z_n&lt;/math&gt; and gives as output one bit (0 or 1). The combinatorial optimization problem of &lt;math&gt;n&lt;/math&gt; bits and &lt;math&gt;m&lt;/math&gt; clauses is finding an &lt;math&gt;n&lt;/math&gt;-bit string &lt;math&gt;z&lt;/math&gt; that maximizes the function</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C(z) = \sum_{\alpha=1}^m C_\alpha(z)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>C(z) = \sum_{\alpha=1}^m C_\alpha(z)</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 93:</td> <td colspan="2" class="diff-lineno">Line 93:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be one that maximizes the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be one that maximizes the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in a ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be a ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground states encode the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen)state gives the optimal solution. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the <del style="font-weight: bold; text-decoration: none;">boolean</del> function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in a ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be a ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground states encode the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen)state gives the optimal solution. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the <ins style="font-weight: bold; text-decoration: none;">Boolean</ins> function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> </tr> </table> Kvng https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1242801584&oldid=prev 85.27.138.187: /* Quantum approximate optimization algorithm */ Fixed two typos. 2024-08-28T20:54:55Z <p><span class="autocomment">Quantum approximate optimization algorithm: </span> Fixed two typos.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:54, 28 August 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 93:</td> <td colspan="2" class="diff-lineno">Line 93:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be one that maximizes the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be one that maximizes the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in a ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be a ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground states encode the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen)<del style="font-weight: bold; text-decoration: none;"> stated</del> gives the optimal <del style="font-weight: bold; text-decoration: none;">solutiond</del>. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the boolean function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in a ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be a ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground states encode the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen)<ins style="font-weight: bold; text-decoration: none;">state</ins> gives the optimal <ins style="font-weight: bold; text-decoration: none;">solution</ins>. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the boolean function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> </tr> </table> 85.27.138.187 https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1240507137&oldid=prev LennartBinkowski: For reference (DOI: 10.1088/1367-2630/ad59bb): Replaced specific publishing date with publishing year 2024-08-15T19:00:49Z <p>For reference (DOI: 10.1088/1367-2630/ad59bb): Replaced specific publishing date with publishing year</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:00, 15 August 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 108:</td> <td colspan="2" class="diff-lineno">Line 108:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Generalization of QAOA to constrained combinatorial optimisation ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Generalization of QAOA to constrained combinatorial optimisation ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In principle the optimal value of &lt;math&gt; C(z) &lt;/math&gt; can be reached up to arbitrary precision, this is guaranteed by the adiabatic theorem&lt;ref&gt;{{cite arXiv|last1=Farhi|first1=Edward|last2=Goldstone|first2=Jeffrey|last3=Gutmann|first3=Sam|title=A Quantum Approximate Optimization Algorithm|eprint=1411.4028|class=quant-ph|year=2014}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Binkowski|first1=Lennart |last2=Koßmann|first2=Gereon |last3=Ziegler|first3=Timo |last4=Schwonnek|first4=René |<del style="font-weight: bold; text-decoration: none;">date</del>=2024<del style="font-weight: bold; text-decoration: none;">-07-01</del>|title=Elementary proof of QAOA convergence|journal=New Journal of Physics|volume=26|issue=7|pages=073001|doi=10.1088/1367-2630/ad59bb|arxiv=2302.04968 }}&lt;/ref&gt; or alternatively by the universality of the QAOA unitaries.&lt;ref&gt;{{Cite journal|last1=Morales|first1=M. E. |last2=Biamonte|first2=J. D.|last3=Zimborás|first3=Z. |date=2019-09-20|title=On the universality of the quantum approximate optimization algorithm|journal=Quantum Information Processing|volume=19|issue=9 |pages=291|doi=10.1007/s11128-020-02748-9|arxiv=1909.03123 }}&lt;/ref&gt; However, it is an open question whether this can be done in a feasible way.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In principle the optimal value of &lt;math&gt; C(z) &lt;/math&gt; can be reached up to arbitrary precision, this is guaranteed by the adiabatic theorem&lt;ref&gt;{{cite arXiv|last1=Farhi|first1=Edward|last2=Goldstone|first2=Jeffrey|last3=Gutmann|first3=Sam|title=A Quantum Approximate Optimization Algorithm|eprint=1411.4028|class=quant-ph|year=2014}}&lt;/ref&gt;&lt;ref&gt;{{Cite journal|last1=Binkowski|first1=Lennart |last2=Koßmann|first2=Gereon |last3=Ziegler|first3=Timo |last4=Schwonnek|first4=René |<ins style="font-weight: bold; text-decoration: none;">year</ins>=2024|title=Elementary proof of QAOA convergence|journal=New Journal of Physics|volume=26|issue=7|pages=073001|doi=10.1088/1367-2630/ad59bb|arxiv=2302.04968 }}&lt;/ref&gt; or alternatively by the universality of the QAOA unitaries.&lt;ref&gt;{{Cite journal|last1=Morales|first1=M. E. |last2=Biamonte|first2=J. D.|last3=Zimborás|first3=Z. |date=2019-09-20|title=On the universality of the quantum approximate optimization algorithm|journal=Quantum Information Processing|volume=19|issue=9 |pages=291|doi=10.1007/s11128-020-02748-9|arxiv=1909.03123 }}&lt;/ref&gt; However, it is an open question whether this can be done in a feasible way.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].&lt;ref name=":0"&gt;{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].&lt;ref name=":0"&gt;{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> LennartBinkowski https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1240506118&oldid=prev LennartBinkowski: Within the QAOA section: possible degeneracy of classical objective function and hence objective hamiltonian is consistently accounted for by e.g. replacing "the optimal solution" with "an optimal solution"/"optimal solutions". New reference (DOI: 10.1088/1367-2630/ad59bb) is added for convergence of QAOA for degenerate problems. 2024-08-15T18:52:27Z <p>Within the QAOA section: possible degeneracy of classical objective function and hence objective hamiltonian is consistently accounted for by e.g. replacing &quot;the optimal solution&quot; with &quot;an optimal solution&quot;/&quot;optimal solutions&quot;. New reference (DOI: 10.1088/1367-2630/ad59bb) is added for convergence of QAOA for degenerate problems.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:52, 15 August 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 91:</td> <td colspan="2" class="diff-lineno">Line 91:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Repeated application of the oracles &lt;math&gt;U_C&lt;/math&gt; and &lt;math&gt;U_M&lt;/math&gt;, in the order: &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha) = \coprod_{i=1}^N (U_C(\gamma_i) U_M(\alpha_i))&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Repeated application of the oracles &lt;math&gt;U_C&lt;/math&gt; and &lt;math&gt;U_M&lt;/math&gt;, in the order: &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha) = \coprod_{i=1}^N (U_C(\gamma_i) U_M(\alpha_i))&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Preparing an initial state, that is a superposition of all possible states and apply &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt; to the state.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Preparing an initial state, that is a superposition of all possible states and apply &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt; to the state.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. <del style="font-weight: bold; text-decoration: none;">The</del> optimal solution will be<del style="font-weight: bold; text-decoration: none;"> the</del> one that <del style="font-weight: bold; text-decoration: none;">maximises</del> the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># Using classical methods to optimize the parameters &lt;math&gt;\boldsymbol\gamma, \boldsymbol\alpha&lt;/math&gt; and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. <ins style="font-weight: bold; text-decoration: none;">An</ins> optimal solution will be one that <ins style="font-weight: bold; text-decoration: none;">maximizes</ins> the expectation value of the cost Hamiltonian &lt;math&gt;H_C&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in <del style="font-weight: bold; text-decoration: none;">the</del> ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be <del style="font-weight: bold; text-decoration: none;">the</del> ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground <del style="font-weight: bold; text-decoration: none;">state</del> <del style="font-weight: bold; text-decoration: none;">encodes</del> the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen) <del style="font-weight: bold; text-decoration: none;">state</del> gives the optimal <del style="font-weight: bold; text-decoration: none;">solution</del>. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the boolean function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The layout of the algorithm, viz, the use of cost and mixer Hamiltonians are inspired from the [[Quantum Adiabatic Theorem|Quantum Adiabatic theorem]], which states that starting in <ins style="font-weight: bold; text-decoration: none;">a</ins> ground state of a time-dependent Hamiltonian, if the Hamiltonian evolves slowly enough, the final state will be <ins style="font-weight: bold; text-decoration: none;">a</ins> ground state of the final Hamiltonian. Moreover, the adiabatic theorem can be generalized to any other eigenstate as long as there is no overlap (degeneracy) between different eigenstates across the evolution. Identifying the initial Hamiltonian with &lt;math&gt;H_M&lt;/math&gt; and the final Hamiltonian with &lt;math&gt;H_C&lt;/math&gt;, whose ground <ins style="font-weight: bold; text-decoration: none;">states</ins> <ins style="font-weight: bold; text-decoration: none;">encode</ins> the solution to the optimization problem of interest, one can approximate the optimization problem as the adiabatic evolution of the Hamiltonian from an initial to the final one, whose ground (eigen) <ins style="font-weight: bold; text-decoration: none;">stated</ins> gives the optimal <ins style="font-weight: bold; text-decoration: none;">solutiond</ins>. In general, QAOA relies on the use of [[unitary operators]] dependent on &lt;math&gt; 2p &lt;/math&gt; [[angle]]s (parameters), where &lt;math&gt; p&gt;1 &lt;/math&gt; is an input integer, which can be identified the number of layers of the oracle &lt;math&gt;U(\boldsymbol\gamma, \boldsymbol\alpha)&lt;/math&gt;. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and the boolean function &lt;math&gt; C(z) &lt;/math&gt; is estimated. The angles are then updated classically to increase &lt;math&gt; C(z) &lt;/math&gt;. After this procedure is repeated a sufficient number of times, the value of &lt;math&gt; C(z) &lt;/math&gt; is almost optimal, and the state being measured is close to being optimal as well. A sample circuit that implements QAOA on a quantum computer is given in figure. This procedure is highlighted using the following example of finding the [[minimum vertex cover]] of a graph.&lt;ref&gt;{{Cite journal |last=Ceroni |first=Jack |date=2020-11-18 |title=Intro to QAOA |url=https://pennylane.aiundefined/ |journal=PennyLane Demos |language=en}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== QAOA for finding the minimum vertex cover of a graph ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The goal here is to find <del style="font-weight: bold; text-decoration: none;">the</del> [[Vertex cover|minimum vertex cover]] of a graph: a collection of vertices such that each edge in the graph contains at least one of the vertices in the cover. Hence,<del style="font-weight: bold; text-decoration: none;"> </del> these vertices “cover” all the edges. We wish to find <del style="font-weight: bold; text-decoration: none;">the</del> vertex cover that has the<del style="font-weight: bold; text-decoration: none;"> </del> smallest possible number of vertices. Vertex covers can be represented by a bit string where each bit denotes whether the corresponding vertex is present in the cover. For example, the bit string 0101 represents a cover consisting of the second and fourth vertex in a graph with four vertices.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The goal here is to find <ins style="font-weight: bold; text-decoration: none;">a</ins> [[Vertex cover|minimum vertex cover]] of a graph: a collection of vertices such that each edge in the graph contains at least one of the vertices in the cover. Hence, these vertices “cover” all the edges. We wish to find <ins style="font-weight: bold; text-decoration: none;">a</ins> vertex cover that has the smallest possible number of vertices. Vertex covers can be represented by a bit string where each bit denotes whether the corresponding vertex is present in the cover. For example, the bit string 0101 represents a cover consisting of the second and fourth vertex in a graph with four vertices.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:GraphforQAOA.png|thumb|220x220px|Sample graph to illustrate the minimum vertex cover problem.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:GraphforQAOA.png|thumb|220x220px|Sample graph to illustrate the minimum vertex cover problem.]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Consider the graph given in the figure. It has four vertices and there are two minimum vertex cover for this graph: vertices 0 and 2,<del style="font-weight: bold; text-decoration: none;"> </del> and the vertices 1 and 2. These can be respectively represented by the bit strings 1010 and 0110. The goal of the algorithm is to sample these bit strings with high probability. In this case, the cost Hamiltonian has two ground states, |1010⟩ and |0110⟩, coinciding with the solutions of the problem. The mixer Hamiltonian is the simple, non-commuting sum of [[Pauli matrices|Pauli-X]] operations on each node of the graph and they are given by:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Consider the graph given in the figure. It has four vertices and there are two minimum vertex cover for this graph: vertices 0 and 2, and the vertices 1 and 2. These can be respectively represented by the bit strings 1010 and 0110. The goal of the algorithm is to sample these bit strings with high probability. In this case, the cost Hamiltonian has two ground states, |1010⟩ and |0110⟩, coinciding with the solutions of the problem. The mixer Hamiltonian is the simple, non-commuting sum of [[Pauli matrices|Pauli-X]] operations on each node of the graph and they are given by:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;H_C = -0.25 Z_3 + 0.5 Z_0 + 0.5 Z_1 + 1.25 Z_2 + 0.75 (Z_0 Z_1 + Z_0 Z_2 + Z_2 Z_3 + Z_1 Z_2)&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;H_C = -0.25 Z_3 + 0.5 Z_0 + 0.5 Z_1 + 1.25 Z_2 + 0.75 (Z_0 Z_1 + Z_0 Z_2 + Z_2 Z_3 + Z_1 Z_2)&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;H_M = X_0 + X_1 + X_2 + X_3&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;H_M = X_0 + X_1 + X_2 + X_3&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAoutput.png|thumb|&lt;nowiki&gt;Output of QAOA implementation in Qiskit for minimum vertex cover problem. Note that the bit string |1010&gt; is <del style="font-weight: bold; text-decoration: none;">fliped</del> as |0101&gt; as Qiskit uses reverse ordering of bits.&lt;/nowiki&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAoutput.png|thumb|&lt;nowiki&gt;Output of QAOA implementation in Qiskit for minimum vertex cover problem. Note that the bit string |1010&gt; is <ins style="font-weight: bold; text-decoration: none;">flipped</ins> as |0101&gt; as Qiskit uses reverse ordering of bits.&lt;/nowiki&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuitforGraph.png|thumb|Qiskit implementation of QAOA for minimum vertex cover problem.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:QAOAcircuitforGraph.png|thumb|Qiskit implementation of QAOA for minimum vertex cover problem.]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Implementing QAOA algorithm for this four qubit circuit with two layers of the ansatz in qiskit (see figure) and optimizing leads to a probability distribution for the states given in the figure. This shows that the states |0110⟩ and |1010⟩ have the highest probabilities of being measured, just as expected.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Implementing QAOA algorithm for this four qubit circuit with two layers of the ansatz in qiskit (see figure) and optimizing leads to a probability distribution for the states given in the figure. This shows that the states |0110⟩ and |1010⟩ have the highest probabilities of being measured, just as expected.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== <del style="font-weight: bold; text-decoration: none;">Generalisation</del> of QAOA to constrained combinatorial optimisation ===</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== <ins style="font-weight: bold; text-decoration: none;">Generalization</ins> of QAOA to constrained combinatorial optimisation ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In principle the optimal value of<del style="font-weight: bold; text-decoration: none;"> </del> &lt;math&gt; C(z) &lt;/math&gt; can be reached up to arbitrary precision, this is guaranteed by the adiabatic theorem&lt;ref&gt;{{cite arXiv|last1=Farhi|first1=Edward|last2=Goldstone|first2=Jeffrey|last3=Gutmann|first3=Sam|title=A Quantum Approximate Optimization Algorithm|eprint=1411.4028|class=quant-ph|year=2014}}&lt;/ref&gt; or alternatively by the universality of the QAOA unitaries.&lt;ref&gt;{{Cite journal|last1=Morales|first1=M. E. |last2=Biamonte|first2=J. D.|last3=Zimborás|first3=Z. |date=2019-09-20|title=On the universality of the quantum approximate optimization algorithm|journal=Quantum Information Processing|volume=19|issue=9 |pages=291|doi=10.1007/s11128-020-02748-9|arxiv=1909.03123 }}&lt;/ref&gt; However, it is an open question whether this can be done in a feasible way.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In principle the optimal value of &lt;math&gt; C(z) &lt;/math&gt; can be reached up to arbitrary precision, this is guaranteed by the adiabatic theorem&lt;ref&gt;{{cite arXiv|last1=Farhi|first1=Edward|last2=Goldstone|first2=Jeffrey|last3=Gutmann|first3=Sam|title=A Quantum Approximate Optimization Algorithm|eprint=1411.4028|class=quant-ph|year=2014}}&lt;/ref&gt;<ins style="font-weight: bold; text-decoration: none;">&lt;ref&gt;{{Cite</ins> <ins style="font-weight: bold; text-decoration: none;">journal|last1=Binkowski|first1=Lennart |last2=Koßmann|first2=Gereon |last3=Ziegler|first3=Timo |last4=Schwonnek|first4=René |date=2024-07-01|title=Elementary proof of QAOA convergence|journal=New Journal of Physics|volume=26|issue=7|pages=073001|doi=10.1088/1367-2630/ad59bb|arxiv=2302.04968 }}&lt;/ref&gt;</ins> or alternatively by the universality of the QAOA unitaries.&lt;ref&gt;{{Cite journal|last1=Morales|first1=M. E. |last2=Biamonte|first2=J. D.|last3=Zimborás|first3=Z. |date=2019-09-20|title=On the universality of the quantum approximate optimization algorithm|journal=Quantum Information Processing|volume=19|issue=9 |pages=291|doi=10.1007/s11128-020-02748-9|arxiv=1909.03123 }}&lt;/ref&gt; However, it is an open question whether this can be done in a feasible way.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].&lt;ref name=":0"&gt;{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].&lt;ref name=":0"&gt;{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> LennartBinkowski https://en.wikipedia.org/w/index.php?title=Quantum_optimization_algorithms&diff=1230407712&oldid=prev 78.104.97.27: Typo "Mullti" -> "Multi" 2024-06-22T14:55:29Z <p>Typo &quot;Mullti&quot; -&gt; &quot;Multi&quot;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:55, 22 June 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 120:</td> <td colspan="2" class="diff-lineno">Line 120:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Several variations to the basic structure of QAOA have been proposed,&lt;ref&gt;{{Cite journal |last1=Blekos |first1=Kostas |last2=Brand |first2=Dean |last3=Ceschini |first3=Andrea |last4=Chou |first4=Chiao-Hui |last5=Li |first5=Rui-Hao |last6=Pandya |first6=Komal |last7=Summer |first7=Alessandro |date=June 2024 |title=A Review on Quantum Approximate Optimization Algorithm and its Variants |journal=Physics Reports |volume=1068 |pages=1–66 |doi=10.1016/j.physrep.2024.03.002|arxiv=2306.09198 |bibcode=2024PhR..1068....1B }}&lt;/ref&gt; which include variations to the ansatz of the basic algorithm. The choice of ansatz typically depends on the problem type, such as combinatorial problems represented as graphs, or problems strongly influenced by hardware design. However, ansatz design must balance specificity and generality to avoid overfitting and maintain applicability to a wide range of problems. For this reason, designing optimal ansatze for QAOA is an extensively researched and widely investigated topic. Some of the proposed variants are:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Several variations to the basic structure of QAOA have been proposed,&lt;ref&gt;{{Cite journal |last1=Blekos |first1=Kostas |last2=Brand |first2=Dean |last3=Ceschini |first3=Andrea |last4=Chou |first4=Chiao-Hui |last5=Li |first5=Rui-Hao |last6=Pandya |first6=Komal |last7=Summer |first7=Alessandro |date=June 2024 |title=A Review on Quantum Approximate Optimization Algorithm and its Variants |journal=Physics Reports |volume=1068 |pages=1–66 |doi=10.1016/j.physrep.2024.03.002|arxiv=2306.09198 |bibcode=2024PhR..1068....1B }}&lt;/ref&gt; which include variations to the ansatz of the basic algorithm. The choice of ansatz typically depends on the problem type, such as combinatorial problems represented as graphs, or problems strongly influenced by hardware design. However, ansatz design must balance specificity and generality to avoid overfitting and maintain applicability to a wide range of problems. For this reason, designing optimal ansatze for QAOA is an extensively researched and widely investigated topic. Some of the proposed variants are:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># <del style="font-weight: bold; text-decoration: none;">Mullti</del>-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># <ins style="font-weight: bold; text-decoration: none;">Multi</ins>-angle QAOA&lt;ref&gt;{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># QAOA+&lt;ref&gt;{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |chapter-url=https://ieeexplore.ieee.org/document/9951267 |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Digitised counteradiabatic QAOA&lt;ref&gt;{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}&lt;/ref&gt;</div></td> </tr> </table> 78.104.97.27