https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Random_sample_consensus Random sample consensus - Revision history 2025-06-18T16:36:01Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.5 https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1258988090&oldid=prev Kri: /* Related methods */ Added FSASAC 2024-11-22T19:24:51Z <p><span class="autocomment">Related methods: </span> Added <a href="/w/index.php?title=FSASAC&amp;action=edit&amp;redlink=1" class="new" title="FSASAC (page does not exist)">FSASAC</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:24, 22 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 225:</td> <td colspan="2" class="diff-lineno">Line 225:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Resampling (statistics)]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Resampling (statistics)]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Hop-Diffusion Monte Carlo uses randomized sampling involve global jumps and local diffusion to choose the sample at each step of RANSAC for epipolar geometry estimation between very wide-baseline images.&lt;ref&gt;{{cite journal |last1=Brahmachari |first1=Aveek S. |last2=Sarkar |first2=Sudeep |title=Hop-Diffusion Monte Carlo for Epipolar Geometry Estimation between Very Wide-Baseline Images |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |date=March 2013 |volume=35 |issue=3 |pages=755–762 |doi=10.1109/TPAMI.2012.227|pmid=26353140 |s2cid=2524656 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Hop-Diffusion Monte Carlo uses randomized sampling involve global jumps and local diffusion to choose the sample at each step of RANSAC for epipolar geometry estimation between very wide-baseline images.&lt;ref&gt;{{cite journal |last1=Brahmachari |first1=Aveek S. |last2=Sarkar |first2=Sudeep |title=Hop-Diffusion Monte Carlo for Epipolar Geometry Estimation between Very Wide-Baseline Images |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |date=March 2013 |volume=35 |issue=3 |pages=755–762 |doi=10.1109/TPAMI.2012.227|pmid=26353140 |s2cid=2524656 }}&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[FSASAC]] (RANSAC based on data filtering and [[simulated annealing]])&lt;ref&gt;W. Ruoyan and W. Junfeng, "[https://ieeexplore.ieee.org/document/9648331 FSASAC: Random Sample Consensus Based on Data Filter and Simulated Annealing]," in IEEE Access, vol. 9, pp. 164935-164948, 2021, doi: 10.1109/ACCESS.2021.3135416.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Kri https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1258888279&oldid=prev Citation bot: Add: citeseerx, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Robust statistics | #UCB_Category 28/32 2024-11-22T05:09:52Z <p>Add: citeseerx, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | <a href="/wiki/Category:Robust_statistics" title="Category:Robust statistics">Category:Robust statistics</a> | #UCB_Category 28/32</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:09, 22 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be {{clarify span|accorded no influence|date=November 2024}} on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016).&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the location determination problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be {{clarify span|accorded no influence|date=November 2024}} on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016).&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the location determination problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web |<del style="font-weight: bold; text-decoration: none;">last</del>=Cantzler |first1=H. |title=Random Sample Consensus (RANSAC) |language=en |publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-date=2023-02-04 |url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers", which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure that can estimate the parameters of a model optimally explaining or fitting this data.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Cantzler |first1=H. |title=Random Sample Consensus (RANSAC) |language=en |publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh<ins style="font-weight: bold; text-decoration: none;"> |citeseerx=10.1.1.106.3035</ins> |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-date=2023-02-04 |url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers", which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure that can estimate the parameters of a model optimally explaining or fitting this data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1257092700&oldid=prev AnomieBOT: Dating maintenance tags: {{Clarify span}} 2024-11-13T05:22:02Z <p>Dating maintenance tags: {{Clarify span}}</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:22, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Statistical method}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Statistical method}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Machine learning bar}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Machine learning bar}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be {{clarify span|accorded no influence}} on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016).&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the location determination problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be {{clarify span|accorded no influence<ins style="font-weight: bold; text-decoration: none;">|date=November 2024</ins>}} on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016).&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the location determination problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web |last=Cantzler |first1=H. |title=Random Sample Consensus (RANSAC) |language=en |publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-date=2023-02-04 |url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers", which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure that can estimate the parameters of a model optimally explaining or fitting this data.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web |last=Cantzler |first1=H. |title=Random Sample Consensus (RANSAC) |language=en |publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf |archive-date=2023-02-04 |url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers", which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure that can estimate the parameters of a model optimally explaining or fitting this data.</div></td> </tr> </table> AnomieBOT https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1257090641&oldid=prev Mikhail Ryazanov: /* Advantages and disadvantages */ punct. 2024-11-13T05:01:22Z <p><span class="autocomment">Advantages and disadvantages: </span> punct.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:01, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 201:</td> <td colspan="2" class="diff-lineno">Line 201:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Advantages and disadvantages==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Advantages and disadvantages==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove section|date=September 2014}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove section|date=September 2014}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An advantage of RANSAC is its ability to do [[robust statistics|robust estimation]]&lt;ref&gt;Robust Statistics, Peter. J. Huber, Wiley, 1981 (republished in paperback, 2004), page 1.&lt;/ref&gt; of the model parameters, i.e., it can estimate the parameters with a high degree of accuracy even when a significant number of [[outlier]]s are present in the data set. A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters (except exhaustion). When the number of iterations computed is limited the solution obtained may not be optimal, and it may not even be one that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number of iterations the probability of a reasonable model being produced is increased. Moreover, RANSAC is not always able to find the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is less than 50%. Optimal RANSAC<del style="font-weight: bold; text-decoration: none;"> </del>&lt;ref&gt;Anders Hast, Johan Nysjö, Andrea Marchetti (2013). "[http://wscg.zcu.cz/WSCG2013/!_2013_J_WSCG-1.pdf Optimal RANSAC – Towards a Repeatable Algorithm for Finding the Optimal Set]". Journal of WSCG 21 (1): 21–30.&lt;/ref&gt; was proposed to handle both these problems and is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. Another disadvantage of RANSAC is that it requires the setting of problem-specific thresholds.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An advantage of RANSAC is its ability to do [[robust statistics|robust estimation]]&lt;ref&gt;Robust Statistics, Peter. J. Huber, Wiley, 1981 (republished in paperback, 2004), page 1.&lt;/ref&gt; of the model parameters, i.e., it can estimate the parameters with a high degree of accuracy even when a significant number of [[outlier]]s are present in the data set. A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters (except exhaustion). When the number of iterations computed is limited<ins style="font-weight: bold; text-decoration: none;">,</ins> the solution obtained may not be optimal, and it may not even be one that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number of iterations<ins style="font-weight: bold; text-decoration: none;">,</ins> the probability of a reasonable model being produced is increased. Moreover, RANSAC is not always able to find the optimal set even for moderately contaminated sets<ins style="font-weight: bold; text-decoration: none;">,</ins> and it usually performs badly when the number of inliers is less than 50%. Optimal RANSAC&lt;ref&gt;Anders Hast, Johan Nysjö, Andrea Marchetti (2013). "[http://wscg.zcu.cz/WSCG2013/!_2013_J_WSCG-1.pdf Optimal RANSAC – Towards a Repeatable Algorithm for Finding the Optimal Set]". Journal of WSCG 21 (1): 21–30.&lt;/ref&gt; was proposed to handle both these problems and is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. Another disadvantage of RANSAC is that it requires the setting of problem-specific thresholds.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RANSAC can only estimate one model for a particular data set. As for any one-model approach when two (or more) model instances exist, RANSAC may fail to find either one. The [[Hough transform]] is one alternative robust estimation technique that may be useful when more than one model instance is present. Another approach for multi<del style="font-weight: bold; text-decoration: none;"> </del>model fitting is known as PEARL,&lt;ref&gt;Hossam Isack, Yuri Boykov (2012). "Energy-based Geometric Multi-Model Fitting". International Journal of Computer Vision 97 (2: 1): 23–147. {{doi|10.1007/s11263-011-0474-7}}.&lt;/ref&gt; which combines model sampling from data points as in RANSAC with iterative re-estimation of inliers and the multi-model fitting being formulated as an optimization problem with a global energy function describing the quality of the overall solution.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RANSAC can only estimate one model for a particular data set. As for any one-model approach when two (or more) model instances exist, RANSAC may fail to find either one. The [[Hough transform]] is one alternative robust estimation technique that may be useful when more than one model instance is present. Another approach for multi<ins style="font-weight: bold; text-decoration: none;">-</ins>model fitting is known as PEARL,&lt;ref&gt;Hossam Isack, Yuri Boykov (2012). "Energy-based Geometric Multi-Model Fitting". International Journal of Computer Vision 97 (2: 1): 23–147. {{doi|10.1007/s11263-011-0474-7}}.&lt;/ref&gt; which combines model sampling from data points as in RANSAC with iterative re-estimation of inliers and the multi-model fitting being formulated as an optimization problem with a global energy function describing the quality of the overall solution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> </tr> </table> Mikhail Ryazanov https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1257090237&oldid=prev Mikhail Ryazanov: /* Example code */ punct. 2024-11-13T04:58:20Z <p><span class="autocomment">Example code: </span> punct.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:58, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 172:</td> <td colspan="2" class="diff-lineno">Line 172:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> plt.show()</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> plt.show()</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/syntaxhighlight&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/syntaxhighlight&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:RANSAC applied to 2D regression problem.png|alt=A scatterplot showing a diagonal line from the bottom left to top right of the figure. A trend line fits closely along the diagonal, without being thrown off by outliers scattered elsewhere in the figure.|center|thumb|Result of running the &lt;code&gt;RANSAC&lt;/code&gt; implementation. The orange line shows the least<del style="font-weight: bold; text-decoration: none;"> </del>squares parameters found by the iterative approach, which successfully ignores the outlier points.]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:RANSAC applied to 2D regression problem.png|alt=A scatterplot showing a diagonal line from the bottom left to top right of the figure. A trend line fits closely along the diagonal, without being thrown off by outliers scattered elsewhere in the figure.|center|thumb|Result of running the &lt;code&gt;RANSAC&lt;/code&gt; implementation. The orange line shows the least<ins style="font-weight: bold; text-decoration: none;">-</ins>squares parameters found by the iterative approach, which successfully ignores the outlier points.]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Parameters ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Parameters ==</div></td> </tr> </table> Mikhail Ryazanov https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1257090098&oldid=prev Mikhail Ryazanov: /* Overview */ style (steps already have explicit numbers), style, fmt., MOS:CAPS 2024-11-13T04:57:04Z <p><span class="autocomment">Overview: </span> style (steps already have explicit numbers), style, fmt., <a href="/wiki/MOS:CAPS" class="mw-redirect" title="MOS:CAPS">MOS:CAPS</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:57, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 15:</td> <td colspan="2" class="diff-lineno">Line 15:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Overview==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Overview==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting result. Data elements in the dataset are used to vote for one or multiple models. The implementation of this voting scheme is based on two assumptions: that the noisy features will not vote consistently for any single model (few outliers) and there are enough features to agree on a good model (few missing data). The RANSAC algorithm is essentially composed of two steps that are iteratively repeated:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting result. Data elements in the dataset are used to vote for one or multiple models. The implementation of this voting scheme is based on two assumptions: that the noisy features will not vote consistently for any single model (few outliers) and there are enough features to agree on a good model (few missing data). The RANSAC algorithm is essentially composed of two steps that are iteratively repeated:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># <del style="font-weight: bold; text-decoration: none;">In the first step, a</del> sample subset containing minimal data items is randomly selected from the input dataset. A fitting model with model parameters is computed using only the elements of this sample subset. The cardinality of the sample subset (e.g., the amount of data in this subset) is sufficient to determine the model parameters.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># <ins style="font-weight: bold; text-decoration: none;">A</ins> sample subset containing minimal<ins style="font-weight: bold; text-decoration: none;"> number of</ins> data items is randomly selected from the input dataset. A fitting model with model parameters is computed using only the elements of this sample subset. The cardinality of the sample subset (e.g., the amount of data in this subset) is sufficient to determine the model parameters.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div># <del style="font-weight: bold; text-decoration: none;">In the second step, the</del> algorithm checks which elements of the entire dataset are consistent with the model instantiated by the estimated model parameters obtained from the first step. A data element will be considered as an outlier if it does not fit the model within some error threshold defining the maximum data deviation of inliers<del style="font-weight: bold; text-decoration: none;">.</del> (<del style="font-weight: bold; text-decoration: none;">Data</del> elements beyond this deviation are outliers<del style="font-weight: bold; text-decoration: none;">.</del>)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div># <ins style="font-weight: bold; text-decoration: none;">The</ins> algorithm checks which elements of the entire dataset are consistent with the model instantiated by the estimated model parameters obtained from the first step. A data element will be considered as an outlier if it does not fit the model within some error threshold defining the maximum data deviation of inliers (<ins style="font-weight: bold; text-decoration: none;">data</ins> elements beyond this deviation are outliers)<ins style="font-weight: bold; text-decoration: none;">.</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The set of inliers obtained for the fitting model is called the ''consensus set''. The RANSAC algorithm will iteratively repeat the above two steps until the obtained consensus set in certain iteration has enough inliers.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The set of inliers obtained for the fitting model is called the ''consensus set''. The RANSAC algorithm will iteratively repeat the above two steps until the obtained consensus set in certain iteration has enough inliers.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The input to the RANSAC algorithm is a set of observed data values, a model to fit to the observations, and some [[confidence interval|confidence]] parameters defining outliers. In more details than the aforementioned RANSAC algorithm overview, RANSAC achieves its goal by repeating the following steps:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The input to the RANSAC algorithm is a set of observed data values, a model to fit to the observations, and some [[confidence interval|confidence]] parameters defining outliers. In more details than the aforementioned RANSAC algorithm overview, RANSAC achieves its goal by repeating the following steps:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Select a random subset of the original data. Call this subset the ''hypothetical inliers''.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># Select a random subset of the original data. Call this subset the ''hypothetical inliers''.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># A model is fitted to the set of hypothetical inliers.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div># A model is fitted to the set of hypothetical inliers.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To converge to a sufficiently good model parameter set, this procedure is repeated a fixed number of times, each time producing either the rejection of a model because too few points are a part of the consensus set, or a refined model with a consensus set size larger than the previous consensus set.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>To converge to a sufficiently good model parameter set, this procedure is repeated a fixed number of times, each time producing either the rejection of a model because too few points are a part of the consensus set, or a refined model with a consensus set size larger than the previous consensus set.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_7_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_5_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">[[</ins>File:RANSAC Inliers and Outliers.png<ins style="font-weight: bold; text-decoration: none;">|thumb|center|500px</ins>|RANSAC: <ins style="font-weight: bold; text-decoration: none;">inliers</ins> and <ins style="font-weight: bold; text-decoration: none;">outliers</ins>. The linear fitting to data points in this example is with 7 inliers (data points fitted well with the model under some criteria). It is not a good fitting<ins style="font-weight: bold; text-decoration: none;">,</ins> since there is a linear line where most data points are distributed near it (i.e., more inliers).<ins style="font-weight: bold; text-decoration: none;">]]</ins></div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;gallery widths="286" heights="255" perrow="2"&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_5_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_7_0_lhs"></a>File:RANSAC Inliers and Outliers.png|RANSAC: <del style="font-weight: bold; text-decoration: none;">Inliers</del> and <del style="font-weight: bold; text-decoration: none;">Outliers</del>. The linear fitting to data points in this example is with 7 inliers (data points fitted well with the model under some criteria). It is not a good fitting since there is a linear line where most data points are distributed near it (i.e., more inliers).</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;/gallery&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Pseudocode ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Pseudocode ==</div></td> </tr> </table> Mikhail Ryazanov https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1257089385&oldid=prev Mikhail Ryazanov: /* top */ MOS:CAPS, punct., style 2024-11-13T04:48:56Z <p><span class="autocomment">top: </span> <a href="/wiki/MOS:CAPS" class="mw-redirect" title="MOS:CAPS">MOS:CAPS</a>, punct., style</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:48, 13 November 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Statistical method}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Statistical method}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Machine learning bar}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Machine learning bar}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be accorded no influence on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016)&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the <del style="font-weight: bold; text-decoration: none;">Location</del> <del style="font-weight: bold; text-decoration: none;">Determination</del> <del style="font-weight: bold; text-decoration: none;">Problem</del> (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be <ins style="font-weight: bold; text-decoration: none;">{{clarify span|</ins>accorded no influence<ins style="font-weight: bold; text-decoration: none;">}}</ins> on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016)<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the <ins style="font-weight: bold; text-decoration: none;">location</ins> <ins style="font-weight: bold; text-decoration: none;">determination</ins> <ins style="font-weight: bold; text-decoration: none;">problem</ins> (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web|last=Cantzler|first1=H.|title=Random Sample Consensus (RANSAC)|language=en|publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh|url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf|archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf|archive-date=2023-02-04|url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers" which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure <del style="font-weight: bold; text-decoration: none;">which</del> can estimate the parameters of a model<del style="font-weight: bold; text-decoration: none;"> that</del> optimally <del style="font-weight: bold; text-decoration: none;">explains</del> or <del style="font-weight: bold; text-decoration: none;">fits</del> this data.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;{{cite web<ins style="font-weight: bold; text-decoration: none;"> </ins>|last=Cantzler<ins style="font-weight: bold; text-decoration: none;"> </ins>|first1=H.<ins style="font-weight: bold; text-decoration: none;"> </ins>|title=Random Sample Consensus (RANSAC)<ins style="font-weight: bold; text-decoration: none;"> </ins>|language=en<ins style="font-weight: bold; text-decoration: none;"> </ins>|publisher=Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh<ins style="font-weight: bold; text-decoration: none;"> </ins>|url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf<ins style="font-weight: bold; text-decoration: none;"> </ins>|archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf<ins style="font-weight: bold; text-decoration: none;"> </ins>|archive-date=2023-02-04<ins style="font-weight: bold; text-decoration: none;"> </ins>|url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers"<ins style="font-weight: bold; text-decoration: none;">,</ins> which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure <ins style="font-weight: bold; text-decoration: none;">that</ins> can estimate the parameters of a model optimally <ins style="font-weight: bold; text-decoration: none;">explaining</ins> or <ins style="font-weight: bold; text-decoration: none;">fitting</ins> this data.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> </tr> </table> Mikhail Ryazanov https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1243163306&oldid=prev The Anome: /* Advantages and disadvantages */ found what looks to be an official pdf link for the paper 2024-08-30T21:52:55Z <p><span class="autocomment">Advantages and disadvantages: </span> found what looks to be an official pdf link for the paper</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:52, 30 August 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 204:</td> <td colspan="2" class="diff-lineno">Line 204:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Advantages and disadvantages==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Advantages and disadvantages==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove section|date=September 2014}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{refimprove section|date=September 2014}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An advantage of RANSAC is its ability to do [[robust statistics|robust estimation]]&lt;ref&gt;Robust Statistics, Peter. J. Huber, Wiley, 1981 (republished in paperback, 2004), page 1.&lt;/ref&gt; of the model parameters, i.e., it can estimate the parameters with a high degree of accuracy even when a significant number of [[outlier]]s are present in the data set. A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters (except exhaustion). When the number of iterations computed is limited the solution obtained may not be optimal, and it may not even be one that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number of iterations the probability of a reasonable model being produced is increased. Moreover, RANSAC is not always able to find the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is less than 50%. Optimal RANSAC &lt;ref&gt;Anders Hast, Johan Nysjö, Andrea Marchetti (2013). "Optimal RANSAC – Towards a Repeatable Algorithm for Finding the Optimal Set". Journal of WSCG 21 (1): 21–30.&lt;/ref&gt; was proposed to handle both these problems and is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. Another disadvantage of RANSAC is that it requires the setting of problem-specific thresholds.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An advantage of RANSAC is its ability to do [[robust statistics|robust estimation]]&lt;ref&gt;Robust Statistics, Peter. J. Huber, Wiley, 1981 (republished in paperback, 2004), page 1.&lt;/ref&gt; of the model parameters, i.e., it can estimate the parameters with a high degree of accuracy even when a significant number of [[outlier]]s are present in the data set. A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters (except exhaustion). When the number of iterations computed is limited the solution obtained may not be optimal, and it may not even be one that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number of iterations the probability of a reasonable model being produced is increased. Moreover, RANSAC is not always able to find the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is less than 50%. Optimal RANSAC &lt;ref&gt;Anders Hast, Johan Nysjö, Andrea Marchetti (2013). "<ins style="font-weight: bold; text-decoration: none;">[http://wscg.zcu.cz/WSCG2013/!_2013_J_WSCG-1.pdf </ins>Optimal RANSAC – Towards a Repeatable Algorithm for Finding the Optimal Set<ins style="font-weight: bold; text-decoration: none;">]</ins>". Journal of WSCG 21 (1): 21–30.&lt;/ref&gt; was proposed to handle both these problems and is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. Another disadvantage of RANSAC is that it requires the setting of problem-specific thresholds.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>RANSAC can only estimate one model for a particular data set. As for any one-model approach when two (or more) model instances exist, RANSAC may fail to find either one. The [[Hough transform]] is one alternative robust estimation technique that may be useful when more than one model instance is present. Another approach for multi model fitting is known as PEARL,&lt;ref&gt;Hossam Isack, Yuri Boykov (2012). "Energy-based Geometric Multi-Model Fitting". International Journal of Computer Vision 97 (2: 1): 23–147. {{doi|10.1007/s11263-011-0474-7}}.&lt;/ref&gt; which combines model sampling from data points as in RANSAC with iterative re-estimation of inliers and the multi-model fitting being formulated as an optimization problem with a global energy function describing the quality of the overall solution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>RANSAC can only estimate one model for a particular data set. As for any one-model approach when two (or more) model instances exist, RANSAC may fail to find either one. The [[Hough transform]] is one alternative robust estimation technique that may be useful when more than one model instance is present. Another approach for multi model fitting is known as PEARL,&lt;ref&gt;Hossam Isack, Yuri Boykov (2012). "Energy-based Geometric Multi-Model Fitting". International Journal of Computer Vision 97 (2: 1): 23–147. {{doi|10.1007/s11263-011-0474-7}}.&lt;/ref&gt; which combines model sampling from data points as in RANSAC with iterative re-estimation of inliers and the multi-model fitting being formulated as an optimization problem with a global energy function describing the quality of the overall solution.</div></td> </tr> </table> The Anome https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1209842560&oldid=prev Olexa Riznyk: Improving a reference 2024-02-23T20:30:10Z <p>Improving a reference</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:30, 23 February 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be accorded no influence on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016)&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the Location Determination Problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be accorded no influence on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.&lt;ref&gt;Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016)&lt;/ref&gt; It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the Location Determination Problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;Cantzler<del style="font-weight: bold; text-decoration: none;">, </del>H.<del style="font-weight: bold; text-decoration: none;"> "</del>Random <del style="font-weight: bold; text-decoration: none;">sample</del> <del style="font-weight: bold; text-decoration: none;">consensus</del> (<del style="font-weight: bold; text-decoration: none;">ransac</del>)<del style="font-weight: bold; text-decoration: none;">." ''</del>Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh<del style="font-weight: bold; text-decoration: none;">''</del> (<del style="font-weight: bold; text-decoration: none;">1981</del>).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{cite web|last=</ins>Cantzler<ins style="font-weight: bold; text-decoration: none;">|first1=</ins>H.<ins style="font-weight: bold; text-decoration: none;">|title=</ins>Random <ins style="font-weight: bold; text-decoration: none;">Sample</ins> <ins style="font-weight: bold; text-decoration: none;">Consensus</ins> (<ins style="font-weight: bold; text-decoration: none;">RANSAC</ins>)<ins style="font-weight: bold; text-decoration: none;">|language=en|publisher=</ins>Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh<ins style="font-weight: bold; text-decoration: none;">|url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf|archive-url=https://web.archive.org/web/20230204054340/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf|archive-date=2023-02-04|url-status=dead}}&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers" which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a</ins> (<ins style="font-weight: bold; text-decoration: none;">usually small</ins>)<ins style="font-weight: bold; text-decoration: none;"> set of inliers, there exists a procedure which can estimate the parameters of a model that optimally explains or fits this data</ins>.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&amp;rep=rep1&amp;type=pdf&lt;/ref&gt; A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be explained by some set of model parameters, though may be subject to noise, and "outliers" which are data that do not fit the model. The outliers can come, for example, from extreme values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure which can estimate the parameters of a model that optimally explains or fits this data.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Example==</div></td> </tr> </table> Olexa Riznyk https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&diff=1182022297&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (AManWithNoPlan - 15896 2023-10-26T17:23:03Z <p>Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (<a href="/wiki/User:AManWithNoPlan" title="User:AManWithNoPlan">AManWithNoPlan</a> - 15896</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:23, 26 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 287:</td> <td colspan="2" class="diff-lineno">Line 287:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{Cite journal</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>|author1=Sunglok Choi <del style="font-weight: bold; text-decoration: none;">|</del>author2=Taemin Kim <del style="font-weight: bold; text-decoration: none;">|</del>author3=Wonpil Yu <del style="font-weight: bold; text-decoration: none;"> |</del>name-list-style=amp<del style="font-weight: bold; text-decoration: none;"> </del>| title=Performance Evaluation of RANSAC Family</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>|<ins style="font-weight: bold; text-decoration: none;"> </ins>author1=Sunglok Choi</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|</ins> author2=Taemin Kim</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|</ins> author3=Wonpil Yu</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">|</ins> name-list-style=amp</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| title=Performance Evaluation of RANSAC Family</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| journal=In Proceedings of the British Machine Vision Conference (BMVC)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| journal=In Proceedings of the British Machine Vision Conference (BMVC)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| year=2009</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| year=2009</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| url=http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| access-date=2010-10-01</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| archive-date=2020-08-31</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| archive-url=https://web.archive.org/web/20200831001552/http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| url-status=dead</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> InternetArchiveBot