https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Random_walker_algorithm Random walker algorithm - Revision history 2025-05-25T03:53:47Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.2 https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1193923984&oldid=prev HDSQ: #suggestededit-add-desc 1.0 2024-01-06T08:37:35Z <p>#suggestededit-add-desc 1.0</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:37, 6 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Image segmentation algorithm}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''random walker algorithm''' is an algorithm for [[image segmentation]]. In the first description of the algorithm,&lt;ref name="grady2006random"&gt;Grady, L.: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006random.pdf Random walks for image segmentation]". PAMI, 2006&lt;/ref&gt; a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a [[Graph (discrete mathematics)|graph]], in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs&lt;ref&gt;P. Doyle, J. L. Snell: Random Walks and Electric Networks, Mathematical Association of America, 1984&lt;/ref&gt;).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''random walker algorithm''' is an algorithm for [[image segmentation]]. In the first description of the algorithm,&lt;ref name="grady2006random"&gt;Grady, L.: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006random.pdf Random walks for image segmentation]". PAMI, 2006&lt;/ref&gt; a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a [[Graph (discrete mathematics)|graph]], in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs&lt;ref&gt;P. Doyle, J. L. Snell: Random Walks and Electric Networks, Mathematical Association of America, 1984&lt;/ref&gt;).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> HDSQ https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1182022547&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (AManWithNoPlan - 15896 2023-10-26T17:25:07Z <p>Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (<a href="/wiki/User:AManWithNoPlan" title="User:AManWithNoPlan">AManWithNoPlan</a> - 15896</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:25, 26 October 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional [[image registration]])&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu: [https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf Stereo matching using random walks], Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional [[image registration]])&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu: [https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf Stereo matching using random walks]<ins style="font-weight: bold; text-decoration: none;"> {{Webarchive|url=https://web.archive.org/web/20210627220647/https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf |date=2021-06-27 }}</ins>, Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1140875079&oldid=prev InternetArchiveBot: Rescuing 2 sources and tagging 0 as dead.) #IABot (v2.0.9.3) (Phuzion - 12296 2023-02-22T05:34:36Z <p>Rescuing 2 sources and tagging 0 as dead.) #IABot (v2.0.9.3) (<a href="/wiki/User:Phuzion" title="User:Phuzion">Phuzion</a> - 12296</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:34, 22 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 51:</td> <td colspan="2" class="diff-lineno">Line 51:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Random walks with restart&lt;ref&gt;T. H. Kim, K. M. Lee, S. U. Lee: [https://pdfs.semanticscholar.org/080f/f994ebb101ac340e446344215f834eae0f6c.pdf Generative Image Segmentation Using Random Walks with Restart], Proc. of ECCV 2008, pp. 264–275&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Random walks with restart&lt;ref&gt;T. H. Kim, K. M. Lee, S. U. Lee: [https://pdfs.semanticscholar.org/080f/f994ebb101ac340e446344215f834eae0f6c.pdf Generative Image Segmentation Using Random Walks with Restart], Proc. of ECCV 2008, pp. 264–275&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Alpha matting&lt;ref&gt;J. Wang, M. Agrawala, M. F. Cohen: [http://kucg.korea.ac.kr/new/seminar/2009/src/PA-09-11-25.pdf Soft scissors: an interactive tool for realtime high quality matting], Proc. of SIGGRAPH 2007&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Alpha matting&lt;ref&gt;J. Wang, M. Agrawala, M. F. Cohen: [http://kucg.korea.ac.kr/new/seminar/2009/src/PA-09-11-25.pdf Soft scissors: an interactive tool for realtime high quality matting]<ins style="font-weight: bold; text-decoration: none;"> {{Webarchive|url=https://web.archive.org/web/20210627220651/http://kucg.korea.ac.kr/new/seminar/2009/src/PA-09-11-25.pdf |date=2021-06-27 }}</ins>, Proc. of SIGGRAPH 2007&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Threshold selection&lt;ref&gt;S. Rysavy, A. Flores, R. Enciso, K. Okada: [http://bidal.sfsu.edu/~kazokada/research/okada_icpr08_dentalcad.pdf Classifiability Criteria for Refining of Random Walks Segmentation], Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Threshold selection&lt;ref&gt;S. Rysavy, A. Flores, R. Enciso, K. Okada: [http://bidal.sfsu.edu/~kazokada/research/okada_icpr08_dentalcad.pdf Classifiability Criteria for Refining of Random Walks Segmentation], Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Soft inputs&lt;ref&gt;W. Yang, J. Cai, J. Zheng, J. Luo: [https://www.researchgate.net/profile/Jianfei_Cai/publication/45694526_User-Friendly_Interactive_Image_Segmentation_Through_Unified_Combinatorial_User_Inputs/links/00b49522aab2066d55000000/User-Friendly-Interactive-Image-Segmentation-Through-Unified-Combinatorial-User-Inputs.pdf User-friendly Interactive Image Segmentation through Unified Combinatorial User Inputs], IEEE Trans. on Image Proc., 2010&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Soft inputs&lt;ref&gt;W. Yang, J. Cai, J. Zheng, J. Luo: [https://www.researchgate.net/profile/Jianfei_Cai/publication/45694526_User-Friendly_Interactive_Image_Segmentation_Through_Unified_Combinatorial_User_Inputs/links/00b49522aab2066d55000000/User-Friendly-Interactive-Image-Segmentation-Through-Unified-Combinatorial-User-Inputs.pdf User-friendly Interactive Image Segmentation through Unified Combinatorial User Inputs], IEEE Trans. on Image Proc., 2010&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 85:</td> <td colspan="2" class="diff-lineno">Line 85:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[https://web.archive.org/web/20110719090821/http://leogrady.net/wp-content/uploads/2017/01/random_walker_matlab_code.zip Matlab code implementing the original random walker algorithm]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[https://web.archive.org/web/20110719090821/http://leogrady.net/wp-content/uploads/2017/01/random_walker_matlab_code.zip Matlab code implementing the original random walker algorithm]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://fastrw.cs.sfu.ca/ Matlab code implementing the random walker algorithm with precomputation]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[http://fastrw.cs.sfu.ca/ Matlab code implementing the random walker algorithm with precomputation]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[http://scikit-image.org/docs/dev/auto_examples/plot_random_walker_segmentation.html Python implementation of the original random walker algorithm] in the image processing toolbox [http://scikit-image.org/ scikit-image]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[http://scikit-image.org/docs/dev/auto_examples/plot_random_walker_segmentation.html Python implementation of the original random walker algorithm]<ins style="font-weight: bold; text-decoration: none;"> {{Webarchive|url=https://web.archive.org/web/20121014010623/http://scikit-image.org/docs/dev/auto_examples/plot_random_walker_segmentation.html |date=2012-10-14 }}</ins> in the image processing toolbox [http://scikit-image.org/ scikit-image]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Image segmentation]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Image segmentation]]</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1098891820&oldid=prev GreenC bot: Rescued 1 archive link; reformat 1 link. Wayback Medic 2.5 2022-07-18T00:15:21Z <p>Rescued 1 archive link; reformat 1 link. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:15, 18 July 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng: [https://link.springer.com/chapter/10.1007/978-3-642-03767-2_57 Colorization Using Segmentation with Random Walk], Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng: [https://link.springer.com/chapter/10.1007/978-3-642-03767-2_57 Colorization Using Segmentation with Random Walk], Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5202749/ Interactive rotoscoping through scale-space random walks], Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5202749/ Interactive rotoscoping through scale-space random walks], Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.8840&amp;rep=rep1&amp;type=pdf LV Contour Extraction from Cardiac MR Images Using Random Walks Approach], Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann: [http://www.academia.edu/download/44022280/p056.pdf Automatic Liver Segmentation Using the Random Walker Algorithm], Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins: [https://link.springer.com/content/pdf/10.1007/978-3-642-04271-3_134.pdf A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting], Proc. of MICCAI 2009&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.8840&amp;rep=rep1&amp;type=pdf LV Contour Extraction from Cardiac MR Images Using Random Walks Approach], Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann: [http://www.academia.edu/download/44022280/p056.pdf Automatic Liver Segmentation Using the Random Walker Algorithm]<ins style="font-weight: bold; text-decoration: none;">{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}</ins>, Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins: [https://link.springer.com/content/pdf/10.1007/978-3-642-04271-3_134.pdf A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting], Proc. of MICCAI 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang: [https://www.researchgate.net/profile/Xiaoyi_Jiang2/publication/220930791_A_Random_Walker_Based_Approach_to_Combining_Multiple_Segmentations/links/02bfe5110dd88cde72000000.pdf A random walker based approach to combining multiple segmentations], Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang: [https://www.researchgate.net/profile/Xiaoyi_Jiang2/publication/220930791_A_Random_Walker_Based_Approach_to_Combining_Multiple_Segmentations/links/02bfe5110dd88cde72000000.pdf A random walker based approach to combining multiple segmentations], Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin: [https://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/segmentation-SPM.pdf Fast mesh segmentation using random walks], Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4665&amp;rep=rep1&amp;type=pdf Interactive Mesh Cutting Using Constrained Random Walks], IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin: [https://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/segmentation-SPM.pdf Fast mesh segmentation using random walks], Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4665&amp;rep=rep1&amp;type=pdf Interactive Mesh Cutting Using Constrained Random Walks], IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> </tr> </table> GreenC bot https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1080259241&oldid=prev Loew Galitz at 05:47, 31 March 2022 2022-03-31T05:47:39Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:47, 31 March 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''random walker algorithm''' is an algorithm for [[image segmentation]]. In the first description of the algorithm,&lt;ref name="grady2006random"&gt;Grady, L.: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006random.pdf Random walks for image segmentation]". PAMI, 2006&lt;/ref&gt; a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a [[Graph (discrete mathematics)|graph]], in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs&lt;ref&gt;P. Doyle, J. L. Snell: Random Walks and Electric Networks, Mathematical Association of America, 1984&lt;/ref&gt;).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''random walker algorithm''' is an algorithm for [[image segmentation]]. In the first description of the algorithm,&lt;ref name="grady2006random"&gt;Grady, L.: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006random.pdf Random walks for image segmentation]". PAMI, 2006&lt;/ref&gt; a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a [[Graph (discrete mathematics)|graph]], in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs&lt;ref&gt;P. Doyle, J. L. Snell: Random Walks and Electric Networks, Mathematical Association of America, 1984&lt;/ref&gt;).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior).&lt;ref name="grady2005multilabel"&gt;Leo Grady: "[http://leogrady.net/wp-content/uploads/2017/01/grady2005multilabel.pdf Multilabel Random Walker Image Segmentation Using Prior Models]", Proc. of CVPR, Vol. 1, pp. 763–770, 2005.&lt;/ref&gt; It has also been extended to other applications.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a <ins style="font-weight: bold; text-decoration: none;">[[</ins>data fidelity<ins style="font-weight: bold; text-decoration: none;">]]</ins> term (e.g., an intensity prior).&lt;ref name="grady2005multilabel"&gt;Leo Grady: "[http://leogrady.net/wp-content/uploads/2017/01/grady2005multilabel.pdf Multilabel Random Walker Image Segmentation Using Prior Models]", Proc. of CVPR, Vol. 1, pp. 763–770, 2005.&lt;/ref&gt; It has also been extended to other applications.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm was initially published by [http://leogrady.net/ Leo Grady] as a conference paper&lt;ref&gt;Leo Grady, Gareth Funka-Lea: [http://leogrady.net/wp-content/uploads/2017/01/grady2004multilabel.pdf Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials], Proc. of the 8th ECCV Workshop on Computer Vision Approaches to Medical Image Analysis and Mathematical Methods in Biomedical Image Analysis, pp. 230–245, 2004.&lt;/ref&gt; and later as a journal paper.&lt;ref name="grady2006random" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The algorithm was initially published by [http://leogrady.net/ Leo Grady] as a conference paper&lt;ref&gt;Leo Grady, Gareth Funka-Lea: [http://leogrady.net/wp-content/uploads/2017/01/grady2004multilabel.pdf Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials], Proc. of the 8th ECCV Workshop on Computer Vision Approaches to Medical Image Analysis and Mathematical Methods in Biomedical Image Analysis, pp. 230–245, 2004.&lt;/ref&gt; and later as a journal paper.&lt;ref name="grady2006random" /&gt;</div></td> </tr> </table> Loew Galitz https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=1030982442&oldid=prev SdkbBot: /* Extensions */General fixes, removed erroneous space 2021-06-29T03:39:05Z <p><span class="autocomment">Extensions: </span><a href="/wiki/Wikipedia:GENFIX" class="mw-redirect" title="Wikipedia:GENFIX">General fixes</a>, removed <a href="/wiki/Wikipedia:REFPUNCT" class="mw-redirect" title="Wikipedia:REFPUNCT">erroneous</a> space</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:39, 29 June 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 56:</td> <td colspan="2" class="diff-lineno">Line 56:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Run on a presegmented image&lt;ref&gt;C. Chefd'hotel, A. Sebbane: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6511&amp;rep=rep1&amp;type=pdf Random walk and front propagation on watershed adjacency graphs for multilabel image segmentation], Proc. of ICV 2007&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Run on a presegmented image&lt;ref&gt;C. Chefd'hotel, A. Sebbane: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6511&amp;rep=rep1&amp;type=pdf Random walk and front propagation on watershed adjacency graphs for multilabel image segmentation], Proc. of ICV 2007&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Scale space random walk&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5201062/ Image segmentation using scale-space random walks], Proc. of the 16th international conference on Digital Signal Processing, pp. 458–461, 2009&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Scale space random walk&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5201062/ Image segmentation using scale-space random walks], Proc. of the 16th international conference on Digital Signal Processing, pp. 458–461, 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Fast random walker using offline [[precomputation]]<del style="font-weight: bold; text-decoration: none;"> </del>&lt;ref&gt;L. Grady, A.K. Sinop, "[http://leogrady.net/wp-content/uploads/2017/01/grady2008fast.pdf Fast approximate random walker segmentation using eigenvector precomputation]". In IEEE Conf. CVPR, pp. 1–8, 2008&lt;/ref&gt;&lt;ref&gt;S. Andrews, G. Hamarneh, A. Saad. [https://link.springer.com/content/pdf/10.1007/978-3-642-15711-0_2.pdf Fast random walker with priors using precomputation for interactive medical image segmentation], Proc. of MICCAI 2010&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Fast random walker using offline [[precomputation]]&lt;ref&gt;L. Grady, A.K. Sinop, "[http://leogrady.net/wp-content/uploads/2017/01/grady2008fast.pdf Fast approximate random walker segmentation using eigenvector precomputation]". In IEEE Conf. CVPR, pp. 1–8, 2008&lt;/ref&gt;&lt;ref&gt;S. Andrews, G. Hamarneh, A. Saad. [https://link.springer.com/content/pdf/10.1007/978-3-642-15711-0_2.pdf Fast random walker with priors using precomputation for interactive medical image segmentation], Proc. of MICCAI 2010&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Generalized random walks allowing flexible compatibility functions &lt;ref name="shen2011"&gt;R. Shen, I. Cheng, J. Shi, A. Basu: [https://ieeexplore.ieee.org/abstract/document/5762601/ Generalized Random Walks for Fusion of Multi-exposure Images], IEEE Trans. on Image Processing, 2011.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Generalized random walks allowing flexible compatibility functions &lt;ref name="shen2011"&gt;R. Shen, I. Cheng, J. Shi, A. Basu: [https://ieeexplore.ieee.org/abstract/document/5762601/ Generalized Random Walks for Fusion of Multi-exposure Images], IEEE Trans. on Image Processing, 2011.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Power watersheds unifying graph cuts, random walker and shortest path &lt;ref&gt;Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot, "[http://leogrady.net/wp-content/uploads/2017/01/couprie2011power.pdf Power Watersheds: A Unifying Graph-Based Optimization Framework]”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7, pp. 1384-1399, July 2011&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Power watersheds unifying graph cuts, random walker and shortest path &lt;ref&gt;Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot, "[http://leogrady.net/wp-content/uploads/2017/01/couprie2011power.pdf Power Watersheds: A Unifying Graph-Based Optimization Framework]”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7, pp. 1384-1399, July 2011&lt;/ref&gt;</div></td> </tr> </table> SdkbBot https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=914877721&oldid=prev Jarble: linking 2019-09-09T21:56:58Z <p>linking</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:56, 9 September 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional image registration)&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu: [https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf Stereo matching using random walks], Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional <ins style="font-weight: bold; text-decoration: none;">[[</ins>image registration<ins style="font-weight: bold; text-decoration: none;">]]</ins>)&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu: [https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf Stereo matching using random walks], Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Jarble https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=904796247&oldid=prev 72.174.72.232: /* Mathematics */ 2019-07-04T16:08:05Z <p><span class="autocomment">Mathematics</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:08, 4 July 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Mathematics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Mathematics==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Although the algorithm was described in terms of random walks, the probability that each node sends a random walker to the seeds may be calculated analytically by solving a sparse, positive-definite system of linear equations with the graph [[Laplacian matrix of a graph|Laplacian matrix]], which we may represent with the variable &lt;math&gt;L&lt;/math&gt;. The algorithm was shown to apply to an arbitrary number of labels (objects), but the exposition here is in terms of two labels (for simplicity of exposition).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Although the algorithm was described in terms of <ins style="font-weight: bold; text-decoration: none;">[[</ins>random walks<ins style="font-weight: bold; text-decoration: none;">]]</ins>, the probability that each node sends a random walker to the seeds may be calculated analytically by solving a sparse, positive-definite system of linear equations with the graph [[Laplacian matrix of a graph|Laplacian matrix]], which we may represent with the variable &lt;math&gt;L&lt;/math&gt;. The algorithm was shown to apply to an arbitrary number of labels (objects), but the exposition here is in terms of two labels (for simplicity of exposition).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Assume that the image is represented by a [[Graph (discrete mathematics)|graph]], with each node &lt;math&gt;v_i&lt;/math&gt; associated with a pixel and each edge &lt;math&gt;e_{ij}&lt;/math&gt; connecting neighboring pixels &lt;math&gt;v_i&lt;/math&gt; and &lt;math&gt;v_j&lt;/math&gt;. The edge weights are used to encode node similarity, which may be derived from differences in image intensity, color, texture or any other meaningful features. For example, using image intensity &lt;math&gt;g_i&lt;/math&gt; at node &lt;math&gt;v_i&lt;/math&gt;, it is common to use the edge weighting function</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Assume that the image is represented by a [[Graph (discrete mathematics)|graph]], with each node &lt;math&gt;v_i&lt;/math&gt; associated with a pixel and each edge &lt;math&gt;e_{ij}&lt;/math&gt; connecting neighboring pixels &lt;math&gt;v_i&lt;/math&gt; and &lt;math&gt;v_j&lt;/math&gt;. The edge weights are used to encode node similarity, which may be derived from differences in image intensity, color, texture or any other meaningful features. For example, using image intensity &lt;math&gt;g_i&lt;/math&gt; at node &lt;math&gt;v_i&lt;/math&gt;, it is common to use the edge weighting function</div></td> </tr> </table> 72.174.72.232 https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=899101963&oldid=prev Jarble: fixed a typo 2019-05-27T21:46:03Z <p>fixed a typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:46, 27 May 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng: [https://link.springer.com/chapter/10.1007/978-3-642-03767-2_57 Colorization Using Segmentation with Random Walk], Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng: [https://link.springer.com/chapter/10.1007/978-3-642-03767-2_57 Colorization Using Segmentation with Random Walk], Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5202749/ Interactive rotoscoping through scale-space random walks], Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: [https://ieeexplore.ieee.org/abstract/document/5202749/ Interactive rotoscoping through scale-space random walks], Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.8840&amp;rep=rep1&amp;type=pdf LV Contour Extraction from Cardiac MR</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.8840&amp;rep=rep1&amp;type=pdf LV Contour Extraction from Cardiac MR<ins style="font-weight: bold; text-decoration: none;"> Images Using Random Walks Approach], Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann: [http://www.academia.edu/download/44022280/p056.pdf Automatic Liver Segmentation Using the Random Walker Algorithm], Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins: [https://link.springer.com/content/pdf/10.1007/978-3-642-04271-3_134.pdf A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting], Proc. of MICCAI 2009&lt;/ref&gt;</ins></div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Images Using Random Walks Approach], Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann: [http://www.academia.edu/download/44022280/p056.pdf Automatic Liver Segmentation Using the Random Walker Algorithm], Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins: [https://link.springer.com/content/pdf/10.1007/978-3-642-04271-3_134.pdf A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting], Proc. of MICCAI 2009&lt;/ref&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang: [https://www.researchgate.net/profile/Xiaoyi_Jiang2/publication/220930791_A_Random_Walker_Based_Approach_to_Combining_Multiple_Segmentations/links/02bfe5110dd88cde72000000.pdf A random walker based approach to combining multiple segmentations], Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang: [https://www.researchgate.net/profile/Xiaoyi_Jiang2/publication/220930791_A_Random_Walker_Based_Approach_to_Combining_Multiple_Segmentations/links/02bfe5110dd88cde72000000.pdf A random walker based approach to combining multiple segmentations], Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin: [https://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/segmentation-SPM.pdf Fast mesh segmentation using random walks], Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4665&amp;rep=rep1&amp;type=pdf Interactive Mesh Cutting Using Constrained Random Walks], IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin: [https://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/segmentation-SPM.pdf Fast mesh segmentation using random walks], Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai: [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4665&amp;rep=rep1&amp;type=pdf Interactive Mesh Cutting Using Constrained Random Walks], IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> </tr> </table> Jarble https://en.wikipedia.org/w/index.php?title=Random_walker_algorithm&diff=899101893&oldid=prev Jarble: adding links to references using Google Scholar 2019-05-27T21:45:24Z <p>adding links to references using <a href="/wiki/Google_Scholar" title="Google Scholar">Google Scholar</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:45, 27 May 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior).&lt;ref name="grady2005multilabel"&gt;Leo Grady: "[http://leogrady.net/wp-content/uploads/2017/01/grady2005multilabel.pdf Multilabel Random Walker Image Segmentation Using Prior Models]", Proc. of CVPR, Vol. 1, pp. 763–770, 2005.&lt;/ref&gt; It has also been extended to other applications.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior).&lt;ref name="grady2005multilabel"&gt;Leo Grady: "[http://leogrady.net/wp-content/uploads/2017/01/grady2005multilabel.pdf Multilabel Random Walker Image Segmentation Using Prior Models]", Proc. of CVPR, Vol. 1, pp. 763–770, 2005.&lt;/ref&gt; It has also been extended to other applications.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The algorithm was initially published by [http://leogrady.net/ Leo Grady] as a conference paper&lt;ref&gt;Leo Grady, Gareth Funka-Lea: Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials, Proc. of the 8th ECCV Workshop on Computer Vision Approaches to Medical Image Analysis and Mathematical Methods in Biomedical Image Analysis, pp. 230–245, 2004.&lt;/ref&gt; and later as a journal paper.&lt;ref name="grady2006random" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The algorithm was initially published by [http://leogrady.net/ Leo Grady] as a conference paper&lt;ref&gt;Leo Grady, Gareth Funka-Lea:<ins style="font-weight: bold; text-decoration: none;"> [http://leogrady.net/wp-content/uploads/2017/01/grady2004multilabel.pdf</ins> Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of the 8th ECCV Workshop on Computer Vision Approaches to Medical Image Analysis and Mathematical Methods in Biomedical Image Analysis, pp. 230–245, 2004.&lt;/ref&gt; and later as a journal paper.&lt;ref name="grady2006random" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Mathematics==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Mathematics==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 50:</td> <td colspan="2" class="diff-lineno">Line 50:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The traditional random walker algorithm described above has been extended in several ways:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The traditional random walker algorithm described above has been extended in several ways:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Random walks with restart&lt;ref&gt;T. H. Kim, K. M. Lee, S. U. Lee: Generative Image Segmentation Using Random Walks with Restart, Proc. of ECCV 2008, pp. 264–275&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Random walks with restart&lt;ref&gt;T. H. Kim, K. M. Lee, S. U. Lee:<ins style="font-weight: bold; text-decoration: none;"> [https://pdfs.semanticscholar.org/080f/f994ebb101ac340e446344215f834eae0f6c.pdf</ins> Generative Image Segmentation Using Random Walks with Restart<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of ECCV 2008, pp. 264–275&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Alpha matting&lt;ref&gt;J. Wang, M. Agrawala, M. F. Cohen: Soft scissors: an interactive tool for realtime high quality matting, Proc. of SIGGRAPH 2007&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Alpha matting&lt;ref&gt;J. Wang, M. Agrawala, M. F. Cohen:<ins style="font-weight: bold; text-decoration: none;"> [http://kucg.korea.ac.kr/new/seminar/2009/src/PA-09-11-25.pdf</ins> Soft scissors: an interactive tool for realtime high quality matting<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of SIGGRAPH 2007&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Threshold selection&lt;ref&gt;S. Rysavy, A. Flores, R. Enciso, K. Okada: Classifiability Criteria for Refining of Random Walks Segmentation, Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Threshold selection&lt;ref&gt;S. Rysavy, A. Flores, R. Enciso, K. Okada:<ins style="font-weight: bold; text-decoration: none;"> [http://bidal.sfsu.edu/~kazokada/research/okada_icpr08_dentalcad.pdf</ins> Classifiability Criteria for Refining of Random Walks Segmentation<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Soft inputs&lt;ref&gt;W. Yang, J. Cai, J. Zheng, J. Luo: User-friendly Interactive Image Segmentation through Unified Combinatorial User Inputs, IEEE Trans. on Image Proc., 2010&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Soft inputs&lt;ref&gt;W. Yang, J. Cai, J. Zheng, J. Luo:<ins style="font-weight: bold; text-decoration: none;"> [https://www.researchgate.net/profile/Jianfei_Cai/publication/45694526_User-Friendly_Interactive_Image_Segmentation_Through_Unified_Combinatorial_User_Inputs/links/00b49522aab2066d55000000/User-Friendly-Interactive-Image-Segmentation-Through-Unified-Combinatorial-User-Inputs.pdf</ins> User-friendly Interactive Image Segmentation through Unified Combinatorial User Inputs<ins style="font-weight: bold; text-decoration: none;">]</ins>, IEEE Trans. on Image Proc., 2010&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Run on a presegmented image&lt;ref&gt;C. Chefd'hotel, A. Sebbane: Random walk and front propagation on watershed adjacency graphs for multilabel image segmentation, Proc. of ICV 2007&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Run on a presegmented image&lt;ref&gt;C. Chefd'hotel, A. Sebbane:<ins style="font-weight: bold; text-decoration: none;"> [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6511&amp;rep=rep1&amp;type=pdf</ins> Random walk and front propagation on watershed adjacency graphs for multilabel image segmentation<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of ICV 2007&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Scale space random walk&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: Image segmentation using scale-space random walks, Proc. of the 16th international conference on Digital Signal Processing, pp. 458–461, 2009&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Scale space random walk&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos:<ins style="font-weight: bold; text-decoration: none;"> [https://ieeexplore.ieee.org/abstract/document/5201062/</ins> Image segmentation using scale-space random walks<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of the 16th international conference on Digital Signal Processing, pp. 458–461, 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Fast random walker using offline [[precomputation]] &lt;ref&gt;L. Grady, A.K. Sinop, "[http://leogrady.net/wp-content/uploads/2017/01/grady2008fast.pdf Fast approximate random walker segmentation using eigenvector precomputation]". In IEEE Conf. CVPR, pp. 1–8, 2008&lt;/ref&gt;&lt;ref&gt;S. Andrews, G. Hamarneh, A. Saad. Fast random walker with priors using precomputation for interactive medical image segmentation, Proc. of MICCAI 2010&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Fast random walker using offline [[precomputation]] &lt;ref&gt;L. Grady, A.K. Sinop, "[http://leogrady.net/wp-content/uploads/2017/01/grady2008fast.pdf Fast approximate random walker segmentation using eigenvector precomputation]". In IEEE Conf. CVPR, pp. 1–8, 2008&lt;/ref&gt;&lt;ref&gt;S. Andrews, G. Hamarneh, A. Saad.<ins style="font-weight: bold; text-decoration: none;"> [https://link.springer.com/content/pdf/10.1007/978-3-642-15711-0_2.pdf</ins> Fast random walker with priors using precomputation for interactive medical image segmentation<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of MICCAI 2010&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Generalized random walks allowing flexible compatibility functions &lt;ref name="shen2011"&gt;R. Shen, I. Cheng, J. Shi, A. Basu: Generalized Random Walks for Fusion of Multi-exposure Images, IEEE Trans. on Image Processing, 2011.&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Generalized random walks allowing flexible compatibility functions &lt;ref name="shen2011"&gt;R. Shen, I. Cheng, J. Shi, A. Basu:<ins style="font-weight: bold; text-decoration: none;"> [https://ieeexplore.ieee.org/abstract/document/5762601/</ins> Generalized Random Walks for Fusion of Multi-exposure Images<ins style="font-weight: bold; text-decoration: none;">]</ins>, IEEE Trans. on Image Processing, 2011.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Power watersheds unifying graph cuts, random walker and shortest path &lt;ref&gt;Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot, "[http://leogrady.net/wp-content/uploads/2017/01/couprie2011power.pdf Power Watersheds: A Unifying Graph-Based Optimization Framework]”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7, pp. 1384-1399, July 2011&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Power watersheds unifying graph cuts, random walker and shortest path &lt;ref&gt;Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot, "[http://leogrady.net/wp-content/uploads/2017/01/couprie2011power.pdf Power Watersheds: A Unifying Graph-Based Optimization Framework]”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7, pp. 1384-1399, July 2011&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Random walker watersheds &lt;ref&gt;S. Ram, J. J. Rodriguez: Random Walker Watersheds: A New Image Segmentation Approach, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1473-1477, Vancouver, Canada, May 2013&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Random walker watersheds &lt;ref&gt;S. Ram, J. J. Rodriguez:<ins style="font-weight: bold; text-decoration: none;"> [https://ieeexplore.ieee.org/abstract/document/6637896/</ins> Random Walker Watersheds: A New Image Segmentation Approach<ins style="font-weight: bold; text-decoration: none;">]</ins>, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1473-1477, Vancouver, Canada, May 2013&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Multivariate Gaussian conditional random field &lt;ref name="shen2013"&gt;R. Shen, I. Cheng, A. Basu: QoE-Based Multi-Exposure Fusion in Hierarchical Multivariate Gaussian CRF, IEEE Trans. on Image Processing, 2013.&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Multivariate Gaussian conditional random field &lt;ref name="shen2013"&gt;R. Shen, I. Cheng, A. Basu:<ins style="font-weight: bold; text-decoration: none;"> [https://ieeexplore.ieee.org/abstract/document/6392943/</ins> QoE-Based Multi-Exposure Fusion in Hierarchical Multivariate Gaussian CRF<ins style="font-weight: bold; text-decoration: none;">]</ins>, IEEE Trans. on Image Processing, 2013.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Applications==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 66:</td> <td colspan="2" class="diff-lineno">Line 66:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Beyond image segmentation, the random walker algorithm or its extensions has been additionally applied to several problems in computer vision and graphics:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Beyond image segmentation, the random walker algorithm or its extensions has been additionally applied to several problems in computer vision and graphics:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng: Colorization Using Segmentation with Random Walk, Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Image Colorization&lt;ref&gt;X. Liu, J. Liu, Z. Feng:<ins style="font-weight: bold; text-decoration: none;"> [https://link.springer.com/chapter/10.1007/978-3-642-03767-2_57</ins> Colorization Using Segmentation with Random Walk<ins style="font-weight: bold; text-decoration: none;">]</ins>, Computer Analysis of Images and Patterns, pp. 468–475, 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos: Interactive rotoscoping through scale-space random walks, Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Interactive rotoscoping&lt;ref&gt;R. Rzeszutek, T. El-Maraghi, D. Androutsos:<ins style="font-weight: bold; text-decoration: none;"> [https://ieeexplore.ieee.org/abstract/document/5202749/</ins> Interactive rotoscoping through scale-space random walks<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of the 2009 IEEE international conference on Multimedia and Expo&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi: LV Contour Extraction from Cardiac MR</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Medical image segmentation&lt;ref&gt;S. P. Dakua, J. S. Sahambi:<ins style="font-weight: bold; text-decoration: none;"> [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.8840&amp;rep=rep1&amp;type=pdf</ins> LV Contour Extraction from Cardiac MR</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Images Using Random Walks Approach, Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann: Automatic Liver Segmentation Using the Random Walker Algorithm, Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins: A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting, Proc. of MICCAI 2009&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Images Using Random Walks Approach<ins style="font-weight: bold; text-decoration: none;">]</ins>, Int. Journal of Recent Trends in Engineering, Vol 1, No. 3, May 2009&lt;/ref&gt;&lt;ref&gt;F. Maier, A. Wimmer, G. Soza, J. N. Kaftan, D. Fritz, R. Dillmann:<ins style="font-weight: bold; text-decoration: none;"> [http://www.academia.edu/download/44022280/p056.pdf</ins> Automatic Liver Segmentation Using the Random Walker Algorithm<ins style="font-weight: bold; text-decoration: none;">]</ins>, Bildverarbeitung für die Medizin 2008&lt;/ref&gt;&lt;ref&gt;P. Wighton, M. Sadeghi, T. K. Lee, M. S. Atkins:<ins style="font-weight: bold; text-decoration: none;"> [https://link.springer.com/content/pdf/10.1007/978-3-642-04271-3_134.pdf</ins> A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of MICCAI 2009&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang: A random walker based approach to combining multiple segmentations, Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Merging multiple segmentations&lt;ref&gt;P. Wattuya, K. Rothaus, J. S. Prassni, X. Jiang:<ins style="font-weight: bold; text-decoration: none;"> [https://www.researchgate.net/profile/Xiaoyi_Jiang2/publication/220930791_A_Random_Walker_Based_Approach_to_Combining_Multiple_Segmentations/links/02bfe5110dd88cde72000000.pdf</ins> A random walker based approach to combining multiple segmentations<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin: Fast mesh segmentation using random walks, Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai: Interactive Mesh Cutting Using Constrained Random Walks, IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Mesh segmentation&lt;ref&gt;Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin:<ins style="font-weight: bold; text-decoration: none;"> [https://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/segmentation-SPM.pdf</ins> Fast mesh segmentation using random walks<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of the 2008 ACM symposium on Solid and physical modeling&lt;/ref&gt;&lt;ref&gt;J. Zhang, J. Zheng, J. Cai:<ins style="font-weight: bold; text-decoration: none;"> [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4665&amp;rep=rep1&amp;type=pdf</ins> Interactive Mesh Cutting Using Constrained Random Walks<ins style="font-weight: bold; text-decoration: none;">]</ins>, IEEE Trans. on Visualization and Computer Graphics, 2010.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Mesh denoising&lt;ref&gt;X. Sun, P. L. Rosin, R. R. Martin, F. C. Langbein: Random walks for feature-preserving mesh denoising, Computer Aided Geometric Design, Vol. 25, No. 7, Oct. 2008, pp. 437–456&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Mesh denoising&lt;ref&gt;X. Sun, P. L. Rosin, R. R. Martin, F. C. Langbein:<ins style="font-weight: bold; text-decoration: none;"> [http://users.cs.cardiff.ac.uk/Paul.Rosin/resources/papers/denoise-CAGD-postprint.pdf</ins> Random walks for feature-preserving mesh denoising<ins style="font-weight: bold; text-decoration: none;">]</ins>, Computer Aided Geometric Design, Vol. 25, No. 7, Oct. 2008, pp. 437–456&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Segmentation editing&lt;ref&gt;L. Grady, G. Funka-Lea: "[http://leogrady.net/wp-content/uploads/2017/01/grady2006energy.pdf An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes]", Proc. of MICCAI, Vol. 2, 2006, pp. 888–895&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Shadow elimination&lt;ref&gt;G. Li, L. Qingsheng, Q. Xiaoxu: Moving Vehicle Shadow Elimination Based on Random Walk and Edge Features, Proc. of IITA 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional image registration)&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu: Stereo matching using random walks, Proc. of ICPR 2008&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Stereo matching (i.e., one-dimensional image registration)&lt;ref&gt;R. Shen, I. Cheng, X. Li, A. Basu:<ins style="font-weight: bold; text-decoration: none;"> [https://sites.ualberta.ca/~rshen/files/2008ICPR_RuiSHEN.pdf</ins> Stereo matching using random walks<ins style="font-weight: bold; text-decoration: none;">]</ins>, Proc. of ICPR 2008&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Image fusion &lt;ref name="shen2011" /&gt;&lt;ref name="shen2013" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Jarble