https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Relative_gain_array
Relative gain array - Revision history
2025-06-16T05:01:44Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.5
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1268544088&oldid=prev
Citation bot: Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Arrays | #UCB_Category 7/42
2025-01-10T08:23:32Z
<p>Added bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Arrays" title="Category:Arrays">Category:Arrays</a> | #UCB_Category 7/42</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:23, 10 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''relative gain array''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|journal=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134|doi=10.1109/TAC.1966.1098266}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|journal=AIChE Journal|year=2002|volume=48|issue=2|pages=302–310|doi=10.1002/aic.690480214}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''relative gain array''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|journal=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134|doi=10.1109/TAC.1966.1098266}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|journal=AIChE Journal|year=2002|volume=48|issue=2|pages=302–310|doi=10.1002/aic.690480214<ins style="font-weight: bold; text-decoration: none;">|bibcode=2002AIChE..48..302C </ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1247314039&oldid=prev
NapoliRoma: Use sentence caps for title
2024-09-23T19:38:30Z
<p>Use sentence caps for title</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:38, 23 September 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''<del style="font-weight: bold; text-decoration: none;">Relative</del> <del style="font-weight: bold; text-decoration: none;">Gain</del> <del style="font-weight: bold; text-decoration: none;">Array</del>''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|journal=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134|doi=10.1109/TAC.1966.1098266}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|journal=AIChE Journal|year=2002|volume=48|issue=2|pages=302–310|doi=10.1002/aic.690480214}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''<ins style="font-weight: bold; text-decoration: none;">relative</ins> <ins style="font-weight: bold; text-decoration: none;">gain</ins> <ins style="font-weight: bold; text-decoration: none;">array</ins>''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|journal=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134|doi=10.1109/TAC.1966.1098266}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|journal=AIChE Journal|year=2002|volume=48|issue=2|pages=302–310|doi=10.1002/aic.690480214}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
</tr>
</table>
NapoliRoma
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1247313799&oldid=prev
NapoliRoma: NapoliRoma moved page Relative Gain Array to Relative gain array: Change to sentence case (MOS:AT)
2024-09-23T19:37:20Z
<p>NapoliRoma moved page <a href="/wiki/Relative_Gain_Array" class="mw-redirect" title="Relative Gain Array">Relative Gain Array</a> to <a href="/wiki/Relative_gain_array" title="Relative gain array">Relative gain array</a>: Change to sentence case (<a href="/wiki/MOS:AT" class="mw-redirect" title="MOS:AT">MOS:AT</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<tr class="diff-title" lang="en">
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:37, 23 September 2024</td>
</tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div>
</td></tr></table>
NapoliRoma
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1091795550&oldid=prev
Citation bot: Add: s2cid, pages. Removed parameters. Formatted dashes. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_toolbar
2022-06-06T12:34:43Z
<p>Add: s2cid, pages. Removed parameters. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by AManWithNoPlan | #UCB_toolbar</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:34, 6 June 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031|s2cid=44092817 }}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering |volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021|<del style="font-weight: bold; text-decoration: none;">doi-broken-date</del>=<del style="font-weight: bold; text-decoration: none;">2022-06-05</del> |arxiv=2106.09766 }}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031|s2cid=44092817 }}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering |volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=<ins style="font-weight: bold; text-decoration: none;">89–97</ins> |arxiv=2106.09766<ins style="font-weight: bold; text-decoration: none;"> |s2cid=235485155</ins> }}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1091708347&oldid=prev
Citation bot: Add: arxiv, doi-broken-date, s2cid. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
2022-06-05T21:49:10Z
<p>Add: arxiv, doi-broken-date, s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | #UCB_toolbar</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:49, 5 June 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering |volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031<ins style="font-weight: bold; text-decoration: none;">|s2cid=44092817 </ins>}}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering |volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021<ins style="font-weight: bold; text-decoration: none;">|doi-broken-date=2022-06-05 |arxiv=2106.09766 </ins>}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1091708239&oldid=prev
Headbomb: ce
2022-06-05T21:48:20Z
<p>ce</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:48, 5 June 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering <del style="font-weight: bold; text-decoration: none;">(IJCCCE)</del>|volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021}}</ref> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering |volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021}}</ref> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1090187899&oldid=prev
216.131.22.42 at 00:31, 28 May 2022
2022-05-28T00:31:05Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:31, 28 May 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore–Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the Moore–Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref><ins style="font-weight: bold; text-decoration: none;"> <ref>{{citation|last1=Qasim Al Yousuf|first1=Rafal|last2=Uhlmann|first2=Jeffrey|title=On Use of the Moore-Penrose Pseudoinverse for Evaluating the RGA of Non-Square Systems|journal=Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE)|volume=3|issue=21|doi=10.33103/uot.ijccce.21.3.8|year=2021}}</ref> </ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
216.131.22.42
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=1015285647&oldid=prev
Comp.arch at 16:51, 31 March 2021
2021-03-31T16:51:07Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:51, 31 March 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a linear time-invariant (LTI) system represented by a nonsingular matrix <math>\mathrm{G}</math>, the relative gain array (RGA) is defined as </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a linear time-invariant (LTI) system represented by a nonsingular matrix <math>\mathrm{G}</math>, the relative gain array (RGA) is defined as </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Properties==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Properties==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following are some of the linear-algebra properties of the RGA:<ref>{{citation|last1=Johnson|first1=C.R.|title=Mathematical aspects of the relative gain array (A◦A<sup>−T</sup>)|last2=Shapiro|first2=H.M.|journal=SIAM Journal on Algebraic and Discrete Methods |year=1986|volume=7|issue=4|pages=627–644|doi=10.1137/0607069}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The following are some of the linear-algebra properties of the RGA:<ref>{{citation|last1=Johnson|first1=C.R.|title=Mathematical aspects of the relative gain array (A◦A<sup>−T</sup>)|last2=Shapiro|first2=H.M.|journal=SIAM Journal on Algebraic and Discrete Methods |year=1986|volume=7|issue=4|pages=627–644|doi=10.1137/0607069}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 21:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_7_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_5_0_rhs"></a>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[<ins style="font-weight: bold; text-decoration: none;">Moore–Penrose</ins> inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the <ins style="font-weight: bold; text-decoration: none;">Moore–Penrose</ins> pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_5_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_7_0_lhs"></a>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[<del style="font-weight: bold; text-decoration: none;">Moore-Penrose</del> inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|journal=Automatica|year=2001|volume=37|issue=4|pages=487–510|doi=10.1016/S0005-1098(00)00181-3}}</ref> However, it has been shown that the <del style="font-weight: bold; text-decoration: none;">Moore-Penrose</del> pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|journal=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312|doi=10.1016/j.aml.2019.01.031}}</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Comp.arch
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=928795539&oldid=prev
Headbomb: /* Generalizations */ | Add: doi, issue. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget
2019-12-01T18:23:33Z
<p><span class="autocomment">Generalizations: </span> | Add: doi, issue. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this tool</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | via #UCB_Gadget</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:23, 1 December 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Generalizations==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore-Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|<del style="font-weight: bold; text-decoration: none;">series</del>=Automatica|year=2001|volume=37|pages=487–510}}</ref> However, it has been shown that the Moore-Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|<del style="font-weight: bold; text-decoration: none;">series</del>=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312}}</ref><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The RGA is often generalized in practice to be used when <math>\mathrm{G}</math> is singular, e.g., non-square, by replacing the inverse of <math>\mathrm{G}</math> with its [[Moore-Penrose inverse]] (pseudoinverse).<ref>{{citation|last1=van de Wal|first1=M.|last2=de Jager|first2=B.|title=A review of methods for input/output selection|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=Automatica|year=2001|volume=37<ins style="font-weight: bold; text-decoration: none;">|issue=4</ins>|pages=487–510<ins style="font-weight: bold; text-decoration: none;">|doi=10.1016/S0005-1098(00)00181-3</ins>}}</ref> However, it has been shown that the Moore-Penrose pseudoinverse fails to preserve the critical scale-invariance property of the RGA (#2 above) and that the unit-consistent (UC) generalized inverse must therefore be used.<ref>{{citation|last1=Uhlmann|first1=Jeffrey|title=On the Relative Gain Array (RGA) with Singular and Rectangular Matrices|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=Applied Mathematics Letters|year=2019|volume=93|pages=52–57|bibcode=2018arXiv180510312U|arxiv=1805.10312<ins style="font-weight: bold; text-decoration: none;">|doi=10.1016/j.aml.2019.01.031</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>
Headbomb
https://en.wikipedia.org/w/index.php?title=Relative_gain_array&diff=928794245&oldid=prev
Headbomb: fix 2 more
2019-12-01T18:13:29Z
<p>fix 2 more</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:13, 1 December 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''Relative Gain Array''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|<del style="font-weight: bold; text-decoration: none;">series</del>=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|<del style="font-weight: bold; text-decoration: none;">series</del>=AIChE Journal|year=2002|volume=48|pages=302–310}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''Relative Gain Array''' (RGA) is a classical widely-used{{Citation needed|date=October 2018}} method for determining the best input-output pairings for multivariable [[process control]] systems.<ref>{{citation|last=Bristol|first=E.H.|title=On a new measure of interaction for multivariable process control|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=IEEE Transactions on Automatic Control |year=1966|volume=1|pages=133–134<ins style="font-weight: bold; text-decoration: none;">|doi=10.1109/TAC.1966.1098266</ins>}}</ref> It has many practical open-loop and closed-loop control applications and is relevant to analyzing many fundamental steady-state closed-loop system properties such as stability and robustness.<ref>{{citation|last1=Chen|first1=Dan|last2=Seborg|first2=D.E.|title=Relative Gain Array Analysis for Uncertain Process Models|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=AIChE Journal|year=2002|volume=48<ins style="font-weight: bold; text-decoration: none;">|issue=2</ins>|pages=302–310<ins style="font-weight: bold; text-decoration: none;">|doi=10.1002/aic.690480214</ins>}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Definition==</div></td>
</tr>
</table>
Headbomb