https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Saddlepoint_approximation_method
Saddlepoint approximation method - Revision history
2025-06-02T00:37:45Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1268328863&oldid=prev
WikiCleanerBot: v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation - Missing whitespace before a link)
2025-01-09T06:21:43Z
<p>v2.05b - <a href="/wiki/User:WikiCleanerBot#T20" title="User:WikiCleanerBot">Bot T20 CW#61</a> - Fix errors for <a href="/wiki/Wikipedia:WCW" class="mw-redirect" title="Wikipedia:WCW">CW project</a> (Reference before punctuation - Missing whitespace before a link)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:21, 9 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=December 1954|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> independent random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-<del style="font-weight: bold; text-decoration: none;">generating_function</del> |<del style="font-weight: bold; text-decoration: none;"> </del>moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=June 1980 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=December 1954|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> independent random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the<ins style="font-weight: bold; text-decoration: none;"> </ins>[[Moment-<ins style="font-weight: bold; text-decoration: none;">generating</ins> <ins style="font-weight: bold; text-decoration: none;">function</ins>|moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=June 1980 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X = \sum_{i=1}^{N} X_i</math> is written as <math>M(t)=E\left[e^{tX}\right] = E\left[e^{t\sum_{i=1}^{N}X_i}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t)) = \sum_{i=1}^{N}\log E\left[e^{tX_i}\right]</math> then the saddlepoint approximation to the [[Probability density function|PDF]] of the distribution <math>X</math> is defined as<ref name=":0" /><del style="font-weight: bold; text-decoration: none;">:</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X = \sum_{i=1}^{N} X_i</math> is written as <math>M(t)=E\left[e^{tX}\right] = E\left[e^{t\sum_{i=1}^{N}X_i}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t)) = \sum_{i=1}^{N}\log E\left[e^{tX_i}\right]</math> then the saddlepoint approximation to the [[Probability density function|PDF]] of the distribution <math>X</math> is defined as<ins style="font-weight: bold; text-decoration: none;">:</ins><ref name=":0" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> contains higher order terms to refine the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ref name=":0" /><del style="font-weight: bold; text-decoration: none;">:</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> contains higher order terms to refine the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ins style="font-weight: bold; text-decoration: none;">:</ins><ref name=":0" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}_X (x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})\left(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}\right) & \text{for } x \neq \mu \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}_X (x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})\left(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}\right) & \text{for } x \neq \mu \\</div></td>
</tr>
</table>
WikiCleanerBot
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1267489911&oldid=prev
80.41.5.39 at 09:48, 5 January 2025
2025-01-05T09:48:14Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:48, 5 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=December 1954|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> <del style="font-weight: bold; text-decoration: none;">indipendent</del> random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=June 1980 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=December 1954|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> <ins style="font-weight: bold; text-decoration: none;">independent</ins> random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=June 1980 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
</table>
80.41.5.39
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1267051074&oldid=prev
95.250.223.208: /* Definition */ minor changes
2025-01-03T11:08:25Z
<p><span class="autocomment">Definition: </span> minor changes</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:08, 3 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X = \sum_{i=1}^{N} X_i</math> is written as <math>M(t)=E\left[e^{tX}\right] = E\left[e^{t\sum_{i=1}^{N}X_i}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t)) = \sum_{i=1}^{N}\log E\left[e^{tX_i}\right]</math> then the saddlepoint approximation to the [[Probability density function|PDF]] of the distribution <math>X</math> is defined as<ref name=":0" />:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X = \sum_{i=1}^{N} X_i</math> is written as <math>M(t)=E\left[e^{tX}\right] = E\left[e^{t\sum_{i=1}^{N}X_i}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t)) = \sum_{i=1}^{N}\log E\left[e^{tX_i}\right]</math> then the saddlepoint approximation to the [[Probability density function|PDF]] of the distribution <math>X</math> is defined as<ref name=":0" />:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> <del style="font-weight: bold; text-decoration: none;">is</del> <del style="font-weight: bold; text-decoration: none;">a</del> <del style="font-weight: bold; text-decoration: none;">remainder</del> <del style="font-weight: bold; text-decoration: none;">term</del> <del style="font-weight: bold; text-decoration: none;">in</del> the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ref name=":0" />:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> <ins style="font-weight: bold; text-decoration: none;">contains</ins> <ins style="font-weight: bold; text-decoration: none;">higher</ins> <ins style="font-weight: bold; text-decoration: none;">order</ins> <ins style="font-weight: bold; text-decoration: none;">terms</ins> <ins style="font-weight: bold; text-decoration: none;">to refine</ins> the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ref name=":0" />:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}_X (x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})\left(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}\right) & \text{for } x \neq \mu \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}_X (x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})\left(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}\right) & \text{for } x \neq \mu \\</div></td>
</tr>
</table>
95.250.223.208
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1266434049&oldid=prev
95.250.223.208: /* Definition */ minor modifications to formulas.
2024-12-31T16:03:29Z
<p><span class="autocomment">Definition: </span> minor modifications to formulas.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:03, 31 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X</math> is written as <math>M(t)=E\left[e^{tX}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t))</math> then the saddlepoint approximation to the [[Probability density function|PDF]] of <del style="font-weight: bold; text-decoration: none;">a</del> distribution <math>X</math> is defined as<ref name=":0" />:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a random variable <math>X<ins style="font-weight: bold; text-decoration: none;"> = \sum_{i=1}^{N} X_i</ins></math> is written as <math>M(t)=E\left[e^{tX<ins style="font-weight: bold; text-decoration: none;">}\right] = E\left[e^{t\sum_{i=1}^{N}X_i</ins>}\right]</math> and the [[cumulant generating function]] as <math>K(t) = \log(M(t))<ins style="font-weight: bold; text-decoration: none;"> = \sum_{i=1}^{N}\log E\left[e^{tX_i}\right]</ins></math> then the saddlepoint approximation to the [[Probability density function|PDF]] of <ins style="font-weight: bold; text-decoration: none;">the</ins> distribution <math>X</math> is defined as<ref name=":0" />:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}_X (x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) \,\left(1+\mathcal{R}\right) </math> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> is a remainder term in the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ref name=":0" />:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathcal{R}</math> is a remainder term in the approximation<ref name=":0" /> and the saddlepoint approximation to the CDF is defined as<ref name=":0" />:</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \frac{1}{2} + \frac{K'''(0)}{6 \sqrt{2\pi} K''(0)^{3/2}} & \text{for } x = \mu</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \frac{1}{2} + \frac{K'''(0)}{6 \sqrt{2\pi} K''(0)^{3/2}} & \text{for } x = \mu</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{cases} </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{cases} </math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math>\hat{s}</math> is the solution to <math>K'(\hat{s}) = x</math>, <math>\hat{w} = \sgn{\hat{s}}\sqrt{2(\hat{s}x - K(\hat{s}))}</math> ,<math>\hat{u} = \hat{s}\sqrt{K''(\hat{s})}</math>, and <math>\Phi(t)</math> <del style="font-weight: bold; text-decoration: none;">is the [[cumulative distribution function]] of a [[normal distribution]],</del> <math>\phi(t)</math> the [[probability density function]] of a normal distribution and <math>\mu</math> is the mean of the random variable <math>X</math>:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\hat{s}</math> is the solution to <math>K'(\hat{s}) = x</math>, <math>\hat{w} = \sgn{\hat{s}}\sqrt{2(\hat{s}x - K(\hat{s}))}</math> ,<math>\hat{u} = \hat{s}\sqrt{K''(\hat{s})}</math>, and <math>\Phi(t)</math> <ins style="font-weight: bold; text-decoration: none;">and</ins> <math>\phi(t)</math><ins style="font-weight: bold; text-decoration: none;"> are the [[cumulative distribution function]] and</ins> the [[probability density function]] of a <ins style="font-weight: bold; text-decoration: none;">[[</ins>normal distribution<ins style="font-weight: bold; text-decoration: none;">]], respectively,</ins> and <math>\mu</math> is the mean of the random variable <math>X</math>:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><math>\mu \triangleq E \left<del style="font-weight: bold; text-decoration: none;">(</del>X\right)</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math>\mu \triangleq E \left<ins style="font-weight: bold; text-decoration: none;">[</ins>X\right<ins style="font-weight: bold; text-decoration: none;">] = \int_{-\infty}^{+\infty} x f_X(x</ins>)<ins style="font-weight: bold; text-decoration: none;"> \,\text{d}x = \sum_{i=1}^{N} E \left[X_i\right]= \sum_{i=1}^{N} \int_{-\infty}^{+\infty} x_i f_{X_i}(x_i) \,\text{d}x_i</ins></math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When the distribution is that of a sample mean, Lugannani and Rice's saddlepoint expansion for the cumulative distribution function <math>F(x)</math> may be differentiated to obtain Daniels' saddlepoint expansion for the probability density function <math>f(x)</math> (Routledge and Tsao, 1997). This result establishes the derivative of a truncated Lugannani and Rice series as an alternative asymptotic approximation for the density function <math>f(x)</math>. Unlike the original saddlepoint approximation for <math>f(x)</math>, this alternative approximation in general does not need to be renormalized. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When the distribution is that of a sample mean, Lugannani and Rice's saddlepoint expansion for the cumulative distribution function <math>F(x)</math> may be differentiated to obtain Daniels' saddlepoint expansion for the probability density function <math>f(x)</math> (Routledge and Tsao, 1997). This result establishes the derivative of a truncated Lugannani and Rice series as an alternative asymptotic approximation for the density function <math>f(x)</math>. Unlike the original saddlepoint approximation for <math>f(x)</math>, this alternative approximation in general does not need to be renormalized. </div></td>
</tr>
</table>
95.250.223.208
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1266286957&oldid=prev
Naraht: repair date
2024-12-30T23:24:55Z
<p>repair date</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:24, 30 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=1954<del style="font-weight: bold; text-decoration: none;">-12 </del>|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> indipendent random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=1980<del style="font-weight: bold; text-decoration: none;">-06</del> |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=<ins style="font-weight: bold; text-decoration: none;">December </ins>1954|title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]], in particular to the distribution of the sum of <math>N</math> indipendent random variables. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=<ins style="font-weight: bold; text-decoration: none;">June </ins>1980 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
</table>
Naraht
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1266286267&oldid=prev
Naraht: /* References */ add reflist
2024-12-30T23:20:46Z
<p><span class="autocomment">References: </span> add reflist</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:20, 30 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 17:</td>
<td colspan="2" class="diff-lineno">Line 17:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Butler |first1=Ronald W. |title= Saddlepoint approximations with applications |publisher=Cambridge University Press |location=Cambridge|year=2007 |isbn=9780521872508 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Butler |first1=Ronald W. |title= Saddlepoint approximations with applications |publisher=Cambridge University Press |location=Cambridge|year=2007 |isbn=9780521872508 }}</div></td>
</tr>
</table>
Naraht
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1266278801&oldid=prev
95.250.223.208: /* Definition */ clarification of certain terms of the approximation
2024-12-30T22:42:24Z
<p><span class="autocomment">Definition: </span> clarification of certain terms of the approximation</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:42, 30 December 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954) is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the<del style="font-weight: bold; text-decoration: none;"> </del>[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry Daniels (statistician)|Daniels]] (1954)<ins style="font-weight: bold; text-decoration: none;"><ref name=":0">{{Cite journal |last=Daniels |first=H. E. |date=1954-12 |title=Saddlepoint Approximations in Statistics |url=http://projecteuclid.org/euclid.aoms/1177728652 |journal=The Annals of Mathematical Statistics |language=en |volume=25 |issue=4 |pages=631–650 |doi=10.1214/aoms/1177728652 |issn=0003-4851}}</ref></ins> is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]<ins style="font-weight: bold; text-decoration: none;">, in particular to the distribution of the sum of <math>N</math> indipendent random variables</ins>. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the[[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980)<ins style="font-weight: bold; text-decoration: none;"><ref>{{Cite journal |last=Lugannani |first=Robert |last2=Rice |first2=Stephen |date=1980-06 |title=Saddle point approximation for the distribution of the sum of independent random variables |url=https://www.cambridge.org/core/journals/advances-in-applied-probability/article/saddle-point-approximation-for-the-distribution-of-the-sum-of-independent-random-variables/70A031DB905980CA675021C6D9BFFD21 |journal=Advances in Applied Probability |language=en |volume=12 |issue=2 |pages=475–490 |doi=10.2307/1426607 |issn=0001-8678}}</ref></ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a <del style="font-weight: bold; text-decoration: none;">distribution</del> is written as <math>M(t)</math> and the cumulant generating function as <math>K(t) = \log(M(t))</math> then the saddlepoint approximation to the PDF of a distribution is defined as:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the moment generating function of a <ins style="font-weight: bold; text-decoration: none;">random variable <math>X</math></ins> is written as <math>M(t)<ins style="font-weight: bold; text-decoration: none;">=E\left[e^{tX}\right]</ins></math> and the <ins style="font-weight: bold; text-decoration: none;">[[</ins>cumulant generating function<ins style="font-weight: bold; text-decoration: none;">]]</ins> as <math>K(t) = \log(M(t))</math> then the saddlepoint approximation to the <ins style="font-weight: bold; text-decoration: none;">[[Probability density function|</ins>PDF<ins style="font-weight: bold; text-decoration: none;">]]</ins> of a distribution<ins style="font-weight: bold; text-decoration: none;"> <math>X</math></ins> is defined as<ins style="font-weight: bold; text-decoration: none;"><ref name=":0" /></ins>:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}(x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x) </math> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{f}<ins style="font-weight: bold; text-decoration: none;">_X </ins>(x) = \frac{1}{\sqrt{2 \pi K''(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x<ins style="font-weight: bold; text-decoration: none;">) \,\left(1+\mathcal{R}\right</ins>) </math> </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>and the saddlepoint approximation to the CDF is defined as:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">where <math>\mathcal{R}</math> is a remainder term in the approximation<ref name=":0" /> </ins>and the saddlepoint approximation to the CDF is defined as<ins style="font-weight: bold; text-decoration: none;"><ref name=":0" /></ins>:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}(x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}) & \text{for } x \neq \mu \\</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>:<math>\hat{F}<ins style="font-weight: bold; text-decoration: none;">_X </ins>(x) = \begin{cases} \Phi(\hat{w}) + \phi(\hat{w})<ins style="font-weight: bold; text-decoration: none;">\left</ins>(\frac{1}{\hat{w}} - \frac{1}{\hat{u}}<ins style="font-weight: bold; text-decoration: none;">\right</ins>) & \text{for } x \neq \mu \\</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \frac{1}{2} + \frac{K'''(0)}{6 \sqrt{2\pi} K''(0)^{3/2}} & \text{for } x = \mu</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \frac{1}{2} + \frac{K'''(0)}{6 \sqrt{2\pi} K''(0)^{3/2}} & \text{for } x = \mu</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{cases} </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \end{cases} </math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math>\hat{s}</math> is the solution to <math>K'(\hat{s}) = x</math>, <math>\hat{w} = \sgn{\hat{s}}\sqrt{2(\hat{s}x - K(\hat{s}))}</math> <del style="font-weight: bold; text-decoration: none;">and </del><math>\hat{u} = \hat{s}\sqrt{K''(\hat{s})}</math><del style="font-weight: bold; text-decoration: none;">.</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\hat{s}</math> is the solution to <math>K'(\hat{s}) = x</math>, <math>\hat{w} = \sgn{\hat{s}}\sqrt{2(\hat{s}x - K(\hat{s}))}</math> <ins style="font-weight: bold; text-decoration: none;">,</ins><math>\hat{u} = \hat{s}\sqrt{K''(\hat{s})}</math><ins style="font-weight: bold; text-decoration: none;">, and <math>\Phi(t)</math> is the [[cumulative distribution function]] of a [[normal distribution]], <math>\phi(t)</math> the [[probability density function]] of a normal distribution and <math>\mu</math> is the mean of the random variable <math>X</math>:</ins></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><math>\mu \triangleq E \left(X\right)</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When the distribution is that of a sample mean, Lugannani and Rice's saddlepoint expansion for the cumulative distribution function <math>F(x)</math> may be differentiated to obtain Daniels' saddlepoint expansion for the probability density function <math>f(x)</math> (Routledge and Tsao, 1997). This result establishes the derivative of a truncated Lugannani and Rice series as an alternative asymptotic approximation for the density function <math>f(x)</math>. Unlike the original saddlepoint approximation for <math>f(x)</math>, this alternative approximation in general does not need to be renormalized. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>When the distribution is that of a sample mean, Lugannani and Rice's saddlepoint expansion for the cumulative distribution function <math>F(x)</math> may be differentiated to obtain Daniels' saddlepoint expansion for the probability density function <math>f(x)</math> (Routledge and Tsao, 1997). This result establishes the derivative of a truncated Lugannani and Rice series as an alternative asymptotic approximation for the density function <math>f(x)</math>. Unlike the original saddlepoint approximation for <math>f(x)</math>, this alternative approximation in general does not need to be renormalized. </div></td>
</tr>
</table>
95.250.223.208
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1234917864&oldid=prev
Tassedethe: v2.05 - Repaired 1 link to disambiguation page - (You can help) - Henry Daniels
2024-07-16T20:13:38Z
<p>v2.05 - Repaired 1 link to disambiguation page - <a href="/wiki/Wikipedia:DPL" class="mw-redirect" title="Wikipedia:DPL">(You can help)</a> - <a href="/wiki/Henry_Daniels" title="Henry Daniels">Henry Daniels</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:13, 16 July 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[<del style="font-weight: bold; text-decoration: none;">Henry_Daniels</del> <del style="font-weight: bold; text-decoration: none;">|</del> Daniels]] (1954) is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the [[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[<ins style="font-weight: bold; text-decoration: none;">Henry</ins> <ins style="font-weight: bold; text-decoration: none;">Daniels</ins> <ins style="font-weight: bold; text-decoration: none;">(statistician)|</ins>Daniels]] (1954) is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the [[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
</table>
Tassedethe
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1218909341&oldid=prev
Anarchyte: not accurate. see WP:PAREN (depreciated but still invalid tag)
2024-04-14T16:14:06Z
<p>not accurate. see <a href="/wiki/Wikipedia:PAREN" class="mw-redirect" title="Wikipedia:PAREN">WP:PAREN</a> (depreciated but still invalid tag)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:14, 14 April 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{No footnotes|date=April 2023}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry_Daniels | Daniels]] (1954) is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the [[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The saddlepoint approximation method, initially proposed by [[Henry_Daniels | Daniels]] (1954) is a specific example of the mathematical [[method_of_steepest_descent| saddlepoint ]] technique applied to [[statistics]]. It provides a highly accurate approximation formula for any [[Probability density function|PDF]] or probability mass function of a distribution, based on the [[Moment-generating_function | moment generating function]]. There is also a formula for the [[cumulative_distribution_function | CDF ]] of the distribution, proposed by Lugannani and Rice (1980).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Anarchyte
https://en.wikipedia.org/w/index.php?title=Saddlepoint_approximation_method&diff=1170056326&oldid=prev
OAbot: Open access bot: doi added to citation with #oabot.
2023-08-12T23:29:09Z
<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:29, 12 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 20:</td>
<td colspan="2" class="diff-lineno">Line 20:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Daniels |first1=H. E. |title= Saddlepoint Approximations in Statistics |journal=The Annals of Mathematical Statistics |volume=25 |issue=4 |pages=631–650 |year=1954 |doi=10.1214/aoms/1177728652|doi-access=free }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Daniels |first1=H. E. |title= Saddlepoint Approximations in Statistics |journal=The Annals of Mathematical Statistics |volume=25 |issue=4 |pages=631–650 |year=1954 |doi=10.1214/aoms/1177728652|doi-access=free }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Daniels |first1=H. E. |title= Exact Saddlepoint Approximations |journal=Biometrika |volume=67 |issue=1 |pages=59–63 |year=1980 |doi=10.1093/biomet/67.1.59|jstor=2335316 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Daniels |first1=H. E. |title= Exact Saddlepoint Approximations |journal=Biometrika |volume=67 |issue=1 |pages=59–63 |year=1980 |doi=10.1093/biomet/67.1.59|jstor=2335316 }}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Lugannani|first1=R. | last2=Rice | first2=S. |title= Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables |journal=Advances in Applied Probability |volume=12 |issue=2 |pages=475–490 |year=1980 |doi=10.2307/1426607|jstor=1426607 |s2cid=124484743 }}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Lugannani|first1=R. | last2=Rice | first2=S. |title= Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables |journal=Advances in Applied Probability |volume=12 |issue=2 |pages=475–490 |year=1980 |doi=10.2307/1426607|jstor=1426607 |s2cid=124484743<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Reid|first1=N.|title= Saddlepoint Methods and Statistical Inference |journal=Statistical Science |volume=3 |issue=2 |pages=213–227 |year=1988 |doi=10.1214/ss/1177012906|doi-access=free }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Reid|first1=N.|title= Saddlepoint Methods and Statistical Inference |journal=Statistical Science |volume=3 |issue=2 |pages=213–227 |year=1988 |doi=10.1214/ss/1177012906|doi-access=free }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Routledge|first1=R. D. | last2=Tsao | first2=M. |title= On the relationship between two asymptotic expansions for the distribution of sample mean and its applications |journal=Annals of Statistics |volume=25 |issue=5 |pages=2200–2209 |year=1997 |doi=10.1214/aos/1069362394 |doi-access=free }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{citation |last1=Routledge|first1=R. D. | last2=Tsao | first2=M. |title= On the relationship between two asymptotic expansions for the distribution of sample mean and its applications |journal=Annals of Statistics |volume=25 |issue=5 |pages=2200–2209 |year=1997 |doi=10.1214/aos/1069362394 |doi-access=free }}</div></td>
</tr>
</table>
OAbot