https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Seasonal_thermal_energy_storage Seasonal thermal energy storage - Revision history 2025-10-08T13:12:22Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.21 https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1307656780&oldid=prev MrOllie: clean up apparent COI / selfpromo 2025-08-24T23:41:19Z <p>clean up apparent COI / selfpromo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:41, 24 August 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 46:</td> <td colspan="2" class="diff-lineno">Line 46:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of {{convert|27|to|80|°C|°F|sigfig=2}}, and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of {{convert|27|to|80|°C|°F|sigfig=2}}, and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Sorption and thermochemical heat storage are considered the most suitable for seasonal storage due to the theoretical absence of heat loss between charging and discharging.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=K. Edem |last2=Liu |first2=Hui |last3=Le Pierrès |first3=Nolwenn |last4=Luo |first4=Lingai |date=2009-12-01 |title=A review on long-term sorption solar energy storage |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032109001129 |journal=Renewable and Sustainable Energy Reviews |volume=13 |issue=9 |pages=2385–2396 |doi=10.1016/j.rser.2009.05.008 |bibcode=2009RSERv..13.2385N |issn=1364-0321|url-access=subscription }}&lt;/ref&gt; However, studies have shown that actual heat losses currently are usually significant.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=Kokouvi Edem |last2=Kuznik |first2=Frédéric |date=2021-04-01 |title=A reality check on long-term thermochemical heat storage for household applications |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032120309679 |journal=Renewable and Sustainable Energy Reviews |volume=139 |pages=110683 |doi=10.1016/j.rser.2020.110683 |bibcode=2021RSERv.13910683N |issn=1364-0321|url-access=subscription }}&lt;/ref&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples for [[district heating]] include [[Drake Landing Solar Community]] where ground storage provides 97% of yearly consumption without [[heat pump]]s,&lt;ref name=drake1&gt;{{Citation</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples for [[district heating]] include [[Drake Landing Solar Community]] where ground storage provides 97% of yearly consumption without [[heat pump]]s,&lt;ref name=drake1&gt;{{Citation</div></td> </tr> </table> MrOllie https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1300103862&oldid=prev The Anome: /* Annualized geo-solar */ '''Annualized geo-solar''' 2025-07-12T08:36:13Z <p><span class="autocomment">Annualized geo-solar: </span> &#039;&#039;&#039;Annualized geo-solar&#039;&#039;&#039;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:36, 12 July 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 120:</td> <td colspan="2" class="diff-lineno">Line 120:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Annualized geo-solar==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Annualized geo-solar==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed section|date=December 2021}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{More citations needed section|date=December 2021}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Annualized geo-solar (AGS) enables [[passive solar building design|passive solar heating]] in even cold, foggy north temperate areas. It uses the ground under or around a [[building]] as [[thermal mass]] to heat and cool the building. After a designed, conductive thermal lag of 6 months the heat is returned to, or removed from, the inhabited spaces of the building. In hot climates, exposing the collector to the frigid night sky in winter can cool the building in summer.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">'''</ins>Annualized geo-solar<ins style="font-weight: bold; text-decoration: none;">'''</ins> (AGS) enables [[passive solar building design|passive solar heating]] in even cold, foggy north temperate areas. It uses the ground under or around a [[building]] as [[thermal mass]] to heat and cool the building. After a designed, conductive thermal lag of 6 months the heat is returned to, or removed from, the inhabited spaces of the building. In hot climates, exposing the collector to the frigid night sky in winter can cool the building in summer.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The six-month thermal lag is provided by about three meters (ten feet) of dirt. A six-meter-wide (20&amp;nbsp;ft) buried skirt of insulation around the building keeps rain and snow melt out of the dirt, which is usually under the building. The dirt does [[radiant heating]] and cooling through the floor or walls. A thermal [[siphon]] moves the heat between the dirt and the solar collector. The solar collector may be a [[sheet-metal]] compartment in the [[roof]], or a wide flat box on the side of a building or hill. The siphons may be made from plastic pipe and carry air. Using air prevents water leaks and water-caused corrosion. Plastic pipe doesn't corrode in damp earth, as metal ducts can.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The six-month thermal lag is provided by about three meters (ten feet) of dirt. A six-meter-wide (20&amp;nbsp;ft) buried skirt of insulation around the building keeps rain and snow melt out of the dirt, which is usually under the building. The dirt does [[radiant heating]] and cooling through the floor or walls. A thermal [[siphon]] moves the heat between the dirt and the solar collector. The solar collector may be a [[sheet-metal]] compartment in the [[roof]], or a wide flat box on the side of a building or hill. The siphons may be made from plastic pipe and carry air. Using air prevents water leaks and water-caused corrosion. Plastic pipe doesn't corrode in damp earth, as metal ducts can.</div></td> </tr> </table> The Anome https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1292581721&oldid=prev GreenC bot: Move 2 urls. Wayback Medic 2.5 per WP:URLREQ#citeftp 2025-05-27T19:25:29Z <p>Move 2 urls. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#citeftp" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#citeftp</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:25, 27 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 91:</td> <td colspan="2" class="diff-lineno">Line 91:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>EnerStock 2018 will be held in Adana, Turkey in April 2018.&lt;ref&gt;{{citation | author = IEA ECES Programme | title = ''Upcoming Events'' | date = 2017 | url = https://iea-eces.org/events/ | access-date = 16 April 2017 | archive-date = 17 April 2017 | archive-url = https://web.archive.org/web/20170417071544/https://iea-eces.org/events/ | url-status = live }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>EnerStock 2018 will be held in Adana, Turkey in April 2018.&lt;ref&gt;{{citation | author = IEA ECES Programme | title = ''Upcoming Events'' | date = 2017 | url = https://iea-eces.org/events/ | access-date = 16 April 2017 | archive-date = 17 April 2017 | archive-url = https://web.archive.org/web/20170417071544/https://iea-eces.org/events/ | url-status = live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The IEA-ECES programme continues the work of the earlier ''International Council for Thermal Energy Storage'' which from 1978 to 1990 had a quarterly newsletter and was initially sponsored by the U.S. Department of Energy. The newsletter was initially called ''ATES Newsletter,'' and after BTES became a feasible technology it was changed to ''STES Newsletter.''&lt;ref&gt;{{<del style="font-weight: bold; text-decoration: none;">cite</del> <del style="font-weight: bold; text-decoration: none;">web</del> | title = ''ATES Newsletter'' and ''STES Newsletter'' archive | date = 2012 | url = ftp://ftp.tech-env.com/pub/ENERGY/STES/Newslett<del style="font-weight: bold; text-decoration: none;"> }}{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes</del> }}&lt;/ref&gt;&lt;ref&gt;{{<del style="font-weight: bold; text-decoration: none;">cite</del> <del style="font-weight: bold; text-decoration: none;">web</del> | title = Index for ''ATES Newsletter'' and ''STES Newsletter'' | date = 2012 | url = ftp://ftp.tech-env.com/pub/ENERGY/STES/index.pdf<del style="font-weight: bold; text-decoration: none;"> }}{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes</del> }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The IEA-ECES programme continues the work of the earlier ''International Council for Thermal Energy Storage'' which from 1978 to 1990 had a quarterly newsletter and was initially sponsored by the U.S. Department of Energy. The newsletter was initially called ''ATES Newsletter,'' and after BTES became a feasible technology it was changed to ''STES Newsletter.''&lt;ref&gt;{{<ins style="font-weight: bold; text-decoration: none;">Cite</ins> <ins style="font-weight: bold; text-decoration: none;">FTP</ins> | title = ''ATES Newsletter'' and ''STES Newsletter'' archive | date = 2012<ins style="font-weight: bold; text-decoration: none;"> | server = FTP server | url-status = dead</ins> | url = ftp://ftp.tech-env.com/pub/ENERGY/STES/Newslett }}&lt;/ref&gt;&lt;ref&gt;{{<ins style="font-weight: bold; text-decoration: none;">Cite</ins> <ins style="font-weight: bold; text-decoration: none;">FTP</ins> | title = Index for ''ATES Newsletter'' and ''STES Newsletter'' | date = 2012<ins style="font-weight: bold; text-decoration: none;"> | server = FTP server | url-status = dead</ins> | url = ftp://ftp.tech-env.com/pub/ENERGY/STES/index.pdf }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use of STES for small, passively heated buildings==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use of STES for small, passively heated buildings==</div></td> </tr> </table> GreenC bot https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1292072058&oldid=prev OAbot: Open access bot: url-access updated in citation with #oabot. 2025-05-25T01:55:54Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: url-access updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:55, 25 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 47:</td> <td colspan="2" class="diff-lineno">Line 47:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of {{convert|27|to|80|°C|°F|sigfig=2}}, and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of {{convert|27|to|80|°C|°F|sigfig=2}}, and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Sorption and thermochemical heat storage are considered the most suitable for seasonal storage due to the theoretical absence of heat loss between charging and discharging.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=K. Edem |last2=Liu |first2=Hui |last3=Le Pierrès |first3=Nolwenn |last4=Luo |first4=Lingai |date=2009-12-01 |title=A review on long-term sorption solar energy storage |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032109001129 |journal=Renewable and Sustainable Energy Reviews |volume=13 |issue=9 |pages=2385–2396 |doi=10.1016/j.rser.2009.05.008 |bibcode=2009RSERv..13.2385N |issn=1364-0321}}&lt;/ref&gt; However, studies have shown that actual heat losses currently are usually significant.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=Kokouvi Edem |last2=Kuznik |first2=Frédéric |date=2021-04-01 |title=A reality check on long-term thermochemical heat storage for household applications |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032120309679 |journal=Renewable and Sustainable Energy Reviews |volume=139 |pages=110683 |doi=10.1016/j.rser.2020.110683 |bibcode=2021RSERv.13910683N |issn=1364-0321}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Sorption and thermochemical heat storage are considered the most suitable for seasonal storage due to the theoretical absence of heat loss between charging and discharging.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=K. Edem |last2=Liu |first2=Hui |last3=Le Pierrès |first3=Nolwenn |last4=Luo |first4=Lingai |date=2009-12-01 |title=A review on long-term sorption solar energy storage |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032109001129 |journal=Renewable and Sustainable Energy Reviews |volume=13 |issue=9 |pages=2385–2396 |doi=10.1016/j.rser.2009.05.008 |bibcode=2009RSERv..13.2385N |issn=1364-0321<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription </ins>}}&lt;/ref&gt; However, studies have shown that actual heat losses currently are usually significant.&lt;ref&gt;{{Cite journal |last1=N’Tsoukpoe |first1=Kokouvi Edem |last2=Kuznik |first2=Frédéric |date=2021-04-01 |title=A reality check on long-term thermochemical heat storage for household applications |url=https://linkinghub.elsevier.com/retrieve/pii/S1364032120309679 |journal=Renewable and Sustainable Energy Reviews |volume=139 |pages=110683 |doi=10.1016/j.rser.2020.110683 |bibcode=2021RSERv.13910683N |issn=1364-0321<ins style="font-weight: bold; text-decoration: none;">|url-access=subscription </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples for [[district heating]] include [[Drake Landing Solar Community]] where ground storage provides 97% of yearly consumption without [[heat pump]]s,&lt;ref name=drake1&gt;{{Citation</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples for [[district heating]] include [[Drake Landing Solar Community]] where ground storage provides 97% of yearly consumption without [[heat pump]]s,&lt;ref name=drake1&gt;{{Citation</div></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1289155986&oldid=prev GreenC bot: Reformat 1 archive link; Move 2 urls. Wayback Medic 2.5 per WP:URLREQ#edition.cnn.com 2025-05-06T20:31:03Z <p>Reformat 1 archive link; Move 2 urls. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#edition.cnn.com" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#edition.cnn.com</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:31, 6 May 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 73:</td> <td colspan="2" class="diff-lineno">Line 73:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;br /&gt;UTES technologies include:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;br /&gt;UTES technologies include:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''ATES''' ([[aquifer thermal energy storage]]). An ATES store is composed of a doublet, totaling two or more wells into a deep aquifer that is contained between impermeable geological layers above and below. One half of the doublet is for water extraction and the other half for reinjection, so the aquifer is kept in hydrological balance, with no net extraction. The heat (or cold) storage medium is the water and the substrate it occupies. Germany's [[Reichstag building]] has been both heated and cooled since 1999 with ATES stores, in two aquifers at different depths.&lt;ref&gt;{{Citation | last1 = Seibt | first1 = P. | last2 = Kabus | first2 = F. | contribution = Aquifer Thermal Energy Storage in Germany | title = Aquifer Thermal Energy Storage in Germany | series = American Astronomical... | contribution-url = http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | date = 2003 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610223951/http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | url-status = dead }}&lt;/ref&gt;&lt;br /&gt;In the Netherlands there are well over 1,000 ATES systems, which are now a standard construction option.&lt;ref&gt;{{Cite web |title=Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe |url=http://trca.on.ca/dotAsset/16551.pdf |archive-url=https://web.archive.org/web/20210308043800/http://trca.on.ca/dotAsset/16551.pdf |archive-date=March 8, 2021 |website=trca.on.ca}}&lt;/ref&gt;&lt;ref&gt;{{Cite web |title=20,000 Ates Systems in the Netherlands in 2020 - Major Step Towards a Sustainable Energy Supply |url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-url=https://web.archive.org/web/20150610205959/https://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdfrgy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-date=June 10, 2015}}&lt;/ref&gt;&lt;br /&gt;A significant system has been operating at Richard Stockton College (New Jersey) for several years.&lt;ref name=":0" /&gt;ATES has a lower installation cost than borehole thermal energy storage (BTES) because usually fewer holes are drilled, but ATES has a higher operating cost. Also, ATES requires particular underground conditions to be feasible, including the presence of an aquifer.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''ATES''' ([[aquifer thermal energy storage]]). An ATES store is composed of a doublet, totaling two or more wells into a deep aquifer that is contained between impermeable geological layers above and below. One half of the doublet is for water extraction and the other half for reinjection, so the aquifer is kept in hydrological balance, with no net extraction. The heat (or cold) storage medium is the water and the substrate it occupies. Germany's [[Reichstag building]] has been both heated and cooled since 1999 with ATES stores, in two aquifers at different depths.&lt;ref&gt;{{Citation | last1 = Seibt | first1 = P. | last2 = Kabus | first2 = F. | contribution = Aquifer Thermal Energy Storage in Germany | title = Aquifer Thermal Energy Storage in Germany | series = American Astronomical... | contribution-url = http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | date = 2003 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610223951/http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | url-status = dead }}&lt;/ref&gt;&lt;br /&gt;In the Netherlands there are well over 1,000 ATES systems, which are now a standard construction option.&lt;ref&gt;{{Cite web |title=Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe |url=http://trca.on.ca/dotAsset/16551.pdf |archive-url=https://web.archive.org/web/20210308043800/http://trca.on.ca/dotAsset/16551.pdf |archive-date=March 8, 2021 |website=trca.on.ca}}&lt;/ref&gt;&lt;ref&gt;{{Cite web |title=20,000 Ates Systems in the Netherlands in 2020 - Major Step Towards a Sustainable Energy Supply |url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-url=https://web.archive.org/web/20150610205959/https://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdfrgy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-date=June 10, 2015}}&lt;/ref&gt;&lt;br /&gt;A significant system has been operating at Richard Stockton College (New Jersey) for several years.&lt;ref name=":0" /&gt;ATES has a lower installation cost than borehole thermal energy storage (BTES) because usually fewer holes are drilled, but ATES has a higher operating cost. Also, ATES requires particular underground conditions to be feasible, including the presence of an aquifer.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{anchor|BTES|borehole thermal energy storage}}'''BTES''' (borehole thermal energy storage). BTES stores can be constructed wherever [[borehole]]s can be drilled, and are composed of one to hundreds of vertical boreholes, typically {{convert|155|mm|in|1|abbr=on}} in diameter. Systems of all sizes have been built, including many quite large.&lt;ref&gt;{{Citation |last=Midttømme |first=Kirsti |title=Status of UTES in Norway |date=2006 |series=EcoStock 2006 (10th International) – Thermal Energy Storage for Efficiency and Sustainability |contribution=Status of UTES in Norway |contribution-url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PRESENTATIONS/3A-4.pdf |place=Pomona, New Jersey |publisher=intraweb.stockton.edu |last2=Ramstad |first2=R.}}&lt;/ref&gt;&lt;ref&gt;{{Citation | last1 = Stene | first1 = J. | contribution = Large-Scale Ground-Source Heat Pump Systems in Norway | title = Large-Scale Ground-Source Heat Pump Systems in Norway | series = IEA Heat Pump Annex 29 Workshop | place = Zurich | date = 19 May 2008 | contribution-url = http://www.annex29.net/extern/09_STENE_Zuerich_Annex29_GSHPs.pdf }}{{Dead link|date=December 2024 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;&lt;ref&gt;{{Citation |last1=Hellström |first1=G. |title=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |date=19 May 2008 |url=<del style="font-weight: bold; text-decoration: none;">https://arquivo.pt/wayback/20160522223452/</del>http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |access-date=22 April 2013 |archive-url=<del style="font-weight: bold; text-decoration: none;">http</del>://arquivo.pt/wayback/20160522223452/http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |archive-date=May 22, 2016 |url-status=dead |series=IEA Heat Pump Annex 29 Workshop |contribution=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |contribution-url=http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |place=Zurich |publisher=arquivo.pt}}&lt;/ref&gt;&lt;br /&gt;The strata can be anything from sand to crystalline hardrock, and depending on engineering factors the depth can be from {{convert|50|to|300|m|0}}. Spacings have ranged from {{convert|3|to|8|m}}. Thermal models can be used to predict seasonal temperature variation in the ground, including the establishment of a stable temperature regime which is achieved by matching the inputs and outputs of heat over one or more annual cycles. Warm-temperature seasonal heat stores can be created using borehole fields to store surplus heat captured in summer to actively raise the temperature of large thermal banks of soil so that heat can be extracted more easily (and more cheaply) in winter. Interseasonal Heat Transfer&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/interseasonal_heat_transfer.html |title=Interseasonal Heat Transfer |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=19 January 2018 |archive-url=https://web.archive.org/web/20180119185108/http://www.icax.co.uk/interseasonal_heat_transfer.html |url-status=live }}&lt;/ref&gt; uses water circulating in pipes embedded in asphalt solar collectors to transfer heat to Thermal Banks&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/thermalbank.html |title=Thermal Banks |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=23 September 2010 |archive-url=https://web.archive.org/web/20100923155221/http://icax.co.uk/thermalbank.html |url-status=live }}&lt;/ref&gt; created in borehole fields. A ground source heat pump is used in winter to extract the warmth from the Thermal Bank to provide space heating via [[underfloor heating]]. A high [[Coefficient of performance]] is obtained because the heat pump starts with a warm temperature of {{convert|25|°C|°F|abbr=on}} from the thermal store, instead of a cold temperature of {{convert|10|°C|°F|abbr=on}} from the ground.&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/report_on_iht_by_trl.html |title=Report on Interseasonal Heat Transfer by the Highways Agency |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=17 December 2008 |archive-url=https://web.archive.org/web/20081217074635/http://www.icax.co.uk/report_on_iht_by_trl.html |url-status=live }}&lt;/ref&gt; A BTES operating at Richard Stockton College since 1995 at a peak of about {{convert|29|°C|°F|1|abbr=on}} consists of 400 boreholes {{convert|130|m|0}} deep under a {{convert|3.5|acre|ha|adj=on}} parking lot. It has a heat loss of 2% over six months.&lt;ref&gt;{{cite AV media | people = Chrisopherson, Elizabeth G. (Exec. Producer) | title = Green Builders (segment interviewing Lynn Stiles) | medium = Television production | publisher = PBS | date = 19 April 2009 | url = https://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | access-date = 11 September 2017 | archive-date = 23 December 2017 | archive-url = https://web.archive.org/web/20171223102410/http://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | url-status = live }}&lt;/ref&gt; The upper temperature limit for a BTES store is {{convert|85|°C|°F|abbr=on}} due to characteristics of the PEX pipe used for [[downhole heat exchanger|BHEs]], but most do not approach that limit. Boreholes can be either grout- or water-filled depending on geological conditions, and usually have a life expectancy in excess of 100 years. Both a BTES and its associated district heating system can be expanded incrementally after operation begins, as at Neckarsulm, Germany.&lt;ref&gt;{{Cite web |last=Lux |first=Nussbicker |date=January 2011 |title=Solar Thermal Combined with District Heating and Seasonal Heat Storage |url=http://www.itw.uni-stuttgart.de/abteilungen/rationelleEnergie/pdfdateien/11-03.pdf |website=itw.uni-stuttgart.de}}&lt;/ref&gt;&lt;br /&gt;BTES stores generally do not impair use of the land, and can exist under buildings, agricultural fields and parking lots. An example of one of the several kinds of STES illustrates well the capability of interseasonal heat storage. In Alberta, Canada, the homes of the [[Drake Landing Solar Community]] (in operation since 2007), get 97% of their year-round heat from a district heat system that is supplied by solar heat from solar-thermal panels on garage roofs. This feat – a world record – is enabled by interseasonal heat storage in a large mass of native rock that is under a central park. The thermal exchange occurs via a cluster of 144 boreholes, drilled {{convert|37|m}} into the earth. Each borehole is {{convert|155|mm|in|1|abbr=on}} in diameter and contains a simple heat exchanger made of small diameter plastic pipe, through which water is circulated. No heat pumps are involved.&lt;ref name=drake1/&gt;&lt;ref&gt;{{cite press release | title = Canadian Solar Community Sets New World Record for Energy Efficiency and Innovation | publisher = Natural Resources Canada | date = 5 October 2012 | url = http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | access-date = 21 April 2013 | archive-date = 30 April 2013 | archive-url = https://web.archive.org/web/20130430221347/http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | url-status = dead }} {{cite web | title = Drake Landing Solar Community (webpage) | url = http://www.dlsc.ca/ | access-date = 21 April 2013 | archive-date = 25 May 2019 | archive-url = https://web.archive.org/web/20190525074938/https://www.dlsc.ca/ | url-status = live }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{anchor|BTES|borehole thermal energy storage}}'''BTES''' (borehole thermal energy storage). BTES stores can be constructed wherever [[borehole]]s can be drilled, and are composed of one to hundreds of vertical boreholes, typically {{convert|155|mm|in|1|abbr=on}} in diameter. Systems of all sizes have been built, including many quite large.&lt;ref&gt;{{Citation |last=Midttømme |first=Kirsti |title=Status of UTES in Norway |date=2006 |series=EcoStock 2006 (10th International) – Thermal Energy Storage for Efficiency and Sustainability |contribution=Status of UTES in Norway |contribution-url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PRESENTATIONS/3A-4.pdf |place=Pomona, New Jersey |publisher=intraweb.stockton.edu |last2=Ramstad |first2=R.}}&lt;/ref&gt;&lt;ref&gt;{{Citation | last1 = Stene | first1 = J. | contribution = Large-Scale Ground-Source Heat Pump Systems in Norway | title = Large-Scale Ground-Source Heat Pump Systems in Norway | series = IEA Heat Pump Annex 29 Workshop | place = Zurich | date = 19 May 2008 | contribution-url = http://www.annex29.net/extern/09_STENE_Zuerich_Annex29_GSHPs.pdf }}{{Dead link|date=December 2024 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;&lt;ref&gt;{{Citation |last1=Hellström |first1=G. |title=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |date=19 May 2008 |url=http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |access-date=22 April 2013 |archive-url=<ins style="font-weight: bold; text-decoration: none;">https</ins>://arquivo.pt/wayback/20160522223452/http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |archive-date=May 22, 2016 |url-status=dead |series=IEA Heat Pump Annex 29 Workshop |contribution=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |contribution-url=http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |place=Zurich |publisher=arquivo.pt}}&lt;/ref&gt;&lt;br /&gt;The strata can be anything from sand to crystalline hardrock, and depending on engineering factors the depth can be from {{convert|50|to|300|m|0}}. Spacings have ranged from {{convert|3|to|8|m}}. Thermal models can be used to predict seasonal temperature variation in the ground, including the establishment of a stable temperature regime which is achieved by matching the inputs and outputs of heat over one or more annual cycles. Warm-temperature seasonal heat stores can be created using borehole fields to store surplus heat captured in summer to actively raise the temperature of large thermal banks of soil so that heat can be extracted more easily (and more cheaply) in winter. Interseasonal Heat Transfer&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/interseasonal_heat_transfer.html |title=Interseasonal Heat Transfer |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=19 January 2018 |archive-url=https://web.archive.org/web/20180119185108/http://www.icax.co.uk/interseasonal_heat_transfer.html |url-status=live }}&lt;/ref&gt; uses water circulating in pipes embedded in asphalt solar collectors to transfer heat to Thermal Banks&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/thermalbank.html |title=Thermal Banks |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=23 September 2010 |archive-url=https://web.archive.org/web/20100923155221/http://icax.co.uk/thermalbank.html |url-status=live }}&lt;/ref&gt; created in borehole fields. A ground source heat pump is used in winter to extract the warmth from the Thermal Bank to provide space heating via [[underfloor heating]]. A high [[Coefficient of performance]] is obtained because the heat pump starts with a warm temperature of {{convert|25|°C|°F|abbr=on}} from the thermal store, instead of a cold temperature of {{convert|10|°C|°F|abbr=on}} from the ground.&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/report_on_iht_by_trl.html |title=Report on Interseasonal Heat Transfer by the Highways Agency |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=17 December 2008 |archive-url=https://web.archive.org/web/20081217074635/http://www.icax.co.uk/report_on_iht_by_trl.html |url-status=live }}&lt;/ref&gt; A BTES operating at Richard Stockton College since 1995 at a peak of about {{convert|29|°C|°F|1|abbr=on}} consists of 400 boreholes {{convert|130|m|0}} deep under a {{convert|3.5|acre|ha|adj=on}} parking lot. It has a heat loss of 2% over six months.&lt;ref&gt;{{cite AV media | people = Chrisopherson, Elizabeth G. (Exec. Producer) | title = Green Builders (segment interviewing Lynn Stiles) | medium = Television production | publisher = PBS | date = 19 April 2009 | url = https://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | access-date = 11 September 2017 | archive-date = 23 December 2017 | archive-url = https://web.archive.org/web/20171223102410/http://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | url-status = live }}&lt;/ref&gt; The upper temperature limit for a BTES store is {{convert|85|°C|°F|abbr=on}} due to characteristics of the PEX pipe used for [[downhole heat exchanger|BHEs]], but most do not approach that limit. Boreholes can be either grout- or water-filled depending on geological conditions, and usually have a life expectancy in excess of 100 years. Both a BTES and its associated district heating system can be expanded incrementally after operation begins, as at Neckarsulm, Germany.&lt;ref&gt;{{Cite web |last=Lux |first=Nussbicker |date=January 2011 |title=Solar Thermal Combined with District Heating and Seasonal Heat Storage |url=http://www.itw.uni-stuttgart.de/abteilungen/rationelleEnergie/pdfdateien/11-03.pdf |website=itw.uni-stuttgart.de}}&lt;/ref&gt;&lt;br /&gt;BTES stores generally do not impair use of the land, and can exist under buildings, agricultural fields and parking lots. An example of one of the several kinds of STES illustrates well the capability of interseasonal heat storage. In Alberta, Canada, the homes of the [[Drake Landing Solar Community]] (in operation since 2007), get 97% of their year-round heat from a district heat system that is supplied by solar heat from solar-thermal panels on garage roofs. This feat – a world record – is enabled by interseasonal heat storage in a large mass of native rock that is under a central park. The thermal exchange occurs via a cluster of 144 boreholes, drilled {{convert|37|m}} into the earth. Each borehole is {{convert|155|mm|in|1|abbr=on}} in diameter and contains a simple heat exchanger made of small diameter plastic pipe, through which water is circulated. No heat pumps are involved.&lt;ref name=drake1/&gt;&lt;ref&gt;{{cite press release | title = Canadian Solar Community Sets New World Record for Energy Efficiency and Innovation | publisher = Natural Resources Canada | date = 5 October 2012 | url = http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | access-date = 21 April 2013 | archive-date = 30 April 2013 | archive-url = https://web.archive.org/web/20130430221347/http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | url-status = dead }} {{cite web | title = Drake Landing Solar Community (webpage) | url = http://www.dlsc.ca/ | access-date = 21 April 2013 | archive-date = 25 May 2019 | archive-url = https://web.archive.org/web/20190525074938/https://www.dlsc.ca/ | url-status = live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''CTES''' (cavern or mine thermal energy storage). STES stores are possible in flooded mines, purpose-built chambers, or abandoned underground oil stores (e.g. those mined into crystalline hardrock in Norway), if they are close enough to a heat (or cold) source and market.&lt;ref&gt;{{Citation | last1 = Michel | first1 = F.A. | contribution = Utilization of abandoned mine workings for thermal energy storage in Canada | title = Utilization of abandoned mine workings for thermal energy storage in Canada | series = Effstock Conference (11th International) – Thermal Energy Storage for Efficiency and Sustainability | place = Stockholm | contribution-url = http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | date = 2009 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610230931/http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | url-status = live }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''CTES''' (cavern or mine thermal energy storage). STES stores are possible in flooded mines, purpose-built chambers, or abandoned underground oil stores (e.g. those mined into crystalline hardrock in Norway), if they are close enough to a heat (or cold) source and market.&lt;ref&gt;{{Citation | last1 = Michel | first1 = F.A. | contribution = Utilization of abandoned mine workings for thermal energy storage in Canada | title = Utilization of abandoned mine workings for thermal energy storage in Canada | series = Effstock Conference (11th International) – Thermal Energy Storage for Efficiency and Sustainability | place = Stockholm | contribution-url = http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | date = 2009 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610230931/http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | url-status = live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Energy Pilings'''. During construction of large buildings, BHE heat exchangers much like those used for BTES stores have been spiraled inside the cages of reinforcement bars for pilings, with concrete then poured in place. The pilings and surrounding strata then become the storage medium.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Energy Pilings'''. During construction of large buildings, BHE heat exchangers much like those used for BTES stores have been spiraled inside the cages of reinforcement bars for pilings, with concrete then poured in place. The pilings and surrounding strata then become the storage medium.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 103:</td> <td colspan="2" class="diff-lineno">Line 103:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Liquid engineering===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Liquid engineering===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Architect Matyas Gutai&lt;ref&gt;{{cite web|url=https://www.academia.edu/7452352 |title=Liquid Engineering - Towards New Sustainable Model for Architecture and City &amp;#124; Matyas Gutai |publisher=Academia.edu |date=1970-01-01 |access-date=2017-12-22}}&lt;/ref&gt; obtained an EU grant to construct a house in [[Hungary]]&lt;ref&gt;{{cite web |last=Parke |first=Phoebe |url=<del style="font-weight: bold; text-decoration: none;">http</del>://edition.cnn.com/2015/04/08/tech/water-house-matyas-gutai/index.html |title=Meet the man who builds houses with water - CNN |publisher=<del style="font-weight: bold; text-decoration: none;">Edition.cnn.com</del> |date=2016-07-21 |access-date=2017-12-22 |archive-date=9 April 2015 |archive-url=https://web.archive.org/web/20150409063027/http://edition.cnn.com/2015/04/08/tech/water-house-matyas-gutai/index.html |url-status=live }}&lt;/ref&gt; which uses extensive water filled wall panels as heat collectors and reservoirs with underground heat storage water tanks. The design uses microprocessor control.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Architect Matyas Gutai&lt;ref&gt;{{cite web|url=https://www.academia.edu/7452352 |title=Liquid Engineering - Towards New Sustainable Model for Architecture and City &amp;#124; Matyas Gutai |publisher=Academia.edu |date=1970-01-01 |access-date=2017-12-22}}&lt;/ref&gt; obtained an EU grant to construct a house in [[Hungary]]&lt;ref&gt;{{cite web |last=Parke |first=Phoebe |url=<ins style="font-weight: bold; text-decoration: none;">https</ins>://edition.cnn.com/2015/04/08/tech/water-house-matyas-gutai/index.html |title=Meet the man who builds houses with water - CNN |publisher=<ins style="font-weight: bold; text-decoration: none;">CNN</ins> |date=2016-07-21 |access-date=2017-12-22 |archive-date=9 April 2015 |archive-url=https://web.archive.org/web/20150409063027/http://edition.cnn.com/2015/04/08/tech/water-house-matyas-gutai/index.html |url-status=live }}&lt;/ref&gt; which uses extensive water filled wall panels as heat collectors and reservoirs with underground heat storage water tanks. The design uses microprocessor control.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Small buildings with internal STES water tanks==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Small buildings with internal STES water tanks==</div></td> </tr> </table> GreenC bot https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1287499269&oldid=prev Jeegajeega: /* Annualized geo-solar */ 2025-04-26T17:18:42Z <p><span class="autocomment">Annualized geo-solar</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:18, 26 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 116:</td> <td colspan="2" class="diff-lineno">Line 116:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use of STES in greenhouses==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use of STES in greenhouses==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>STES is also used extensively for the heating of greenhouses.&lt;ref&gt;Paksoy H., Turgut B., Beyhan B., Dasgan H.Y., Evliya H., Abak K., Bozdag S. (2010). [https://worldenergy.org/documents/congresspapers/346.pdf Greener Greenhouses] {{webarchive|url=https://web.archive.org/web/20111125162924/http://worldenergy.org/documents/congresspapers/346.pdf |date=2011-11-25 }}. World Energy Congress. Montreal 2010.&lt;/ref&gt;&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">Turgut</del> <del style="font-weight: bold; text-decoration: none;">B.,</del> <del style="font-weight: bold; text-decoration: none;">Dasgan</del> <del style="font-weight: bold; text-decoration: none;">H.Y.,</del> <del style="font-weight: bold; text-decoration: none;">Abak K</del>.<del style="font-weight: bold; text-decoration: none;">, Paksoy H</del>.<del style="font-weight: bold; text-decoration: none;">, Evliya H</del>.<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">Bozdag S</del>.<del style="font-weight: bold; text-decoration: none;"> (2008)</del>.<del style="font-weight: bold; text-decoration: none;"> [</del>https://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4A-2.pdf <del style="font-weight: bold; text-decoration: none;">Aquifer</del> <del style="font-weight: bold; text-decoration: none;">thermal</del> <del style="font-weight: bold; text-decoration: none;">energy storage application in greenhouse climatization]</del>.<del style="font-weight: bold; text-decoration: none;"> International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate. Also: EcoStock 2006. pp. 143-148</del>.&lt;/ref&gt;&lt;ref&gt;See slide 15 of Snijders (2008), above.&lt;/ref&gt; ATES is the kind of storage commonly in use for this application. In summer, the greenhouse is cooled with ground water, pumped from the “cold well” in the aquifer. The water is heated in the process, and is returned to the “warm well” in the aquifer. When the greenhouse needs heat, such as to extend the growing season, water is withdrawn from the warm well, becomes chilled while serving its heating function, and is returned to the cold well. This is a very efficient system of [[free cooling]], which uses only circulation pumps and no heat pumps.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>STES is also used extensively for the heating of greenhouses.&lt;ref&gt;Paksoy H., Turgut B., Beyhan B., Dasgan H.Y., Evliya H., Abak K., Bozdag S. (2010). [https://worldenergy.org/documents/congresspapers/346.pdf Greener Greenhouses] {{webarchive|url=https://web.archive.org/web/20111125162924/http://worldenergy.org/documents/congresspapers/346.pdf |date=2011-11-25 }}. World Energy Congress. Montreal 2010.&lt;/ref&gt;&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite</ins> <ins style="font-weight: bold; text-decoration: none;">web</ins> <ins style="font-weight: bold; text-decoration: none;">|title=Wayback</ins> <ins style="font-weight: bold; text-decoration: none;">Machine</ins> <ins style="font-weight: bold; text-decoration: none;">|url=https://intraweb</ins>.<ins style="font-weight: bold; text-decoration: none;">stockton</ins>.<ins style="font-weight: bold; text-decoration: none;">edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4A-2</ins>.<ins style="font-weight: bold; text-decoration: none;">pdf</ins> <ins style="font-weight: bold; text-decoration: none;">|archive-url=http://web</ins>.<ins style="font-weight: bold; text-decoration: none;">archive</ins>.<ins style="font-weight: bold; text-decoration: none;">org/web/20230129082305/</ins>https://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4A-2.pdf <ins style="font-weight: bold; text-decoration: none;">|archive-date=2023-01-29</ins> <ins style="font-weight: bold; text-decoration: none;">|access-date=2025-04-26</ins> <ins style="font-weight: bold; text-decoration: none;">|website=intraweb</ins>.<ins style="font-weight: bold; text-decoration: none;">stockton</ins>.<ins style="font-weight: bold; text-decoration: none;">edu}}</ins>&lt;/ref&gt;&lt;ref&gt;See slide 15 of Snijders (2008), above.&lt;/ref&gt; ATES is the kind of storage commonly in use for this application. In summer, the greenhouse is cooled with ground water, pumped from the “cold well” in the aquifer. The water is heated in the process, and is returned to the “warm well” in the aquifer. When the greenhouse needs heat, such as to extend the growing season, water is withdrawn from the warm well, becomes chilled while serving its heating function, and is returned to the cold well. This is a very efficient system of [[free cooling]], which uses only circulation pumps and no heat pumps.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Annualized geo-solar==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Annualized geo-solar==</div></td> </tr> </table> Jeegajeega https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1287499171&oldid=prev Jeegajeega: /* Annualized geo-solar */ 2025-04-26T17:17:57Z <p><span class="autocomment">Annualized geo-solar</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:17, 26 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 109:</td> <td colspan="2" class="diff-lineno">Line 109:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of homes and small apartment buildings have demonstrated combining a large internal water tank for heat storage with roof-mounted solar-thermal collectors. Storage temperatures of {{convert|90|°C|°F|abbr=on}} are sufficient to supply both domestic hot water and space heating. The first such house was MIT Solar House #1, in 1939. An eight-unit apartment building in [[Oberburg, Bern|Oberburg]], [[Switzerland]] was built in 1989, with three tanks storing a total of {{convert|118|m3|cuft|abbr=in|0}} that store more heat than the building requires. Since 2011, that design is now being replicated in new buildings.&lt;ref&gt;Sun &amp; Wind Energy (2011). [http://www.jenni.ch/pdf/SunWindEnergy.pdf The solar house concept is spreading] {{webarchive|url=https://web.archive.org/web/20131110023840/http://www.jenni.ch/pdf/SunWindEnergy.pdf |date=2013-11-10 }}.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number of homes and small apartment buildings have demonstrated combining a large internal water tank for heat storage with roof-mounted solar-thermal collectors. Storage temperatures of {{convert|90|°C|°F|abbr=on}} are sufficient to supply both domestic hot water and space heating. The first such house was MIT Solar House #1, in 1939. An eight-unit apartment building in [[Oberburg, Bern|Oberburg]], [[Switzerland]] was built in 1989, with three tanks storing a total of {{convert|118|m3|cuft|abbr=in|0}} that store more heat than the building requires. Since 2011, that design is now being replicated in new buildings.&lt;ref&gt;Sun &amp; Wind Energy (2011). [http://www.jenni.ch/pdf/SunWindEnergy.pdf The solar house concept is spreading] {{webarchive|url=https://web.archive.org/web/20131110023840/http://www.jenni.ch/pdf/SunWindEnergy.pdf |date=2013-11-10 }}.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[Berlin]], the “Zero Heating Energy House”, was built in 1997 in as part of the [[IEA Task 13]] low energy housing demonstration project. It stores water at temperatures up to {{convert|90|°C|°F|abbr=on}} inside a {{convert|20|m3|cuft|0|abbr=in}} tank in the [[basement]].&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">Hestnes,</del> <del style="font-weight: bold; text-decoration: none;">A.;</del> <del style="font-weight: bold; text-decoration: none;">Hastings,</del> <del style="font-weight: bold; text-decoration: none;">R.</del> <del style="font-weight: bold; text-decoration: none;">(eds) (2003). Solar Energy</del> <del style="font-weight: bold; text-decoration: none;">Houses: Strategies, Technologies, Examples. [</del>https://books.google.com/books?id=qr46dC0-JiQC&amp;pg=PA109 <del style="font-weight: bold; text-decoration: none;">pp.</del> <del style="font-weight: bold; text-decoration: none;">109-114].</del> <del style="font-weight: bold; text-decoration: none;">{{ISBN</del>|1-902916-43-<del style="font-weight: bold; text-decoration: none;">3</del>}}<del style="font-weight: bold; text-decoration: none;">.</del>&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[Berlin]], the “Zero Heating Energy House”, was built in 1997 in as part of the [[IEA Task 13]] low energy housing demonstration project. It stores water at temperatures up to {{convert|90|°C|°F|abbr=on}} inside a {{convert|20|m3|cuft|0|abbr=in}} tank in the [[basement]].&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite</ins> <ins style="font-weight: bold; text-decoration: none;">book</ins> <ins style="font-weight: bold; text-decoration: none;">|last=Hestnes</ins> <ins style="font-weight: bold; text-decoration: none;">|first=Anne</ins> <ins style="font-weight: bold; text-decoration: none;">Grete</ins> <ins style="font-weight: bold; text-decoration: none;">|url=</ins>https://books.google.com/books?id=qr46dC0-JiQC&amp;pg=PA109 <ins style="font-weight: bold; text-decoration: none;">|title=Solar</ins> <ins style="font-weight: bold; text-decoration: none;">Energy Houses: Strategies, Technologies, Examples</ins> |<ins style="font-weight: bold; text-decoration: none;">last2=Hastings |first2=Robert |last3=Saxhof |first3=Bjarne |date=2003 |publisher=Earthscan |isbn=978-</ins>1-902916-43-<ins style="font-weight: bold; text-decoration: none;">9 |language=en</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A similar example was built in [[Ireland]] in 2009, as a prototype. The ''solar seasonal store''&lt;ref&gt;{{Cite web|url=https://www.scanhome.ie/research/solarseasonal.php|title=Scandinavian Homes - Research - Solar seasonal storage project with University of Ulster|website=www.scanhome.ie|access-date=15 March 2021|archive-date=11 March 2021|archive-url=https://web.archive.org/web/20210311185848/https://www.scanhome.ie/research/solarseasonal.php|url-status=live}}&lt;/ref&gt; consists of a {{convert|23|m3|cuft|0|abbr=on}} tank, filled with water,&lt;ref&gt;{{cite web |url=http://www.ukstudentpassivhausconference.org.uk/uploads/4/7/2/1/4721930/shane_colclough_ph_conf_uk.pdf<del style="font-weight: bold; text-decoration: none;"> |title=Archived copy |access-date=2010-12-17</del> |url-status=dead |archive-url=https://web.archive.org/web/20110626170404/http://www.ukstudentpassivhausconference.org.uk/uploads/4/7/2/1/4721930/shane_colclough_ph_conf_uk.pdf |archive-date=2011-06-26 }}&lt;/ref&gt; which was installed in the ground, heavily insulated all around, to store heat from [[Evacuated tube#Evacuated tube collectors|evacuated solar tubes]] during the year. The system was installed as an experiment to heat the ''world's first standardized pre-fabricated [[passive house]]''&lt;ref&gt;{{Cite web|url=http://www.constructireland.ie/articles/0209passivehouse.php|archiveurl=https://web.archive.org/web/20061003201628/http://www.constructireland.ie/articles/0209passivehouse.php|url-status=dead|title=Construct Ireland Articles - Passive Resistance|archivedate=October 3, 2006}}&lt;/ref&gt; in [[Galway|Galway, Ireland]]. The aim was to find out if this heat would be sufficient to eliminate the need for any electricity in the already highly efficient home during the winter months.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A similar example was built in [[Ireland]] in 2009, as a prototype. The ''solar seasonal store''&lt;ref&gt;{{Cite web|url=https://www.scanhome.ie/research/solarseasonal.php|title=Scandinavian Homes - Research - Solar seasonal storage project with University of Ulster|website=www.scanhome.ie|access-date=15 March 2021|archive-date=11 March 2021|archive-url=https://web.archive.org/web/20210311185848/https://www.scanhome.ie/research/solarseasonal.php|url-status=live}}&lt;/ref&gt; consists of a {{convert|23|m3|cuft|0|abbr=on}} tank, filled with water,&lt;ref&gt;{{cite web<ins style="font-weight: bold; text-decoration: none;"> |title=The Passiv Haus combined with Solar Energy Store - the ultimate low energy combination?</ins> |url=http://www.ukstudentpassivhausconference.org.uk/uploads/4/7/2/1/4721930/shane_colclough_ph_conf_uk.pdf |url-status=dead |archive-url=https://web.archive.org/web/20110626170404/http://www.ukstudentpassivhausconference.org.uk/uploads/4/7/2/1/4721930/shane_colclough_ph_conf_uk.pdf |archive-date=2011-06-26 <ins style="font-weight: bold; text-decoration: none;">|access-date=2010-12-17</ins>}}&lt;/ref&gt; which was installed in the ground, heavily insulated all around, to store heat from [[Evacuated tube#Evacuated tube collectors|evacuated solar tubes]] during the year. The system was installed as an experiment to heat the ''world's first standardized pre-fabricated [[passive house]]''&lt;ref&gt;{{Cite web|url=http://www.constructireland.ie/articles/0209passivehouse.php|archiveurl=https://web.archive.org/web/20061003201628/http://www.constructireland.ie/articles/0209passivehouse.php|url-status=dead|title=Construct Ireland Articles - Passive Resistance|archivedate=October 3, 2006}}&lt;/ref&gt; in [[Galway|Galway, Ireland]]. The aim was to find out if this heat would be sufficient to eliminate the need for any electricity in the already highly efficient home during the winter months.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Based on improvements in glazing the [[Zero heating building]]s are now possible without seasonal energy storage.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Based on improvements in glazing the [[Zero heating building]]s are now possible without seasonal energy storage.</div></td> </tr> </table> Jeegajeega https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1287472632&oldid=prev Jeegajeega at 13:58, 26 April 2025 2025-04-26T13:58:16Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:58, 26 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 132:</td> <td colspan="2" class="diff-lineno">Line 132:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Usually it requires several years for the storage earth-mass to fully preheat from the local at-depth soil temperature (which varies widely by region and site-orientation) to an optimum Fall level at which it can provide up to 100% of the heating requirements of the living space through the winter. This technology continues to evolve, with a range of variations (including active-return devices) being explored. The listserve where this innovation is most often discussed is "Organic Architecture" at Yahoo.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Usually it requires several years for the storage earth-mass to fully preheat from the local at-depth soil temperature (which varies widely by region and site-orientation) to an optimum Fall level at which it can provide up to 100% of the heating requirements of the living space through the winter. This technology continues to evolve, with a range of variations (including active-return devices) being explored. The listserve where this innovation is most often discussed is "Organic Architecture" at Yahoo.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>This system is almost exclusively deployed in northern Europe. One system has been built at [[Drake Landing]] in North America. A more recent system is a Do-it-yourself <del style="font-weight: bold; text-decoration: none;">[[Diygreenbuildingwithjerry.blogspot.com|</del>energy-neutral home<del style="font-weight: bold; text-decoration: none;">]]</del> in progress in Collinsville, IL that will rely solely on Annualized Solar for conditioning.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>This system is almost exclusively deployed in northern Europe. One system has been built at [[Drake Landing]] in North America. A more recent system is a Do-it-yourself energy-neutral home in progress in Collinsville, IL that will rely solely on Annualized Solar for conditioning.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 171:</td> <td colspan="2" class="diff-lineno">Line 171:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Solar architecture]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Solar architecture]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Solar power]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Solar power]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Energy infrastructure]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Sustainable technologies]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Heating, ventilation, and air conditioning companies]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Building engineering]]</div></td> </tr> </table> Jeegajeega https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1287462343&oldid=prev Jeegajeega at 12:23, 26 April 2025 2025-04-26T12:23:25Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:23, 26 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 79:</td> <td colspan="2" class="diff-lineno">Line 79:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Surface and above ground technologies===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Surface and above ground technologies===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Pit Storage'''. Lined, shallow dug pits that are filled with gravel and water as the storage medium are used for STES in many Danish district heating systems. Storage pits are covered with a layer of insulation and then soil, and are used for agriculture{{citation needed|date=May 2023}} or other purposes. A system in Marstal, Denmark, includes a pit storage supplied with heat from a field of solar-thermal panels. It is initially providing 20% of the year-round heat for the village and is being expanded to provide twice that.&lt;ref&gt;{{Citation|title=Long Term Experience with Solar District Heating|date=29 September 2011|last1=Holms|first1=L. |series=International SDH Workshop|contribution=Long Term Experience with Solar District Heating|contribution-url=http://www.solar-district-heating.eu/LinkClick.aspx?fileticket=0TUGQodrJt0%3d&amp;tabid=69 |place=Ferrara, IT|access-date=22 April 2013|archive-date=8 March 2020|archive-url= https://web.archive.org/web/20200308203257/https://www.solar-district-heating.eu/LinkClick.aspx?fileticket=0TUGQodrJt0%3d&amp;tabid=69 |url-status=dead}}&lt;!--permanent deadlink--&gt;&lt;/ref&gt; The world's largest pit store ({{convert|200000|m3|cuft|abbr=on|sigfig=1}}) was [[Project commissioning|commissioned]] in Vojens, Denmark, in 2015, and allows solar heat to provide 50% of the annual energy for the world's largest [[Central solar heating|solar-enabled district heating system]].&lt;ref name=ing2015-06-14&gt;{{cite web |url=http://ing.dk/artikel/verdens-stoerste-damvarmelager-indviet-i-vojens-176776 |title=Verdens største damvarmelager indviet i Vojens |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=14 June 2015 |url-status=dead |archive-url=https://web.archive.org/web/20151019125824/http://ing.dk/artikel/verdens-stoerste-damvarmelager-indviet-i-vojens-176776 |archive-date=19 October 2015 }}&lt;/ref&gt;&lt;ref&gt;State of Green (undated). [http://stateofgreen.com/en/solutions/world-largest-thermal-pit-storage-in-vojens World largest thermal pit storage in Vojens] {{Webarchive|url=https://web.archive.org/web/20240403114429/https://stateofgreen.com/en/solutions/world-largest-thermal-pit-storage-in-vojens/ |date=3 April 2024 }}. "The huge storage will be operated as an interseasonal heat storage allowing the solar heating plant to deliver more than 50% of the annual heat production to the network. The rest of the heat will be produced by 3 gas engines, a 10 MW electric boiler, an absorption heat pump and gas boilers."&lt;/ref&gt;&lt;ref&gt;<del style="font-weight: bold; text-decoration: none;">SDH</del> <del style="font-weight: bold; text-decoration: none;">(Solar</del> <del style="font-weight: bold; text-decoration: none;">District</del> <del style="font-weight: bold; text-decoration: none;">Heating) Newsletter</del> <del style="font-weight: bold; text-decoration: none;">(</del>2014<del style="font-weight: bold; text-decoration: none;">).</del> <del style="font-weight: bold; text-decoration: none;">[</del>http://<del style="font-weight: bold; text-decoration: none;">www.</del>solar-district-heating.eu/NewsEvents/News/tabid/68/ArticleId/367/The-worlds-largest-solar-heating-plant-to-be-established-in-Vojens-Denmark.aspx <del style="font-weight: bold; text-decoration: none;">The world's largest solar heating plant to be established in Vojens, Denmark] {{Webarchive</del>|url=https://web.archive.org/web/<del style="font-weight: bold; text-decoration: none;">20160305005053</del>/http://solar-district-heating.eu/<del style="font-weight: bold; text-decoration: none;">newsevents</del>/<del style="font-weight: bold; text-decoration: none;">news</del>/tabid/68/<del style="font-weight: bold; text-decoration: none;">articleid</del>/367/<del style="font-weight: bold; text-decoration: none;">the</del>-worlds-largest-solar-heating-plant-to-be-established-in-<del style="font-weight: bold; text-decoration: none;">vojens</del>-<del style="font-weight: bold; text-decoration: none;">denmark</del>.aspx |date=<del style="font-weight: bold; text-decoration: none;">5 </del>March 2016 }}<del style="font-weight: bold; text-decoration: none;">. 7 June 2014.</del>&lt;/ref&gt;&lt;ref&gt;{{cite web |url=http://ing.dk/artikel/dansk-solteknologi-mod-nye-verdensrekorder-179658 |title=Dansk solteknologi mod nye verdensrekorder |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=23 October 2015 |access-date=31 October 2015 |archive-date=26 October 2015 |archive-url=https://web.archive.org/web/20151026014340/http://ing.dk/artikel/dansk-solteknologi-mod-nye-verdensrekorder-179658 |url-status=live }}&lt;/ref&gt;&lt;ref&gt;{{cite web|url=http://ing.dk/artikel/her-er-verdens-stoerste-varmelager-og-solfanger-171124 |title=Her er verdens største varmelager og solfanger |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=26 September 2014}}&lt;/ref&gt; In these Danish systems, a capital expenditure per capacity unit between 0,4 and €0,6 /kWh could be achieved.&lt;ref&gt;{{cite web |url=https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3 |title=Seasonal pit heat storage: Cost benchmark of 30 EUR/m³ |first1=Baerbel |last1=Epp |date=17 May 2019 |access-date=29 December 2020 |archive-date=2 February 2020 |archive-url=https://web.archive.org/web/20200202103359/https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3 |url-status=live }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Pit Storage'''. Lined, shallow dug pits that are filled with gravel and water as the storage medium are used for STES in many Danish district heating systems. Storage pits are covered with a layer of insulation and then soil, and are used for agriculture{{citation needed|date=May 2023}} or other purposes. A system in Marstal, Denmark, includes a pit storage supplied with heat from a field of solar-thermal panels. It is initially providing 20% of the year-round heat for the village and is being expanded to provide twice that.&lt;ref&gt;{{Citation|title=Long Term Experience with Solar District Heating|date=29 September 2011|last1=Holms|first1=L. |series=International SDH Workshop|contribution=Long Term Experience with Solar District Heating|contribution-url=http://www.solar-district-heating.eu/LinkClick.aspx?fileticket=0TUGQodrJt0%3d&amp;tabid=69 |place=Ferrara, IT|access-date=22 April 2013|archive-date=8 March 2020|archive-url= https://web.archive.org/web/20200308203257/https://www.solar-district-heating.eu/LinkClick.aspx?fileticket=0TUGQodrJt0%3d&amp;tabid=69 |url-status=dead}}&lt;!--permanent deadlink--&gt;&lt;/ref&gt; The world's largest pit store ({{convert|200000|m3|cuft|abbr=on|sigfig=1}}) was [[Project commissioning|commissioned]] in Vojens, Denmark, in 2015, and allows solar heat to provide 50% of the annual energy for the world's largest [[Central solar heating|solar-enabled district heating system]].&lt;ref name=ing2015-06-14&gt;{{cite web |url=http://ing.dk/artikel/verdens-stoerste-damvarmelager-indviet-i-vojens-176776 |title=Verdens største damvarmelager indviet i Vojens |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=14 June 2015 |url-status=dead |archive-url=https://web.archive.org/web/20151019125824/http://ing.dk/artikel/verdens-stoerste-damvarmelager-indviet-i-vojens-176776 |archive-date=19 October 2015 }}&lt;/ref&gt;&lt;ref&gt;State of Green (undated). [http://stateofgreen.com/en/solutions/world-largest-thermal-pit-storage-in-vojens World largest thermal pit storage in Vojens] {{Webarchive|url=https://web.archive.org/web/20240403114429/https://stateofgreen.com/en/solutions/world-largest-thermal-pit-storage-in-vojens/ |date=3 April 2024 }}. "The huge storage will be operated as an interseasonal heat storage allowing the solar heating plant to deliver more than 50% of the annual heat production to the network. The rest of the heat will be produced by 3 gas engines, a 10 MW electric boiler, an absorption heat pump and gas boilers."&lt;/ref&gt;&lt;ref&gt;<ins style="font-weight: bold; text-decoration: none;">{{Cite</ins> <ins style="font-weight: bold; text-decoration: none;">web</ins> <ins style="font-weight: bold; text-decoration: none;">|date=July</ins> <ins style="font-weight: bold; text-decoration: none;">7,</ins> 2014 <ins style="font-weight: bold; text-decoration: none;">|title=The world's largest solar heating plant to be established in Vojens, Denmark |url=</ins>http://solar-district-heating.eu/NewsEvents/News/tabid/68/ArticleId/367/The-worlds-largest-solar-heating-plant-to-be-established-in-Vojens-Denmark.aspx |<ins style="font-weight: bold; text-decoration: none;">archive-</ins>url=https://web.archive.org/web/<ins style="font-weight: bold; text-decoration: none;">20160310175228</ins>/http://solar-district-heating.eu/<ins style="font-weight: bold; text-decoration: none;">NewsEvents</ins>/<ins style="font-weight: bold; text-decoration: none;">News</ins>/tabid/68/<ins style="font-weight: bold; text-decoration: none;">ArticleId</ins>/367/<ins style="font-weight: bold; text-decoration: none;">The</ins>-worlds-largest-solar-heating-plant-to-be-established-in-<ins style="font-weight: bold; text-decoration: none;">Vojens</ins>-<ins style="font-weight: bold; text-decoration: none;">Denmark</ins>.aspx |<ins style="font-weight: bold; text-decoration: none;">archive-</ins>date=March<ins style="font-weight: bold; text-decoration: none;"> 10,</ins> 2016 <ins style="font-weight: bold; text-decoration: none;">|website=SDH</ins>}}&lt;/ref&gt;&lt;ref&gt;{{cite web |url=http://ing.dk/artikel/dansk-solteknologi-mod-nye-verdensrekorder-179658 |title=Dansk solteknologi mod nye verdensrekorder |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=23 October 2015 |access-date=31 October 2015 |archive-date=26 October 2015 |archive-url=https://web.archive.org/web/20151026014340/http://ing.dk/artikel/dansk-solteknologi-mod-nye-verdensrekorder-179658 |url-status=live }}&lt;/ref&gt;&lt;ref&gt;{{cite web|url=http://ing.dk/artikel/her-er-verdens-stoerste-varmelager-og-solfanger-171124 |title=Her er verdens største varmelager og solfanger |first1=Sanne |last1=Wittrup |work=[[Ingeniøren]] |date=26 September 2014}}&lt;/ref&gt; In these Danish systems, a capital expenditure per capacity unit between 0,4 and €0,6 /kWh could be achieved.&lt;ref&gt;{{cite web |url=https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3 |title=Seasonal pit heat storage: Cost benchmark of 30 EUR/m³ |first1=Baerbel |last1=Epp |date=17 May 2019 |access-date=29 December 2020 |archive-date=2 February 2020 |archive-url=https://web.archive.org/web/20200202103359/https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3 |url-status=live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Large-scale thermal storage with water'''. Large scale STES water storage tanks can be built above ground, insulated, and then covered with soil.&lt;ref&gt;{{Citation | last1 = Mangold | first1 = D. | contribution = Prospects of Solar Thermal and Heat Storage in DHC | title = Prospects of Solar Thermal and Heat Storage in DHC | series = Euroheat and Power + COGEN Europe | place = Brussels | date = 6 February 2010 | contribution-url = http://www.lsta.lt/files/events/100602-03_EHP_Briuselis/Sesija%204/5_Dirk_Mangold.pdf }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Large-scale thermal storage with water'''. Large scale STES water storage tanks can be built above ground, insulated, and then covered with soil.&lt;ref&gt;{{Citation | last1 = Mangold | first1 = D. | contribution = Prospects of Solar Thermal and Heat Storage in DHC | title = Prospects of Solar Thermal and Heat Storage in DHC | series = Euroheat and Power + COGEN Europe | place = Brussels | date = 6 February 2010 | contribution-url = http://www.lsta.lt/files/events/100602-03_EHP_Briuselis/Sesija%204/5_Dirk_Mangold.pdf }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Horizontal heat exchangers'''. For small installations, a heat exchanger of corrugated plastic pipe can be shallow-buried in a trench to create a STES.&lt;ref&gt;{{Citation | last1 = Hellström | first1 = G. | contribution = Market and Technology in Sweden | title = Market and Technology in Sweden | series = 1st Groundhit workshop | date = 18 May 2006 | page= 23 | url = http://www.kraac.or.kr/upload/board_techData/market%20and%20technology%20in%20sweden.pdf }}{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Horizontal heat exchangers'''. For small installations, a heat exchanger of corrugated plastic pipe can be shallow-buried in a trench to create a STES.&lt;ref&gt;{{Citation | last1 = Hellström | first1 = G. | contribution = Market and Technology in Sweden | title = Market and Technology in Sweden | series = 1st Groundhit workshop | date = 18 May 2006 | page= 23 | url = http://www.kraac.or.kr/upload/board_techData/market%20and%20technology%20in%20sweden.pdf }}{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;</div></td> </tr> </table> Jeegajeega https://en.wikipedia.org/w/index.php?title=Seasonal_thermal_energy_storage&diff=1287461759&oldid=prev Jeegajeega at 12:17, 26 April 2025 2025-04-26T12:17:07Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:17, 26 April 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 32:</td> <td colspan="2" class="diff-lineno">Line 32:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | archive-url = https://web.archive.org/web/20200411053502/http://www.saunier-associes.com/igeia/docs/documents/projectPublications/D10-FeasabilityStudies.pdf</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | archive-url = https://web.archive.org/web/20200411053502/http://www.saunier-associes.com/igeia/docs/documents/projectPublications/D10-FeasabilityStudies.pdf</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | url-status = dead</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | url-status = dead</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> }}&lt;/ref&gt;or the natural cold of winter air can be stored for summertime air conditioning.&lt;ref&gt;{{Cite web |date=March 2009 |title=Aquifer Thermal Energy Cold Storage System at Richard Stockton College |url=http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |archive-url=https://web.archive.org/web/20140112152451/http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |archive-date=January 12, 2014}}&lt;/ref&gt;&lt;ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> }}&lt;/ref&gt;or the natural cold of winter air can be stored for summertime air conditioning.&lt;ref<ins style="font-weight: bold; text-decoration: none;"> name=":0"</ins>&gt;{{Cite web |date=March 2009 |title=Aquifer Thermal Energy Cold Storage System at Richard Stockton College |url=http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |archive-url=https://web.archive.org/web/20140112152451/http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |archive-date=January 12, 2014}}&lt;/ref&gt;&lt;ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Citation</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Citation</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | last1 = Gehlin</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | last1 = Gehlin</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 72:</td> <td colspan="2" class="diff-lineno">Line 72:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''UTES''' (underground thermal energy storage), in which the storage medium may be geological strata ranging from earth or sand to solid bedrock, or aquifers.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''UTES''' (underground thermal energy storage), in which the storage medium may be geological strata ranging from earth or sand to solid bedrock, or aquifers.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;br /&gt;UTES technologies include:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;br /&gt;UTES technologies include:</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''ATES''' ([[aquifer thermal energy storage]]). An ATES store is composed of a doublet, totaling two or more wells into a deep aquifer that is contained between impermeable geological layers above and below. One half of the doublet is for water extraction and the other half for reinjection, so the aquifer is kept in hydrological balance, with no net extraction. The heat (or cold) storage medium is the water and the substrate it occupies. Germany's [[Reichstag building]] has been both heated and cooled since 1999 with ATES stores, in two aquifers at different depths.&lt;ref&gt;{{Citation | last1 = Seibt | first1 = P. | last2 = Kabus | first2 = F. | contribution = Aquifer Thermal Energy Storage in Germany | title = Aquifer Thermal Energy Storage in Germany | series = American Astronomical... | contribution-url = http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | date = 2003 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610223951/http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | url-status = dead }}&lt;/ref&gt;&lt;br /&gt;In the Netherlands there are well over 1,000 ATES systems, which are now a standard construction option.&lt;ref&gt;{{Cite web |title=Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe |url=http://trca.on.ca/dotAsset/16551.pdf |archive-url=https://web.archive.org/web/20210308043800/http://trca.on.ca/dotAsset/16551.pdf |archive-date=March 8, 2021 |website=trca.on.ca}}&lt;/ref&gt;&lt;ref&gt;{{Cite web |title=20,000 Ates Systems in the Netherlands in 2020 - Major Step Towards a Sustainable Energy Supply |url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-url=https://web.archive.org/web/20150610205959/https://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdfrgy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-date=June 10, 2015}}&lt;/ref&gt;&lt;br /&gt;A significant system has been operating at Richard Stockton College (New Jersey) for several years.&lt;ref name="<del style="font-weight: bold; text-decoration: none;">RSC</del>"<del style="font-weight: bold; text-decoration: none;">&gt;{{Citation</del> <del style="font-weight: bold; text-decoration: none;">|last1=Paksoy |first1=H. |title=Aquifer Thermal Energy Cold Storage System at Richard Stockton College |date=2009 |access-date=22 April 2013 |archive-url=https:</del>/<del style="font-weight: bold; text-decoration: none;">/web.archive.org/web/20140112152451/http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |archive-date=12 January 2014 |url-status=dead |series=EFFSTOCK 2009 (11th International) - Thermal Energy Storage for Efficiency and Sustainability |contribution=Aquifer Thermal Energy Cold Storage System at Richard Stockton College |contribution-url=http://underground-energy.com/Aquifer_Thermal_Energy_Cold_Storage_System_at_Richard_Stockton_College.pdf |place=Stockholm |last2=Snijders |first2=A. |last3=Stiles |first3=L.}}&lt;/ref</del>&gt;<del style="font-weight: bold; text-decoration: none;"> </del>ATES has a lower installation cost than borehole thermal energy storage (BTES) because usually fewer holes are drilled, but ATES has a higher operating cost. Also, ATES requires particular underground conditions to be feasible, including the presence of an aquifer.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''ATES''' ([[aquifer thermal energy storage]]). An ATES store is composed of a doublet, totaling two or more wells into a deep aquifer that is contained between impermeable geological layers above and below. One half of the doublet is for water extraction and the other half for reinjection, so the aquifer is kept in hydrological balance, with no net extraction. The heat (or cold) storage medium is the water and the substrate it occupies. Germany's [[Reichstag building]] has been both heated and cooled since 1999 with ATES stores, in two aquifers at different depths.&lt;ref&gt;{{Citation | last1 = Seibt | first1 = P. | last2 = Kabus | first2 = F. | contribution = Aquifer Thermal Energy Storage in Germany | title = Aquifer Thermal Energy Storage in Germany | series = American Astronomical... | contribution-url = http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | date = 2003 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610223951/http://www.os.is/gogn/flytja/JHS-Skjol/UNU%20Visiting%20Lecturers/PSLecture03.pdf | url-status = dead }}&lt;/ref&gt;&lt;br /&gt;In the Netherlands there are well over 1,000 ATES systems, which are now a standard construction option.&lt;ref&gt;{{Cite web |title=Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe |url=http://trca.on.ca/dotAsset/16551.pdf |archive-url=https://web.archive.org/web/20210308043800/http://trca.on.ca/dotAsset/16551.pdf |archive-date=March 8, 2021 |website=trca.on.ca}}&lt;/ref&gt;&lt;ref&gt;{{Cite web |title=20,000 Ates Systems in the Netherlands in 2020 - Major Step Towards a Sustainable Energy Supply |url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-url=https://web.archive.org/web/20150610205959/https://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdfrgy_studies/content/docs/effstock09/Session_10_3_Overviews/94.pdf |archive-date=June 10, 2015}}&lt;/ref&gt;&lt;br /&gt;A significant system has been operating at Richard Stockton College (New Jersey) for several years.&lt;ref name="<ins style="font-weight: bold; text-decoration: none;">:0</ins>" /&gt;ATES has a lower installation cost than borehole thermal energy storage (BTES) because usually fewer holes are drilled, but ATES has a higher operating cost. Also, ATES requires particular underground conditions to be feasible, including the presence of an aquifer.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{anchor|BTES|borehole thermal energy storage}}'''BTES''' (borehole thermal energy storage). BTES stores can be constructed wherever [[borehole]]s can be drilled, and are composed of one to hundreds of vertical boreholes, typically {{convert|155|mm|in|1|abbr=on}} in diameter. Systems of all sizes have been built, including many quite large.&lt;ref&gt;{{Citation |<del style="font-weight: bold; text-decoration: none;"> last1 </del>=<del style="font-weight: bold; text-decoration: none;"> </del>Midttømme |<del style="font-weight: bold; text-decoration: none;"> first1 </del>=<del style="font-weight: bold; text-decoration: none;"> K.</del> |<del style="font-weight: bold; text-decoration: none;"> last2 </del>=<del style="font-weight: bold; text-decoration: none;"> Ramstad | first2 = R. | contribution = </del>Status of UTES in Norway |<del style="font-weight: bold; text-decoration: none;"> title </del>=<del style="font-weight: bold; text-decoration: none;"> Status of UTES in Norway</del> |<del style="font-weight: bold; text-decoration: none;"> </del>series<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>EcoStock 2006 (10th International) – Thermal Energy Storage for Efficiency and Sustainability | <del style="font-weight: bold; text-decoration: none;">place</del> <del style="font-weight: bold; text-decoration: none;">=</del> <del style="font-weight: bold; text-decoration: none;">Pomona,</del> <del style="font-weight: bold; text-decoration: none;">New Jersey</del> |<del style="font-weight: bold; text-decoration: none;"> </del>contribution-url<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PRESENTATIONS/3A-4.pdf | <del style="font-weight: bold; text-decoration: none;">date</del> = <del style="font-weight: bold; text-decoration: none;">2006</del> }}&lt;/ref&gt;&lt;ref&gt;{{Citation | last1 = Stene | first1 = J. | contribution = Large-Scale Ground-Source Heat Pump Systems in Norway | title = Large-Scale Ground-Source Heat Pump Systems in Norway | series = IEA Heat Pump Annex 29 Workshop | place = Zurich | date = 19 May 2008 | contribution-url = http://www.annex29.net/extern/09_STENE_Zuerich_Annex29_GSHPs.pdf }}{{Dead link|date=December 2024 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;&lt;ref&gt;{{Citation |<del style="font-weight: bold; text-decoration: none;"> </del>last1<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>Hellström |<del style="font-weight: bold; text-decoration: none;"> </del>first1<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>G. |<del style="font-weight: bold; text-decoration: none;"> contribution = Large-Scale Applications of Ground-Source Heat Pumps in Sweden | </del>title<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>Large-Scale Applications of Ground-Source Heat Pumps in Sweden |<del style="font-weight: bold; text-decoration: none;"> series = IEA Heat Pump Annex 29 Workshop | place = Zurich | </del>date<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>19 May 2008 |<del style="font-weight: bold; text-decoration: none;"> contribution-</del>url<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |<del style="font-weight: bold; text-decoration: none;"> </del>access-date<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>22 April 2013 |<del style="font-weight: bold; text-decoration: none;"> archive-date = 22 May 2016 | </del>archive-url<del style="font-weight: bold; text-decoration: none;"> </del>=<del style="font-weight: bold; text-decoration: none;"> </del>http://arquivo.pt/wayback/20160522223452/http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf | url-status = <del style="font-weight: bold; text-decoration: none;">dead</del> }}&lt;/ref&gt;&lt;br /&gt;The strata can be anything from sand to crystalline hardrock, and depending on engineering factors the depth can be from {{convert|50|to|300|m|0}}. Spacings have ranged from {{convert|3|to|8|m}}. Thermal models can be used to predict seasonal temperature variation in the ground, including the establishment of a stable temperature regime which is achieved by matching the inputs and outputs of heat over one or more annual cycles. Warm-temperature seasonal heat stores can be created using borehole fields to store surplus heat captured in summer to actively raise the temperature of large thermal banks of soil so that heat can be extracted more easily (and more cheaply) in winter. Interseasonal Heat Transfer&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/interseasonal_heat_transfer.html |title=Interseasonal Heat Transfer |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=19 January 2018 |archive-url=https://web.archive.org/web/20180119185108/http://www.icax.co.uk/interseasonal_heat_transfer.html |url-status=live }}&lt;/ref&gt; uses water circulating in pipes embedded in asphalt solar collectors to transfer heat to Thermal Banks&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/thermalbank.html |title=Thermal Banks |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=23 September 2010 |archive-url=https://web.archive.org/web/20100923155221/http://icax.co.uk/thermalbank.html |url-status=live }}&lt;/ref&gt; created in borehole fields. A ground source heat pump is used in winter to extract the warmth from the Thermal Bank to provide space heating via [[underfloor heating]]. A high [[Coefficient of performance]] is obtained because the heat pump starts with a warm temperature of {{convert|25|°C|°F|abbr=on}} from the thermal store, instead of a cold temperature of {{convert|10|°C|°F|abbr=on}} from the ground.&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/report_on_iht_by_trl.html |title=Report on Interseasonal Heat Transfer by the Highways Agency |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=17 December 2008 |archive-url=https://web.archive.org/web/20081217074635/http://www.icax.co.uk/report_on_iht_by_trl.html |url-status=live }}&lt;/ref&gt; A BTES operating at Richard Stockton College since 1995 at a peak of about {{convert|29|°C|°F|1|abbr=on}} consists of 400 boreholes {{convert|130|m|0}} deep under a {{convert|3.5|acre|ha|adj=on}} parking lot. It has a heat loss of 2% over six months.&lt;ref&gt;{{cite AV media | people = Chrisopherson, Elizabeth G. (Exec. Producer) | title = Green Builders (segment interviewing Lynn Stiles) | medium = Television production | publisher = PBS | date = 19 April 2009 | url = https://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | access-date = 11 September 2017 | archive-date = 23 December 2017 | archive-url = https://web.archive.org/web/20171223102410/http://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | url-status = live }}&lt;/ref&gt; The upper temperature limit for a BTES store is {{convert|85|°C|°F|abbr=on}} due to characteristics of the PEX pipe used for [[downhole heat exchanger|BHEs]], but most do not approach that limit. Boreholes can be either grout- or water-filled depending on geological conditions, and usually have a life expectancy in excess of 100 years. Both a BTES and its associated district heating system can be expanded incrementally after operation begins, as at Neckarsulm, Germany.&lt;ref&gt;{{Cite web |last=Lux |first=Nussbicker |date=January 2011 |title=Solar Thermal Combined with District Heating and Seasonal Heat Storage |url=http://www.itw.uni-stuttgart.de/abteilungen/rationelleEnergie/pdfdateien/11-03.pdf |website=itw.uni-stuttgart.de}}&lt;/ref&gt;&lt;br /&gt;BTES stores generally do not impair use of the land, and can exist under buildings, agricultural fields and parking lots. An example of one of the several kinds of STES illustrates well the capability of interseasonal heat storage. In Alberta, Canada, the homes of the [[Drake Landing Solar Community]] (in operation since 2007), get 97% of their year-round heat from a district heat system that is supplied by solar heat from solar-thermal panels on garage roofs. This feat – a world record – is enabled by interseasonal heat storage in a large mass of native rock that is under a central park. The thermal exchange occurs via a cluster of 144 boreholes, drilled {{convert|37|m}} into the earth. Each borehole is {{convert|155|mm|in|1|abbr=on}} in diameter and contains a simple heat exchanger made of small diameter plastic pipe, through which water is circulated. No heat pumps are involved.&lt;ref name=drake1/&gt;&lt;ref&gt;{{cite press release | title = Canadian Solar Community Sets New World Record for Energy Efficiency and Innovation | publisher = Natural Resources Canada | date = 5 October 2012 | url = http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | access-date = 21 April 2013 | archive-date = 30 April 2013 | archive-url = https://web.archive.org/web/20130430221347/http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | url-status = dead }} {{cite web | title = Drake Landing Solar Community (webpage) | url = http://www.dlsc.ca/ | access-date = 21 April 2013 | archive-date = 25 May 2019 | archive-url = https://web.archive.org/web/20190525074938/https://www.dlsc.ca/ | url-status = live }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{anchor|BTES|borehole thermal energy storage}}'''BTES''' (borehole thermal energy storage). BTES stores can be constructed wherever [[borehole]]s can be drilled, and are composed of one to hundreds of vertical boreholes, typically {{convert|155|mm|in|1|abbr=on}} in diameter. Systems of all sizes have been built, including many quite large.&lt;ref&gt;{{Citation |<ins style="font-weight: bold; text-decoration: none;">last</ins>=Midttømme |<ins style="font-weight: bold; text-decoration: none;">first</ins>=<ins style="font-weight: bold; text-decoration: none;">Kirsti</ins> |<ins style="font-weight: bold; text-decoration: none;">title</ins>=Status of UTES in Norway |<ins style="font-weight: bold; text-decoration: none;">date</ins>=<ins style="font-weight: bold; text-decoration: none;">2006</ins> |series=EcoStock 2006 (10th International) – Thermal Energy Storage for Efficiency and Sustainability |<ins style="font-weight: bold; text-decoration: none;">contribution=Status</ins> <ins style="font-weight: bold; text-decoration: none;">of</ins> <ins style="font-weight: bold; text-decoration: none;">UTES</ins> <ins style="font-weight: bold; text-decoration: none;">in</ins> <ins style="font-weight: bold; text-decoration: none;">Norway</ins> |contribution-url=http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PRESENTATIONS/3A-4.pdf |<ins style="font-weight: bold; text-decoration: none;">place=Pomona,</ins> <ins style="font-weight: bold; text-decoration: none;">New</ins> <ins style="font-weight: bold; text-decoration: none;">Jersey |publisher</ins>=<ins style="font-weight: bold; text-decoration: none;">intraweb.stockton.edu</ins> <ins style="font-weight: bold; text-decoration: none;">|last2=Ramstad</ins> <ins style="font-weight: bold; text-decoration: none;">|first2=R.</ins>}}&lt;/ref&gt;&lt;ref&gt;{{Citation | last1 = Stene | first1 = J. | contribution = Large-Scale Ground-Source Heat Pump Systems in Norway | title = Large-Scale Ground-Source Heat Pump Systems in Norway | series = IEA Heat Pump Annex 29 Workshop | place = Zurich | date = 19 May 2008 | contribution-url = http://www.annex29.net/extern/09_STENE_Zuerich_Annex29_GSHPs.pdf }}{{Dead link|date=December 2024 |bot=InternetArchiveBot |fix-attempted=yes }}&lt;/ref&gt;&lt;ref&gt;{{Citation |last1=Hellström |first1=G. |title=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |date=19 May 2008 |url=<ins style="font-weight: bold; text-decoration: none;">https://arquivo.pt/wayback/20160522223452/</ins>http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |access-date=22 April 2013 |archive-url=http://arquivo.pt/wayback/20160522223452/http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |<ins style="font-weight: bold; text-decoration: none;">archive-date=May</ins> <ins style="font-weight: bold; text-decoration: none;">22, 2016 |</ins>url-status<ins style="font-weight: bold; text-decoration: none;">=dead</ins> <ins style="font-weight: bold; text-decoration: none;">|series</ins>=<ins style="font-weight: bold; text-decoration: none;">IEA</ins> <ins style="font-weight: bold; text-decoration: none;">Heat</ins> <ins style="font-weight: bold; text-decoration: none;">Pump Annex 29 Workshop |contribution=Large-Scale Applications of Ground-Source Heat Pumps in Sweden |contribution-url=http://www.annex29.net/extern/10_HELLSTROM_Zurich%20080519.pdf |place=Zurich |publisher=arquivo.pt</ins>}}&lt;/ref&gt;&lt;br /&gt;The strata can be anything from sand to crystalline hardrock, and depending on engineering factors the depth can be from {{convert|50|to|300|m|0}}. Spacings have ranged from {{convert|3|to|8|m}}. Thermal models can be used to predict seasonal temperature variation in the ground, including the establishment of a stable temperature regime which is achieved by matching the inputs and outputs of heat over one or more annual cycles. Warm-temperature seasonal heat stores can be created using borehole fields to store surplus heat captured in summer to actively raise the temperature of large thermal banks of soil so that heat can be extracted more easily (and more cheaply) in winter. Interseasonal Heat Transfer&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/interseasonal_heat_transfer.html |title=Interseasonal Heat Transfer |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=19 January 2018 |archive-url=https://web.archive.org/web/20180119185108/http://www.icax.co.uk/interseasonal_heat_transfer.html |url-status=live }}&lt;/ref&gt; uses water circulating in pipes embedded in asphalt solar collectors to transfer heat to Thermal Banks&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/thermalbank.html |title=Thermal Banks |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=23 September 2010 |archive-url=https://web.archive.org/web/20100923155221/http://icax.co.uk/thermalbank.html |url-status=live }}&lt;/ref&gt; created in borehole fields. A ground source heat pump is used in winter to extract the warmth from the Thermal Bank to provide space heating via [[underfloor heating]]. A high [[Coefficient of performance]] is obtained because the heat pump starts with a warm temperature of {{convert|25|°C|°F|abbr=on}} from the thermal store, instead of a cold temperature of {{convert|10|°C|°F|abbr=on}} from the ground.&lt;ref&gt;{{cite web |url=http://www.icax.co.uk/report_on_iht_by_trl.html |title=Report on Interseasonal Heat Transfer by the Highways Agency |publisher=Icax.co.uk |access-date=2017-12-22 |archive-date=17 December 2008 |archive-url=https://web.archive.org/web/20081217074635/http://www.icax.co.uk/report_on_iht_by_trl.html |url-status=live }}&lt;/ref&gt; A BTES operating at Richard Stockton College since 1995 at a peak of about {{convert|29|°C|°F|1|abbr=on}} consists of 400 boreholes {{convert|130|m|0}} deep under a {{convert|3.5|acre|ha|adj=on}} parking lot. It has a heat loss of 2% over six months.&lt;ref&gt;{{cite AV media | people = Chrisopherson, Elizabeth G. (Exec. Producer) | title = Green Builders (segment interviewing Lynn Stiles) | medium = Television production | publisher = PBS | date = 19 April 2009 | url = https://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | access-date = 11 September 2017 | archive-date = 23 December 2017 | archive-url = https://web.archive.org/web/20171223102410/http://www.pbs.org/greenbuilders/meet-the-builders/lynn-stiles.html | url-status = live }}&lt;/ref&gt; The upper temperature limit for a BTES store is {{convert|85|°C|°F|abbr=on}} due to characteristics of the PEX pipe used for [[downhole heat exchanger|BHEs]], but most do not approach that limit. Boreholes can be either grout- or water-filled depending on geological conditions, and usually have a life expectancy in excess of 100 years. Both a BTES and its associated district heating system can be expanded incrementally after operation begins, as at Neckarsulm, Germany.&lt;ref&gt;{{Cite web |last=Lux |first=Nussbicker |date=January 2011 |title=Solar Thermal Combined with District Heating and Seasonal Heat Storage |url=http://www.itw.uni-stuttgart.de/abteilungen/rationelleEnergie/pdfdateien/11-03.pdf |website=itw.uni-stuttgart.de}}&lt;/ref&gt;&lt;br /&gt;BTES stores generally do not impair use of the land, and can exist under buildings, agricultural fields and parking lots. An example of one of the several kinds of STES illustrates well the capability of interseasonal heat storage. In Alberta, Canada, the homes of the [[Drake Landing Solar Community]] (in operation since 2007), get 97% of their year-round heat from a district heat system that is supplied by solar heat from solar-thermal panels on garage roofs. This feat – a world record – is enabled by interseasonal heat storage in a large mass of native rock that is under a central park. The thermal exchange occurs via a cluster of 144 boreholes, drilled {{convert|37|m}} into the earth. Each borehole is {{convert|155|mm|in|1|abbr=on}} in diameter and contains a simple heat exchanger made of small diameter plastic pipe, through which water is circulated. No heat pumps are involved.&lt;ref name=drake1/&gt;&lt;ref&gt;{{cite press release | title = Canadian Solar Community Sets New World Record for Energy Efficiency and Innovation | publisher = Natural Resources Canada | date = 5 October 2012 | url = http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | access-date = 21 April 2013 | archive-date = 30 April 2013 | archive-url = https://web.archive.org/web/20130430221347/http://www.nrcan.gc.ca/media-room/news-release/2012/6586 | url-status = dead }} {{cite web | title = Drake Landing Solar Community (webpage) | url = http://www.dlsc.ca/ | access-date = 21 April 2013 | archive-date = 25 May 2019 | archive-url = https://web.archive.org/web/20190525074938/https://www.dlsc.ca/ | url-status = live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''CTES''' (cavern or mine thermal energy storage). STES stores are possible in flooded mines, purpose-built chambers, or abandoned underground oil stores (e.g. those mined into crystalline hardrock in Norway), if they are close enough to a heat (or cold) source and market.&lt;ref&gt;{{Citation | last1 = Michel | first1 = F.A. | contribution = Utilization of abandoned mine workings for thermal energy storage in Canada | title = Utilization of abandoned mine workings for thermal energy storage in Canada | series = Effstock Conference (11th International) – Thermal Energy Storage for Efficiency and Sustainability | place = Stockholm | contribution-url = http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | date = 2009 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610230931/http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | url-status = live }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''CTES''' (cavern or mine thermal energy storage). STES stores are possible in flooded mines, purpose-built chambers, or abandoned underground oil stores (e.g. those mined into crystalline hardrock in Norway), if they are close enough to a heat (or cold) source and market.&lt;ref&gt;{{Citation | last1 = Michel | first1 = F.A. | contribution = Utilization of abandoned mine workings for thermal energy storage in Canada | title = Utilization of abandoned mine workings for thermal energy storage in Canada | series = Effstock Conference (11th International) – Thermal Energy Storage for Efficiency and Sustainability | place = Stockholm | contribution-url = http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | date = 2009 | access-date = 22 April 2013 | archive-date = 10 June 2015 | archive-url = https://web.archive.org/web/20150610230931/http://intraweb.stockton.edu/eyos/energy_studies/content/docs/effstock09/Session_11_1_Case%20studies_Overviews/105.pdf | url-status = live }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Energy Pilings'''. During construction of large buildings, BHE heat exchangers much like those used for BTES stores have been spiraled inside the cages of reinforcement bars for pilings, with concrete then poured in place. The pilings and surrounding strata then become the storage medium.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Energy Pilings'''. During construction of large buildings, BHE heat exchangers much like those used for BTES stores have been spiraled inside the cages of reinforcement bars for pilings, with concrete then poured in place. The pilings and surrounding strata then become the storage medium.</div></td> </tr> </table> Jeegajeega