https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Set_function Set function - Revision history 2025-06-28T21:09:44Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.7 https://en.wikipedia.org/w/index.php?title=Set_function&diff=1251642420&oldid=prev Citation bot: Add: volume, series. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Functions and mappings | #UCB_Category 14/160 2024-10-17T06:33:15Z <p>Add: volume, series. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Functions_and_mappings" title="Category:Functions and mappings">Category:Functions and mappings</a> | #UCB_Category 14/160</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:33, 17 October 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 139:</td> <td colspan="2" class="diff-lineno">Line 139:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other. &lt;math&gt;\mu&lt;/math&gt; is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure &lt;math&gt;\nu&lt;/math&gt; if &lt;math&gt;\mu&lt;/math&gt; is [[sigma-finite|&lt;math&gt;\sigma&lt;/math&gt;-finite]] and they are equivalent.&lt;ref&gt;{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other. &lt;math&gt;\mu&lt;/math&gt; is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure &lt;math&gt;\nu&lt;/math&gt; if &lt;math&gt;\mu&lt;/math&gt; is [[sigma-finite|&lt;math&gt;\sigma&lt;/math&gt;-finite]] and they are equivalent.&lt;ref&gt;{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications<ins style="font-weight: bold; text-decoration: none;">|series=Probability Theory and Stochastic Modelling |volume=77 </ins>|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Set_function&diff=1222455662&oldid=prev David Eppstein: /* References */ sfn whitelist 2024-05-06T01:50:10Z <p><span class="autocomment">References: </span> sfn whitelist</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:50, 6 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 258:</td> <td colspan="2" class="diff-lineno">Line 258:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{sfn whitelist|CITEREFDurrett2019|CITEREFRoydenFitzpatrick2010}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Durrett Probability Theory and Examples 5th Edition}} &lt;!--{{sfn|Durrett|2019|p=}}--&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Durrett Probability Theory and Examples 5th Edition}} &lt;!--{{sfn|Durrett|2019|p=}}--&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} &lt;!--{{sfn|Kolmogorov|Fomin|1957|p=}}--&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} &lt;!--{{sfn|Kolmogorov|Fomin|1957|p=}}--&gt;</div></td> </tr> </table> David Eppstein https://en.wikipedia.org/w/index.php?title=Set_function&diff=1151917505&oldid=prev 2600:4040:71C9:4800:6CF3:6ABC:3964:A56F: /* Definitions */Fixed sentence 2023-04-27T01:38:46Z <p><span class="autocomment">Definitions: </span>Fixed sentence</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:38, 27 April 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If &lt;math&gt;\mathcal{F}&lt;/math&gt; is a [[family of sets]] over &lt;math&gt;\Omega&lt;/math&gt; (meaning that &lt;math&gt;\mathcal{F} \subseteq \wp(\Omega)&lt;/math&gt; where &lt;math&gt;\wp(\Omega)&lt;/math&gt; denotes the [[powerset]]) then a {{em|set function on &lt;math&gt;\mathcal{F}&lt;/math&gt;}} is a function &lt;math&gt;\mu&lt;/math&gt; with [[Domain of a function|domain]] &lt;math&gt;\mathcal{F}&lt;/math&gt; and [[codomain]] &lt;math&gt;[-\infty, \infty]&lt;/math&gt; or, sometimes, the codomain is instead some [[vector space]], as with [[vector measure]]s, [[complex measure]]s, and [[projection-valued measure]]s. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If &lt;math&gt;\mathcal{F}&lt;/math&gt; is a [[family of sets]] over &lt;math&gt;\Omega&lt;/math&gt; (meaning that &lt;math&gt;\mathcal{F} \subseteq \wp(\Omega)&lt;/math&gt; where &lt;math&gt;\wp(\Omega)&lt;/math&gt; denotes the [[powerset]]) then a {{em|set function on &lt;math&gt;\mathcal{F}&lt;/math&gt;}} is a function &lt;math&gt;\mu&lt;/math&gt; with [[Domain of a function|domain]] &lt;math&gt;\mathcal{F}&lt;/math&gt; and [[codomain]] &lt;math&gt;[-\infty, \infty]&lt;/math&gt; or, sometimes, the codomain is instead some [[vector space]], as with [[vector measure]]s, [[complex measure]]s, and [[projection-valued measure]]s. </div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The domain <del style="font-weight: bold; text-decoration: none;">is</del> a set function may have any number properties; the commonly encountered properties and categories of families are listed in the table below.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The domain <ins style="font-weight: bold; text-decoration: none;">of</ins> a set function may have any number properties; the commonly encountered properties and categories of families are listed in the table below.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Families of sets}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Families of sets}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> 2600:4040:71C9:4800:6CF3:6ABC:3964:A56F https://en.wikipedia.org/w/index.php?title=Set_function&diff=1143474059&oldid=prev Mgkrupa: /* Inner measures, outer measures, and other properties */ 2023-03-07T23:34:13Z <p><span class="autocomment">Inner measures, outer measures, and other properties</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:34, 7 March 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 105:</td> <td colspan="2" class="diff-lineno">Line 105:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;an [[#outer measure|{{em|outer measure}}]] if &lt;math&gt;\mu&lt;/math&gt; is non-negative, [[#countably subadditive|countably subadditive]], has a [[#null empty set|null empty set]], and has the [[power set]] &lt;math&gt;\wp(\Omega)&lt;/math&gt; as its domain.&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;an [[#outer measure|{{em|outer measure}}]] if &lt;math&gt;\mu&lt;/math&gt; is non-negative, [[#countably subadditive|countably subadditive]], has a [[#null empty set|null empty set]], and has the [[power set]] &lt;math&gt;\wp(\Omega)&lt;/math&gt; as its domain.&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;an [[Inner measure|{{em|{{visible anchor|inner measure}}}}]] if &lt;math&gt;\mu&lt;/math&gt; is non-negative, [[#superadditive|superadditive]], [[#continuous from above|continuous from above]], has a [[#null empty set|null empty set]], has the [[power set]] &lt;math&gt;\wp(\Omega)&lt;/math&gt; as its domain, and [[#infinity is approached from below|&lt;math&gt;+\infty&lt;/math&gt; is approached from below]].&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;an [[Inner measure|{{em|{{visible anchor|inner measure}}}}]] if &lt;math&gt;\mu&lt;/math&gt; is non-negative, [[#superadditive|superadditive]], [[#continuous from above|continuous from above]], has a [[#null empty set|null empty set]], has the [[power set]] &lt;math&gt;\wp(\Omega)&lt;/math&gt; as its domain, and [[#infinity is approached from below|&lt;math&gt;+\infty&lt;/math&gt; is approached from below]].&lt;/li&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;[[Atomic measure|{{em|atomic}}]] if every measurable set of positive measure contains an [[Atom (measure theory)|atom]].&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1143439336&oldid=prev Mgkrupa at 18:53, 7 March 2023 2023-03-07T18:53:21Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:53, 7 March 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 274:</td> <td colspan="2" class="diff-lineno">Line 274:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Functions and mappings]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Functions and mappings]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measure theory]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measures (measure theory)]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measures (measure theory)]]</div></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136989999&oldid=prev Mgkrupa: /* Further reading */ 2023-02-02T05:02:47Z <p><span class="autocomment">Further reading</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:02, 2 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 270:</td> <td colspan="2" class="diff-lineno">Line 270:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Measure theory}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Measure theory}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Analysis in topological vector spaces}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136988719&oldid=prev Mgkrupa: /* Infinite-dimensional space */ 2023-02-02T04:51:33Z <p><span class="autocomment">Infinite-dimensional space</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:51, 2 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 167:</td> <td colspan="2" class="diff-lineno">Line 167:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem<ins style="font-weight: bold; text-decoration: none;">|Radonifying function</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136984285&oldid=prev Mgkrupa: /* Infinite-dimensional space */ 2023-02-02T04:17:41Z <p><span class="autocomment">Infinite-dimensional space</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:17, 2 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 167:</td> <td colspan="2" class="diff-lineno">Line 167:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space<ins style="font-weight: bold; text-decoration: none;">|Feldman–Hájek theorem</ins>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136981026&oldid=prev Mgkrupa: /* Relationships between set functions */ 2023-02-02T03:54:36Z <p><span class="autocomment">Relationships between set functions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:54, 2 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 138:</td> <td colspan="2" class="diff-lineno">Line 138:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.<ins style="font-weight: bold; text-decoration: none;"> &lt;math&gt;\mu&lt;/math&gt; is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure &lt;math&gt;\nu&lt;/math&gt; if &lt;math&gt;\mu&lt;/math&gt; is [[sigma-finite|&lt;math&gt;\sigma&lt;/math&gt;-finite]] and they are equivalent.&lt;ref&gt;{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}&lt;/ref&gt;</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> </tr> </table> Mgkrupa https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136980662&oldid=prev Mgkrupa: /* Relationships between set functions */ 2023-02-02T03:51:39Z <p><span class="autocomment">Relationships between set functions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:51, 2 February 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 138:</td> <td colspan="2" class="diff-lineno">Line 138:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to &lt;math&gt;\nu&lt;/math&gt;}}]] or [[Domination (measure theory)|{{em|dominated by &lt;math&gt;\nu&lt;/math&gt;}}]], written &lt;math&gt;\mu \ll \nu,&lt;/math&gt; if for every set &lt;math&gt;F&lt;/math&gt; that belongs to the domain of both &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu,&lt;/math&gt; if &lt;math&gt;\nu(F) = 0&lt;/math&gt; then &lt;math&gt;\mu(F) = 0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[σ-finite measure|&lt;math&gt;\sigma&lt;/math&gt;-finite measure]]s on the same measurable space and if &lt;math&gt;\mu \ll \nu,&lt;/math&gt; then the [[Radon–Nikodym derivative]] &lt;math&gt;\frac{d \mu}{d \nu}&lt;/math&gt; exists and for every measurable &lt;math&gt;F,&lt;/math&gt; &lt;math display=block&gt;\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;li&gt;&lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written &lt;math&gt;\mu \perp \nu,&lt;/math&gt; if there exist disjoint sets &lt;math&gt;M&lt;/math&gt; and &lt;math&gt;N&lt;/math&gt; in the domains of &lt;math&gt;\mu&lt;/math&gt; and &lt;math&gt;\nu&lt;/math&gt; such that &lt;math&gt;M \cup N = \Omega,&lt;/math&gt; &lt;math&gt;\mu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq M&lt;/math&gt; in the domain of &lt;math&gt;\mu,&lt;/math&gt; and &lt;math&gt;\nu(F) = 0&lt;/math&gt; for all &lt;math&gt;F \subseteq N&lt;/math&gt; in the domain of &lt;math&gt;\nu.&lt;/math&gt;&lt;/li&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/ul&gt;</div></td> </tr> </table> Mgkrupa