https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Set_function
Set function - Revision history
2025-06-28T21:09:44Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.7
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1251642420&oldid=prev
Citation bot: Add: volume, series. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Functions and mappings | #UCB_Category 14/160
2024-10-17T06:33:15Z
<p>Add: volume, series. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Dominic3203 | <a href="/wiki/Category:Functions_and_mappings" title="Category:Functions and mappings">Category:Functions and mappings</a> | #UCB_Category 14/160</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:33, 17 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 139:</td>
<td colspan="2" class="diff-lineno">Line 139:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* <math>\mu</math> and <math>\nu</math> are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other. <math>\mu</math> is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure <math>\nu</math> if <math>\mu</math> is [[sigma-finite|<math>\sigma</math>-finite]] and they are equivalent.<ref>{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <math>\mu</math> and <math>\nu</math> are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other. <math>\mu</math> is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure <math>\nu</math> if <math>\mu</math> is [[sigma-finite|<math>\sigma</math>-finite]] and they are equivalent.<ref>{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications<ins style="font-weight: bold; text-decoration: none;">|series=Probability Theory and Stochastic Modelling |volume=77 </ins>|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1222455662&oldid=prev
David Eppstein: /* References */ sfn whitelist
2024-05-06T01:50:10Z
<p><span class="autocomment">References: </span> sfn whitelist</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:50, 6 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 258:</td>
<td colspan="2" class="diff-lineno">Line 258:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{sfn whitelist|CITEREFDurrett2019|CITEREFRoydenFitzpatrick2010}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Durrett Probability Theory and Examples 5th Edition}} <!--{{sfn|Durrett|2019|p=}}--></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Durrett Probability Theory and Examples 5th Edition}} <!--{{sfn|Durrett|2019|p=}}--></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} <!--{{sfn|Kolmogorov|Fomin|1957|p=}}--></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} <!--{{sfn|Kolmogorov|Fomin|1957|p=}}--></div></td>
</tr>
</table>
David Eppstein
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1151917505&oldid=prev
2600:4040:71C9:4800:6CF3:6ABC:3964:A56F: /* Definitions */Fixed sentence
2023-04-27T01:38:46Z
<p><span class="autocomment">Definitions: </span>Fixed sentence</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:38, 27 April 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 8:</td>
<td colspan="2" class="diff-lineno">Line 8:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If <math>\mathcal{F}</math> is a [[family of sets]] over <math>\Omega</math> (meaning that <math>\mathcal{F} \subseteq \wp(\Omega)</math> where <math>\wp(\Omega)</math> denotes the [[powerset]]) then a {{em|set function on <math>\mathcal{F}</math>}} is a function <math>\mu</math> with [[Domain of a function|domain]] <math>\mathcal{F}</math> and [[codomain]] <math>[-\infty, \infty]</math> or, sometimes, the codomain is instead some [[vector space]], as with [[vector measure]]s, [[complex measure]]s, and [[projection-valued measure]]s. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>If <math>\mathcal{F}</math> is a [[family of sets]] over <math>\Omega</math> (meaning that <math>\mathcal{F} \subseteq \wp(\Omega)</math> where <math>\wp(\Omega)</math> denotes the [[powerset]]) then a {{em|set function on <math>\mathcal{F}</math>}} is a function <math>\mu</math> with [[Domain of a function|domain]] <math>\mathcal{F}</math> and [[codomain]] <math>[-\infty, \infty]</math> or, sometimes, the codomain is instead some [[vector space]], as with [[vector measure]]s, [[complex measure]]s, and [[projection-valued measure]]s. </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The domain <del style="font-weight: bold; text-decoration: none;">is</del> a set function may have any number properties; the commonly encountered properties and categories of families are listed in the table below.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The domain <ins style="font-weight: bold; text-decoration: none;">of</ins> a set function may have any number properties; the commonly encountered properties and categories of families are listed in the table below.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Families of sets}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Families of sets}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
2600:4040:71C9:4800:6CF3:6ABC:3964:A56F
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1143474059&oldid=prev
Mgkrupa: /* Inner measures, outer measures, and other properties */
2023-03-07T23:34:13Z
<p><span class="autocomment">Inner measures, outer measures, and other properties</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:34, 7 March 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 105:</td>
<td colspan="2" class="diff-lineno">Line 105:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li>an [[#outer measure|{{em|outer measure}}]] if <math>\mu</math> is non-negative, [[#countably subadditive|countably subadditive]], has a [[#null empty set|null empty set]], and has the [[power set]] <math>\wp(\Omega)</math> as its domain.</li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li>an [[#outer measure|{{em|outer measure}}]] if <math>\mu</math> is non-negative, [[#countably subadditive|countably subadditive]], has a [[#null empty set|null empty set]], and has the [[power set]] <math>\wp(\Omega)</math> as its domain.</li></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li>an [[Inner measure|{{em|{{visible anchor|inner measure}}}}]] if <math>\mu</math> is non-negative, [[#superadditive|superadditive]], [[#continuous from above|continuous from above]], has a [[#null empty set|null empty set]], has the [[power set]] <math>\wp(\Omega)</math> as its domain, and [[#infinity is approached from below|<math>+\infty</math> is approached from below]].</li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li>an [[Inner measure|{{em|{{visible anchor|inner measure}}}}]] if <math>\mu</math> is non-negative, [[#superadditive|superadditive]], [[#continuous from above|continuous from above]], has a [[#null empty set|null empty set]], has the [[power set]] <math>\wp(\Omega)</math> as its domain, and [[#infinity is approached from below|<math>+\infty</math> is approached from below]].</li></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><li>[[Atomic measure|{{em|atomic}}]] if every measurable set of positive measure contains an [[Atom (measure theory)|atom]].</li></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1143439336&oldid=prev
Mgkrupa at 18:53, 7 March 2023
2023-03-07T18:53:21Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:53, 7 March 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 274:</td>
<td colspan="2" class="diff-lineno">Line 274:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Functions and mappings]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Functions and mappings]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measure theory]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measures (measure theory)]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Measures (measure theory)]]</div></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136989999&oldid=prev
Mgkrupa: /* Further reading */
2023-02-02T05:02:47Z
<p><span class="autocomment">Further reading</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:02, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 270:</td>
<td colspan="2" class="diff-lineno">Line 270:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Measure theory}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Measure theory}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Analysis in topological vector spaces}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Basic concepts in set theory]]</div></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136988719&oldid=prev
Mgkrupa: /* Infinite-dimensional space */
2023-02-02T04:51:33Z
<p><span class="autocomment">Infinite-dimensional space</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:51, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 167:</td>
<td colspan="2" class="diff-lineno">Line 167:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem<ins style="font-weight: bold; text-decoration: none;">|Radonifying function</ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136984285&oldid=prev
Mgkrupa: /* Infinite-dimensional space */
2023-02-02T04:17:41Z
<p><span class="autocomment">Infinite-dimensional space</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:17, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 167:</td>
<td colspan="2" class="diff-lineno">Line 167:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>====Infinite-dimensional space====</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space<ins style="font-weight: bold; text-decoration: none;">|Feldman–Hájek theorem</ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As detailed in the article on [[infinite-dimensional Lebesgue measure]], the only locally finite and translation-invariant [[Borel measure]] on an infinite-dimensional [[Separable space|separable]] [[normed space]] is the [[trivial measure]]. However, it is possible to define [[Gaussian measure]]s on infinite-dimensional [[topological vector space]]s. The [[structure theorem for Gaussian measures]] shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a strictly positive Gaussian measure on a [[Separable space|separable]] [[Banach space]].</div></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136981026&oldid=prev
Mgkrupa: /* Relationships between set functions */
2023-02-02T03:54:36Z
<p><span class="autocomment">Relationships between set functions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:54, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 138:</td>
<td colspan="2" class="diff-lineno">Line 138:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* <math>\mu</math> and <math>\nu</math> are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <math>\mu</math> and <math>\nu</math> are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.<ins style="font-weight: bold; text-decoration: none;"> <math>\mu</math> is called a [[Equivalence (measure theory)#Supporting measure|{{em|{{visible anchor|supporting measure}}}}]] of a measure <math>\nu</math> if <math>\mu</math> is [[sigma-finite|<math>\sigma</math>-finite]] and they are equivalent.<ref>{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017 |title=Random Measures, Theory and Applications|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}</ref></ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
</tr>
</table>
Mgkrupa
https://en.wikipedia.org/w/index.php?title=Set_function&diff=1136980662&oldid=prev
Mgkrupa: /* Relationships between set functions */
2023-02-02T03:51:39Z
<p><span class="autocomment">Relationships between set functions</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:51, 2 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 138:</td>
<td colspan="2" class="diff-lineno">Line 138:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> is said to be [[Absolute continuity (measure theory)|{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}}]] or [[Domination (measure theory)|{{em|dominated by <math>\nu</math>}}]], written <math>\mu \ll \nu,</math> if for every set <math>F</math> that belongs to the domain of both <math>\mu</math> and <math>\nu,</math> if <math>\nu(F) = 0</math> then <math>\mu(F) = 0.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If <math>\mu</math> and <math>\nu</math> are [[σ-finite measure|<math>\sigma</math>-finite measure]]s on the same measurable space and if <math>\mu \ll \nu,</math> then the [[Radon–Nikodym derivative]] <math>\frac{d \mu}{d \nu}</math> exists and for every measurable <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></li></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <math>\mu</math> and <math>\nu</math> are called [[Equivalence (measure theory)|{{em|{{visible anchor|equivalent}}}}]] if each one is [[#absolutely continuous|absolutely continuous]] with respect to the other.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><li><math>\mu</math> and <math>\nu</math> are [[Singular measure|{{em|{{visible anchor|singular}}}}]], written <math>\mu \perp \nu,</math> if there exist disjoint sets <math>M</math> and <math>N</math> in the domains of <math>\mu</math> and <math>\nu</math> such that <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> for all <math>F \subseteq M</math> in the domain of <math>\mu,</math> and <math>\nu(F) = 0</math> for all <math>F \subseteq N</math> in the domain of <math>\nu.</math></li></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></ul></div></td>
</tr>
</table>
Mgkrupa